

Power Conditioning Systems for High-Megawatt Fuel Cell Plants Solid State Energy Conversion Alliance (SECA)

Allen Hefner NIST

(NIST/DOE Interagency Agreement)

ctronics Division

The Semiconductor Electronics Division

Outline

- I. SECA Power Conditioning Systems (PCS)
 - II. Technology Impact Analysis
 - **III. HV-HF SiC Power Devices**
 - **IV. SiC Power Device Cost Reduction**

SECA Fuel Cell Plant

SECA

\$40-\$100 / kW for PCS is a difficult stretch goal !

Power Conditioning System

Objective:

- High-Megawatt Power Conditioning Systems (PCS) are required to convert:
 - from power produced by Fuel Cells (FC) in power plant
 - to very high voltage and power required for the grid

Motivation:

- DoE SECA cost goals:
 - FC generator plant \$400/kW
 - including \$40-100/kW for PCS

• Recent Fuel Cell Generator cost (Fuel Cell Energy Inc.):

- FC generator plant \$3,000/kW
- including \$260/kW for power converter (to 18 kV AC)
- Today's SECA cost: \$750/kW + PCS cost

High-Megawatt PCS Program Coordination

- High-Megawatt Converter Workshop: January 24, 2007
 - Begin to identify technologies requiring development to meet PCS cost and performance goals for the DOE SECA
- Industry Roadmap Workshop: April 8, 2008
 - Initiate roadmap process to offer guidance for further development of high-megawatt converters technology

Interagency Advanced Power Group (IAPG): April 21-25

 Form interagency task group to coordinate Federal programs in high-megawatt converter technologies - under IAPG ESWG

• National Science Foundation (NSF): May 15-16, 2008

 Establish power electronics curriculums and fundamental research programs for alternate energy power converters

High Megawatt Converter Workshop: http://www.high-megawatt.nist.gov/workshop-1-24-07/

Outline

- I. SECA Power Conditioning Systems (PCS)
- II. Technology Impact Analysis
 - **III. HV-HF SiC Power Devices**
 - **IV. SiC Power Device Cost Reduction**

High Megawatt PCS Technology Impact Analysis

- Perform Independent Analysis of technologies that may reduce cost of PCS for future FC Power Plants
- Methodology for impact study:
 - Include input from broad power electronics, power component, and power engineering communities
 - Classify power converter architectures, topologies, and component technologies that may reduce cost
 - Calculate cost for each PCS option to estimate advantages of new technologies
 - Use component modeling, and circuit and system simulations to verify and refine calculations

Power Converter Architectures

- Low-Voltage Inverters (460 V AC):
 - Require high inverter current for each FC module
 - and large number of Inverters for 300 MW Plant
- <u>Medium-Voltage Inverters (4160 V AC):</u>
 - Lower inverter current for each FC module
 - Combine multiple FCs with single high power inverter
- <u>High-Voltage Inverters (18 kV AC):</u>
 - Replaces 60 Hz transformer with isolation from HF transformer
 - Cascade enables: 18 kV AC inverter by series connection, and interleaved switching decreases losses and filter requirement

HF Transformer versus 60 Hz Transformer

High-Frequency Transformer

- Baseline: Traditional Ferrite Material
 - Expensive processing for high-power, high frequency (HF)
 - Mature technology; cost may NOT decrease
- HF magnetic materials: Nano-crystalline or Metglas®
 - Size and cost decrease inversely proportional to frequency
 - Emerging commercial technology; cost continues to decrease
 - What is cost break-point for HF magnetic material?

High-Voltage Semiconductors

• Baseline: High-Voltage (HV) Silicon devices (IGBT, IGCT)

- Typically ~6.5 kV blocking voltage maximum
- Requires multi-level inverter for 4160 V AC
- Low switching frequency (< 500 Hz) requires larger filter
- High-Voltage, High-Frequency SiC Switch and Diodes
 - > 12 kV, 20 kHz SiC MOSFET switch and SiC Schottky diode:
 - Less inverter levels due to higher voltage
 - Less loss, lower heat removal cost
 - Less filter inductance required due to higher frequency
 - > 15 kV, 5 kHz SiC IGBT switch and SiC PiN diode:
 - Higher current per die than SiC MOSFET, therefore lower cost
 - What is cost break point for HV-HF SiC power semiconductors?

Advanced Technology Cost

- Future, high-volume costs: 5 to 10 years, 1 GW/yr
- Advanced Technology Goals and Cost Break Points
 - 1.2 kV Schottky diodes: \$0.2/A
 - 12 kV Schottky diodes: \$1/A
 - 12 kV Half-bridge SiC-MOSFET/SiC-Schottky: \$10/A
 - 15 kV SiC-PiN: \$0.4/A
 - 15 kV SiC-IGBT/SiC-PiN Module: \$3.3/A
 - High-Frequency transformer: \$2/kW
 - Power Electronics DC-DC, DC-AC: 150 % overhead
 - 60Hz Transformer and Switchgear: 50 % overhead

Estimated \$/kW: LV Inverter

Inverter Voltage	Low	Low	Low	Low	Low
Converter Stages	One	One	Two	Two	Two
LV-SiC Schottky		yes	yes	yes	yes
HF Transformer				Ferrite	Nano
60 Hz Transformer	yes	yes	yes	yes	yes

Risk Level:

Low

High

Estimated \$/kW: MV & HV Inverter

Inverter Voltage	Medium	Medium	High	High	High
HV-SiC Diode		Schottky	Schottky	Schottky	PiN
HV-SiC Switch		MOSFET		MOSFET	IGBT
HF Transformer	Nano	Nano	Nano	Nano	Nano
60 Hz Transformer	yes	yes			

Risk Level:

Low

High

Outline

- I. SECA Power Conditioning Systems (PCS)
- II. Technology Impact Analysis
- III. HV-HF SiC Power Devices
 - **IV. SiC Power Device Cost Reduction**

SiC Power Devices

SiC wide bandgap material enables better electrical and thermal performance than Si power devices

Semi- Conductor Material	Energy Bandgap (eV)	Breakdown Electric Field (V/cm)	Thermal Conductivity (W/m·K)	Saturated Electron Drift Velocity (cm/sec)
4H-SiC	3.26	2.2 · 10 ⁶	380	2.0 · 10 ⁷
Si	1.12	2.5 · 10⁵	150	1.0 · 10 ⁷

Handles higher temperature: larger bandgap

Higher voltage, current and speed: larger breakdown field

Fault tolerance, Pulsed: intrinsic-temperature, saturation-velocity and thermal-conductivity

Switch-Mode Power Applications

SiC Power MOSFET: High Speed at High Voltage

A. Hefner, et.al. "Recent Advances in High-Voltage, High-Frequency Silicon-Carbide Power Devices," *IEEE IAS Annual Meeting*, October 2006, pp. 330-337.

DARPA High Power Electronics Program

- Phase 2 developed HV-HF SiC power devices:
- Phase 3 goal to develop 13.8 kV, 2.7 MVA Solid State Power Substation (SSPS)

DARPA High Power Electronics Phase 2 Device Development					
	PiN, (JBS)	MOSFET	IGBT*	Half Bridge	
	(single die)	(single die)	(single die)	Wodule	
BV (V)	10 kV	10 kV	15 kV*	10 – 15 kV	
lon (A)	45 A (18 A)	18 A	25 A	110 A	
Tj (°C)	200 C	200 C	200 C	200 C	
Fsw (Hz)	20 kHz	20 kHz	20 kHz	20 kHz	

50 A, 10 kV SiC Half-Bridge Module MOSFET Output Characteristics

25 °C

100 °C

50 A, 10 kV SiC Half-Bridge Module JBS Diode Output Characteristics

50 A, 10 kV SiC Half-Bridge Module Inductive Load Switching

Outline

- I. SECA Power Conditioning Systems (PCS)
- II. Technology Impact Analysis
- **III. HV-HF SiC Power Devices**
- **IV. SiC Power Device Cost Reduction**

SiC Power Device Cost Reduction

- Improved Crystal Quality required for power devices
 - High conductivity, high field strength type wafers (4HN)
 - Zero Micropipe (ZMP[™])
 - Dislocation density reduction
- Wafer diameter expansion required
 - 100 mm is now cost-effective, production platform
 - 150 mm expected in 2009/2010 depending on market needs
- Improved device processing yield for large die area
- Specific needs for different power application type
 - high temperature
 - very high frequency
 - high voltage

Reduction of Micropipe Density

Micropipe Density in 2007 (100 mm 4HN)

100 mm 4HN Zero Micropipe (ZMPTM)

Zero Micropipes with no edge exclusion

Focus on Advancements for High Voltage Devices

- Wafers with reduced 1c screw dislocation density
- Epitaxial structures for >10kV devices
 - reduce 'killer' epitaxy defect density to <1 cm⁻²
 - Improve uniformity of thickness and doping
 - Increase production volumes
- Junction termination, surface passivation and packaging are specific to high voltage devices
- Minority carrier type devices (e.g. IGBTs, PiN diodes)
 - Higher current densities for high blocking voltage devices
 - Requires low basal plane dislocation material

Conclusion

- SECA goal of \$40-\$100 / kW for Fuel Cell Plant PCS is difficult
- Federal, Industry, and NSF coordination initiated to address High-Megawatt PCS requirements
- Analysis of technologies to reduce cost of PCS
 - high-frequency magnetic materials
 - HV-HF SiC semiconductors
- High voltage inverter enables
 - using low-cost HF transformer
 - instead of costly 60 Hz transformer
- Cost reduction program required for HV-HF devices