Infiltration Technology for Anode & Cathode Performance Improvement

Principal Investigator: Steven J. Visco NETL Program Manager: Briggs White Materials Science Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 sivisco@lbl.gov

LBNL-SECA Objectives

- Development of technologies enabling improvement of SOFC performance at equivalent (or lower cost) relative to existing SOFC components
- Target high risk/high benefit strategies and basic science, not incremental engineering advances that are better suited to industrial developers.
- Characterization of performance improvement
- Transfer of technology to industrial teams, national labs, and/or university teams.

Key Program Tasks

- 1. Infiltration of perovskites into composite cathodes
- 2. Determination of baseline performance and long term stability of infiltrated and noninfiltrated air cathodes, including testing in the presence of Cr vapor
- 3. Infiltration of ceria and other appropriate materials into Ni-YSZ anodes to improve sulfur tolerance
- 4. Design and fabrication of 2-cell stack for national labs and industrial teams as a standard for testing electrodes

LBNL Team

Staff	Position
Steven J. Visco	Principal Investigator
Craig P. Jacobson	Principal Scientific Engineering Associate
Dr. Michael Tucker	Staff Research Associate
Dr. Tal Sholklapper	Postdoctoral Fellow
Dr. Peggy Hou	Staff Scientist
Grace Lau	Research Associate
UC Berkeley Engineering Students	Undergraduate staff

Task Execution

- 1. Infiltration of perovskites into composite cathodes
- 2. Determination of baseline performance and long term stability of infiltrated and non-infiltrated air cathodes
- 3. Infiltration of ceria and other appropriate materials into Ni-YSZ anodes to improve sulfur tolerance
- 4. Design and fabrication of 2-cell stack for national labs and industrial teams as a standard for testing electrodes

Infiltration Step

Nitrate-Surfactant Concentrated Precursor

Surfactant dispersed Electrode Precursors

Porous electrolyte matrix

electronic conductor 🔘 ionic conductor

Composite Commercial electrodes (YSZ-LSM)

Infiltrated Catalysts

Infiltration of LSM Into Porous YSZ Structure

TEM Shows Good Coverage

LSM on porous YSZ

Long-term Stability of Infiltrated LSM Cathode

LSM infiltrated 1x (nanoparticulate coating) Achieved high power density at 650°C for 500+ hours

Infiltrated oxide catalysts provide the desired stability, minimal infiltration steps

Infiltration Step

Nitrate-Surfactant Concentrated Precursor

Surfactant dispersed Electrode Precursors

Porous electrolyte matrix

electronic conductor 🔘 ionic conductor

Composite Commercial electrodes (YSZ-LSM)

LSM NanoParticles Infiltrated into LSM/YSZ cathode

LBNL Collaboration with Electro Sciences Lab to Accelerate Development of Anode Supported SOFC Components and Performance Improvement through Infiltration

Initial performance = $41 \text{ mW/cm}^2 @ 0.7 \text{ and } 45 \text{ mW/cm}^2 \text{ PPD}$, with infiltration increasing to 68 mW/cm^2 and 75 mW/cm^2 respectively; recent results at $425 \text{ mW/cm}^2 @ 0.7 \text{ V}$ and 570 mW/cm^2 PPD with infiltration increasing to

Working on standard cell for **700** °C operation - available to industrial teams, Universities, and National Labs - US supplier

Task Execution

- 1. Infiltration of perovskites into composite cathodes
- 2. Determination of baseline performance and long term stability of infiltrated and non-infiltrated air cathodes
- 3. Infiltration of ceria and other appropriate materials into Ni-YSZ anodes to improve sulfur tolerance
- 4. Design and fabrication of 2-cell stack for national labs and industrial teams as a standard for testing electrodes

Baseline performance and long term stability of infiltrated and non-infiltrated air cathodes

Commercial Symmetric Electrolyte Supported LSCF Cell from INDEC LSCF-YDC/TZ3Y/YDC-LSCF

HC Starck LSCF/LSCF Cell

Electrolyte supported cell: electrode Impedance before and after infiltration 700 °C

=>45% improvement in cell resistance

Effect of Ceria Infiltration on Cathode Tolerance to Cr Rate of Degradation vs Time

Investigating Alternative Cr Tolerant Cathodes

Pellets of LSM and Cr₂O₃ powder mixtures reacted for 150h at 700°C and 950°C

Development of Cr Tolerant Cathodes

 $La_{0.9}Sr_{0.1}CrO_3$ does not react with Cr_2O_3

La_{0.98}Ni_{0.6}Fe_{0.4} does not react with Cr₂O₃

Infiltrate LSCr or LNF to Promote Catalysis

Cr-Tolerant Compositions

Decomposition to stable species

 \rightarrow PrCrO_x + NiCrO_x

Are these stable in contact with Cr₂O₃?

PrCrO_x and NiCrO_x are stable with Cr_2O_3 \rightarrow Active as cathode?

Electrochemical Testing of NiCrOx and PrCrOx

Task Execution

- 1. Infiltration of perovskites into composite cathodes
- 2. Determination of baseline performance and long term stability of infiltrated and non-infiltrated air cathodes
- 3. Infiltration of ceria and other appropriate materials into Ni-YSZ anodes to improve sulfur tolerance
- 4. Design and fabrication of 2-cell stack for national labs and industrial teams as a standard for testing electrodes

Infiltration of Ceria & Ru into SrTiO₃ anodes

Cathode supported cells with <u>ceria and Ru</u> <u>infiltrated SYTO-YSZ</u> anode were prepared to investigate sulfur tolerance of the anode.

Secondary electron micrographs of cathode support cell tested in H_2S conditions for 500 hours.

Experimental Setup for H₂S Testing

The experimental setup for the sulfur tolerance test was constructed as shown in Fig. 2. The gas flow system consists of stainless steel tubes, flow controllers, valves and glass parts: a water vapor saturator and scrubber. About 3 % of water vapor was added to the fuel gas by flowing the H₂ gas through the water vapor saturator at 298 K. Nitrogen was used to purge the system before H₂ and H₂S was introduced. 10~40 ppm H₂S gas was generated by mixing a pure H₂ flow with a controlled flow of 50 ppm H₂S premixed H₂ gas.

SrTiO₃ Anode Sulfur tolerance

Cell voltage as a function of time for a cell exposed to 10 ppm H_2S at 1073 K.

Sulfur Tolerance in Ni-YSZ

Cathode supported cell with <u>ceria infiltrated Ni-YSZ</u>

Ceria nano coating after 500 hours exposure to 40 ppm H₂S 700 °C

Sulfur Tolerant Ni-YSZ

0% degradation over 180 hrs

Anode Supported Cell Ni-SSZ w/ doped ceria infiltration at 800ppm H₂S

Preliminary tests under sufficiently high sulfur levels so as to accommodate any commercial or military fuel, suggests that with further optimization of the anode microstructure and infiltration composition, stable sulfur tolerant anodes can be achieved using the conventional composite Ni-YSZ material

Improving Conductivity of Infiltrated Catalyst

Screening conductivity of infiltrated structure of known SOFC anode oxide compositions

LaCrO₃-based perovskite anodes

Substitution for La and Cr improves conductivity $La_{0.8}Sr_{0.2}Cr_{1-x}M_xO_3$

M= Fe, Mn, V, Mg

Expected redox stability

 $\underline{La}_{0.7}\underline{Sr}_{0.3}\underline{VO}_{3}$

Known for sulfur tolerance (Meilin Liu's work)

Electrolyte Supported Cell Test with La_{0.7}S_{0.3}VO₃ Infiltrated Anode

The cell was heated to 800 °C for 1 hour, and then brought to <u>700 °C</u> for testing. Initially a 50 mA/cm² constant current was applied for 50 hours, to stabilize the cell. Following is the results under <u>200 mA/cm² constant current</u>.

Electrolyte Supported Cell Test with La_{0.7}Sr_{0.3}VO₃ Infiltrated Anode

Industrial Collaboration & Tech Transfer

Tape-Casting Company in California

Tape-cast structures, scaleable, and optimized for infiltration

Tape Cast SOFCs Built to LBNL Specifications

California Tape-Casting Co.

- Manufacturer of tape-cast planar ceramic structures

100µm

Rapid progress – 6 months from initial contact to planar cell fabrication

Stability of Commercial Produced SOFC Tape: Completely Infiltrated Anode & Cathode

Provides a platform for seal and electrode testingCathode, anode, seal development on planar cells

Task Execution

- 1. Infiltration of perovskites into composite cathodes
- 2. Determination of baseline performance and long term stability of infiltrated and non-infiltrated air cathodes
- 3. Infiltration of ceria and other appropriate materials into Ni-YSZ anodes to improve sulfur tolerance
- Design and fabrication of 2-cell stack for national labs and industrial teams as a standard for testing electrodes

McAllister Build of 2-cell 5 x 5 cm SOFC Plate Stack

Standardized test platform
Allows testing of electrodes, seals, contact pastes, in a uniform manner

•Allows comparison of results between labs, universities, and industry

Fits in inexpensive furnaces
Is not intended as a precursor to commercial device

\$2600/ea. after initial build

Use of Low-Cost Raw Materials to Fabricate Inexpensive SOFCs

Materials Cost Advantage

<u>Material</u>	<u>\$/kg (2007)</u>
Ni	35-55
YSZ	100
430 SS	5

Ferritic stainless steels chosen for:

- Low cost
- CTE match with YSZ
- Good oxidation resistance

\$0.05 of raw material

High Volume Porous Metal Media

Coal: kW to MW?

Tubular Metal Supported SOFC

Anode-Inside

-100µm

No mass transport limitation Almost 400mW/cm² at 700°C

support

CC

Cathode

Anode

Summary

- Cathode infiltration is working well and shows good stability to 500 hours
- Infiltration of ceria into Ni based anodes improves S tolerance; complete infiltration of anode is still in the works
- Stack design is essentially done
- Technology transfer has been successful