

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Synchrotron X-Ray Studies of Solid Oxide Fuel Cell Materials

Paul Fuoss

Materials Science DivisionArgonne National Laboratory Argonne, IL 60439

Experimental Summary

Controlled Atmosphere Experiments

- $-$ Sr surface segregation in LSM is observed at all temperature and pO $_{\rm 2}$ conditions
- The dependence of Sr surface segregation is consistent with a charge neutralization mechanism for both oxygen vacancies and the polar LSM surface

Electrochemical Experiments

- Strong indication of Sr segregation at room temperature in LSM.
- Sr segregation goes down at high temperature and goes up at room temperature even after fast cooling (700°C to RT in 30 min).
- Changes in Co K edge XANES in LSC with heating but no significant change by electrochemistry.
- Cathodic or anodic polarizations may control the Sr segregation and desegregation rates.
- Full-cell experimental design in development.

Team Members

■ Materials Science, ANL

- Hoydoo You
- Timothy Fister
- Kee-Chul Chang
- Dillon Fong
- Jeffrey Eastman

Chemical Sciences and Engineering, ANL

- Mike Krumpelt
- Brian Ingram

Carnegie Mellon University

- Paul Salvador
- K.R. Balasubramanian
- J.C. Meador

Massachusetts Institute of Technology

- Bilge Yildiz
- Burc Misirlioglu

Overview

Operating fuel cells are complex devices with challenging materials problems.

Greatest efficiency loss in SOFC occurs at cathode;

– developing efficient, cost-effective cathodes reduces capital costs, benefiting the customer.

■ High operating temperature decreases life time of cathode **materials;**

– developing SOFCs working at lower operating temperatures can greatly enhance stability, thereby reduce overall cost to the customer.

Overview

Theory of Theory of atomic-scale atomic-scale processes processes

Operating solid Operating solid oxide fuel cell oxide fuel cell cathode cathode

Challenge: How to deal with the many complex atomic-scale processes governing cathode performance?

Overview

Theory of Theory of atomic-scale atomic-scale processes processes

• Ex situ studies of both • Ex situ studies of both model and realistic systems model and realistic systems

• In situ studies of both • In situ studies of both model and realistic systems model and realistic systems

- **- controlled T and pO2- controlled T and pO2**
	- **- half-cell operation - half-cell operation**
	- **- full-cell operation - full-cell operation**

Operating solid Operating solid oxide fuel cell oxide fuel cell cathodecathode

Solution: Combination of in situ and ex situ measurements to bridge gap between theory and technology, leading to design of new cathode materials

Synchrotron Science's role in SECA

ex situ atomic resolution microscopy

Synchrotron Studies *In situ* measurements at working conditions: high T, pO_2 , & electrochemistry

- **Comparing** *in situ* **and** *ex situ*
- **Providing basis for theoretical modeling**
	- Improve understanding of cathode materials, while paving way for future SOFC innovation

Synchrotrons Have Revolutionized X-Ray Analysis

■ The Advanced Photon Source is nine orders of **magnitude brighter than laboratory sources.**

Brightness has enabled:

- Scattering from single layers of atoms
- Nanometer resolution imaging
- Realtime, *in situ* measurements from all types of surfaces and ultrathin films
- Structure determination of buried interfaces

■ Great potential for advancing understanding of **complex industrial processes.**

In Situ Synchrotron Studies

In situ studies employ synchrotron x-ray scattering and spectroscopy tools. These techniques probe atomic-scale processes under SOFC operating conditions.

In Situ Controlled Atmosphere Studies

- Equilibrium structure in controlled atmosphere (e.g. variable T and pO $_2$).
- Identify driving forces for structural and chemical rearrangement

In Situ Electrochemical Studies

In Situ Studies of Operating Fuel Cells

Motivation for Controlled Atmosphere Experiments

- <u>ra</u> Previous studies using angle-resolved x-ray photoelectron spectroscopy have observed strontium surface segregation under room temperature vacuum conditions.
- Interplay between strontium segregation and oxygen vacancies at operating temperature and potential may be important factor for oxygen reduction.

Fuel

Determine the surface structure, reactions and thermodynamics of SOFC cathodes (e.g. La $_{1\text{-x}}$ Sr $_{\text{x}}$ MnO $_{3}$ (LSM) and La $_{1\text{-x}}$ Sr $_{\text{x}}$ CoO $_{3}$ (LSC) $_{1}$ under controlled temperature, electrochemical potential, and gas partial pressures.

Previous Results

- $\overline{}$ Choi et. al. (PRB, 2006): Finds Ca surface segregation in La $_{\textrm{\tiny{1-x}}}$ Ca $_{\textrm{\tiny{x}}}$ MnO $_{\textrm{\tiny{3}}}$ thin films using XPS.
- $\overline{}$ Dulli et. al. (PRB, 2001): Influenced by Choi, uses angleresolved x-ray photoelectron spectroscopy (XPS) on 001 LSM, finds Sr surface segregation with exponential decay to bulk.
- $\overline{}$ Jiang et. al. (SSI 2001): Finds evidence Sr segregation using acid etch. Performance improves following acid etch.
- $\overline{}$ Mannella et. al. (J. App. Phys. 2003): XPS shows no evidence Sr surface segregation at $T = 135-500$ K.
- $\overline{}$ de Jong et al (J. App. Phys. 2003): XPS shows similar Sr enrichment as Dulli et al; suggests a surface layer of SrO or SrCO $_3$ is present.
- F Kumigashira et. al. (App. Phys. Lett. 2003): Finds Sr surface segregation in LSM thin films using XPS.
- P. Wu et. al. (Mat. Lett. 2005): Finds Sr surface segregation with XPS.
- P. Caillol et. al. (App. Sur. Sci. 2007): XPS shows Sr enrichment in screen-printed LSM.

All work done in non-equilibrium conditions.

atomic fraction

ŏ

Approach

- <u>ra</u> **LSM and LSC epitaxial films grown by Pulsed Laser Deposition (PLD) at Carnegie Mellon University**
	- $-$ Growth: 750°C, 50 mTorr O₂, La $_{\rm 0.7}$ Sr $_{\rm 0.3}$ MnO $_{\rm 3}$ and $La_{0.7}Sr_{0.3}CoO₃$
	- $-$ Cooled in 300 Torr p O_2
	- \quad (001) SrTiO $_3$ (STO), (110) NdGaO $_3$ (NGO) & DyScO $_3$ (DSO) substrates provide different epitaxial strain conditions
	- – Yittria-Stabilized Zirconia (YSZ) (111) single crystal substrates for electrochemical measurements

<u>ra</u> **In situ synchrotron x-ray studies**

- Probes atomic-scale processes during realistic SOFC conditions
- Studies performed at the Advanced Photon Source
- – Total reflection x-ray fluorescence (TXRF) to determine surface composition
- Grazing incidence & high angle diffraction to determine surface and film structure

- \bullet Portable environmental chamber; mounts on 6-circle diffractometer @ APS Sectors 12 or 20
- zBase pressure \sim 10⁻⁷ Torr; pO₂ control by precise mixing of purified gases; monitor with RGA
- \bullet 24 keV x-rays
- z $T \leq 1000^{\circ}C$

Total Reflection - Making X-rays Surface Sensitive

Total Reflection X-Ray Fluorescence (TXRF)

TXRF is a standard technique for analyzing impurities on semiconductor substrates since each element has a standard spectra.

We've extended it to quantitative studies of nanometer composition gradients at surfaces and buried interfaces.

Typical Analysis of TXRF

pO2 Dependence of Sr Surface Segregation

- <u>ra</u> **Observe that Sr segregation depends on** both T and $pO₂$
	- $-$ plot shows average Sr composition in \sim 3 nm surface region (bulk composition $= 0.3$)
- F. **Charged vacancies are often not considered in surface segregation studies. The concentration of these defects depends** strongly on temperature *and* pO₂.
- F. A gradient of V_0 " near the surface could **drive Sr segregation.**
	- $\,$ Lowering p $\rm O_2$ increases the concentration of $\rm V_o$ \cdot at the surface.
	- V_0 " have a net +2 charge; substituting Sr for La results in net -1 charge
	- Segregation of strontium ions can provide necessary charge compensation in the surface region.

Change in Sr concentration from bulk

Equilibrium vs. Non-Equilibrium Segregation

- <u>ra</u> Equilibrium segregation is typically analyzed by minimizing the free energy with respect to the solute concentration.
- F. ■ Using TXRF data taken for $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3$ on $DyScO₃$, we have fit the high temperature Sr/La ratios to obtain surface concentrations that can be used to extract (15 Torr $p(O_2)$)

^Δ*Hseg* **= -9.5 kJ/mol** ^Δ*Sseg* **= 0.38 J/K/mol**

- p. Linearity at high T (above 500˚C) indicates equilibrium segregation.
- F. Fall off at lower temperature results from the slow kinetics, e.g. non-equilibrium segregation.

In Situ Synchrotron Studies

In situ studies employ synchrotron x-ray scattering and spectroscopy tools. These techniques probe atomic-scale processes under SOFC operating conditions.

In Situ Controlled Atmosphere Studies

In Situ Electrochemical Studies

- Determine dynamic changes of cathode occurring in SOFC half-cell
- Correlate with equilibrium structures and ex situ measurements
- Films grown on YSZ as an electrolyte
- **In Situ Studies of Operating Fuel Cells**

LSM and LSC on YSZ(111)

- Growth on YSZ(111) promotes LSM(011) and LSC(011) rather than (001) crystal orientation.
- Crystal orientation changes the degree of epitaxy and surface polarity.

Roughness of LSM (110) on YSZ (111)

- Atomic Force Microscopy of 'as-received' samples shows increasing roughness with film thickness
- X-Ray reflectivity shows well defined fringes for thin sample and no fringes for thick sample due to the increased roughness

RMS Roughness: 0.7nm

Temperature Dependent TXRF of LSM(110)

- At room temperature, there is a 'foot' in the Sr fluorescence but not in Mn and La.
- <u>ra</u> This is evidence of Sr rich particles at the LSM surface due to Sr segregation.
- <u>ra</u> This 'foot' gradually disappears at high temperature implying particles are reincorporated.
- Process is reversible, 'foot' reappears (Black line) at room temperature even after rapid cooling (700°C to room temperature in 30 minutes).

Temperature Dependent TXRF of LSC(110)

- At room temperature, only a faint sign of 'foot' in Sr fluorescence.
- <u>ra</u> Sr segregation is much less than LSM.
- <u>ra</u> Sr segregation is enhanced (Black line) when cooling down to room temperature after cathodic and anodic polarizations (±100 mV for 1 hr each) at 700C.

Co K edge XANES of LSC(110)

X-Ray Absorption Near-Edge Structure (XANES) is sensitive to the chemical state of the probed atom

- Surface and bulk XANES taken (only surface XANES are shown).
- The position of the Co K edge shows the average Co oxidation state (higher oxidation state: higher energy).
- Changes in Co XANES are indicative of increase in V_0 " concentration at higher temperature.

Summary of in situ Electrochemistry Data

*** Preliminary results: Need further studies.**

Experimental Summary

Controlled Atmosphere Experiments

- $-$ Sr surface segregation in LSM is observed at all temperature and pO $_{\rm 2}$ conditions
- The dependence of Sr surface segregation is consistent with a charge neutralization mechanism for both oxygen vacancies and the polar LSM surface

Electrochemical Experiments

- Strong indication of Sr segregation at room temperature in LSM.
- Sr segregation goes down at high temperature and goes up at room temperature even after fast cooling (700°C to RT in 30 min).
- Changes in Co K edge XANES in LSC with heating but no significant change by electrochemistry.
- Cathodic or anodic polarizations may control the Sr segregation and desegregation rates.
- Full-cell experimental design in development.

Synchrotron Studies - Next Steps

- \mathbb{R}^3 **Develop structural models that can quantitatively explain the diffraction results (CTR and reflectivity)**
	- –Can oxygen defect thermodynamics be quantitatively determined through these measurements?
- Look at the chemical state of the **B** site atoms
- **Incorporate flexible in situ electrical measurements into the controlled environment chamber**
- \mathbb{R}^3 **Explore use of inelastic x-ray scattering to probe oxygen sites**
	- similar to XANES and EXAFS but information is coded on a high energy x-ray beam allowing penetration through complex samples

In Situ Synchrotron Studies

In situ studies employ synchrotron x-ray scattering and spectroscopy tools. These techniques probe atomic-scale processes under SOFC operating conditions.

- **In Situ Controlled Atmosphere Studies**
- **In Situ Electrochemical Studies**

■ In Situ Studies of Operating Fuel Cells

- Focus on cathode side of fuel cell
- Examine atomic structure and chemical state of individual constituents
- Correlate with ex situ measurements and performance data

Acknowledgements

This research is funded through the Solid State Energy Conversion Alliance Core Technology Program.

We'd like to thank Wayne Surdoval and Briggs White of NETL for important discussions of SOFC science and technology.

The synchrotron measurements were performed at the Advanced Photon Source which is funded by the Office of Basic Energy Sciences, Department of Energy.

