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5 Estimating Fatigue Life of Austenitic Stainless Steels 

Several models have been developed for estimating fatigue lives of austenitic SSs in LWR 
environments, and the models are based on roughly the same database.  Although the formulation, 
threshold, and saturation values of the key parameters that influence fatigue life differ, differences in the 
estimates of fatigue life based on these models for specific loading and environmental conditions are 
insignificant.  Any one of these models may be used to estimate fatigue life of austenitic SSs.   

5.1 ANL Statistical Model 

A statistical model based on the existing fatigue ε–N data has been developed at ANL for 
estimating the fatigue lives of wrought and cast austenitic SSs in air and LWR environments.  The model 
assumes that the fatigue life in air is independent of temperature and strain rate.  Separate models have 
been developed for Type 304 or 316 SS and Type 316NG SS.  In air at temperatures up to 400°C, the 
fatigue data for Types 304 and 316 SS are best represented by the equation: 

ln(N) = 6.703 – 2.030 ln(εa – 0.126),   (4) 

and for Type 316NG, by the equation  

ln(N) = 7.433 – 1.782 ln(εa – 0.126).  (5) 

The critical parameters that influence fatigue life and the threshold values of these parameters for 
environmental effects to be significant have been summarized in the previous section.  In LWR 
environments, the fatigue life of austenitic SSs depends on strain rate, DO level, and temperature.  The 
functional forms for the effects of strain rate and temperature were based on the data trends shown in 
Figs. 19 and 23, respectively. For both wrought and cast austenitic SSs, the model assumes threshold and 
saturation values of 0.4 and 0.0004%/s, respectively, for strain rate, and a threshold value of 150°C for 
temperature.   

The influence of DO level on the fatigue life of austenitic SSs is not well understood.  As discussed 
in Section 3.1, the fatigue lives of austenitic SSs are decreased significantly in low–DO water, whereas in 
high–DO water they are either comparable or, for some steels, higher than those in low–DO water.  In 
high–DO water, the composition and heat treatment of the steel may influence the magnitude of 
environmental effects on austenitic SSs.  Until more data are available to clearly establish the effects of 
DO level on fatigue life, the effect of DO level on fatigue life is assumed to be the same in low– and 
high–DO water and for wrought and cast austenitic SSs. 

The least–squares fit of the experimental data in water yields a steeper slope for the ε–N curve than 
the slope of the curve obtained in air.  These results indicate that environmental effects are more 
pronounced at low than at high strain amplitudes.  Differing slopes for the ε–N curves in air and water 
environments would add complexity to the determination of the environmental correction factor Fen, 
discussed later in this paper.  In the ANL statistical model, the slope of the ε–N curve is assumed to be the 
same in LWR and air environments.  In LWR environments, fatigue data for Types 304 and 316 SS are 
best represented by the equation: 

ln(N) = 5.675 – 2.030 ln(εa – 0.126) + T' ˙ ! ' O', (6) 
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and that of Type 316NG, as  

ln(N) = 7.122 – 1.671 ln(εa – 0.126) + T' ˙ ! ' O', (7) 

where T', ˙ ! ', and O' are transformed temperature, strain rate, and DO, respectively, defined as follows: 

T' = 0 (T < 150°C)  
T' = (T – 150)/175 (150 ≤ T < 325°C)  
T' = 1 (T ≥ 325°C) (8) 

˙ !  = 0 ( ˙ !  > 0.4%/s)  
˙ !  = ln( ˙ ! /0.4) (0.0004 ≤ ˙ !  ≤ 0.4%/s)  
˙ !  = ln(0.0004/0.4) (ε◊  < 0.0004%/s) (9) 

O' = 0.281 (all DO levels). (10) 

These models are recommended for predicted fatigue lives of ≤106 cycles.  Equations 6 and 8–10 
should also be used for cast austenitic SSs such as CF-3, CF-8, and CF–8M.  As noted earlier, because the 
influence of DO level on the fatigue life of austenitic SSs may be influenced by the material heat 
treatment, the statistical model may be somewhat conservative for some SSs in high–DO water.   

5.2 Japanese MITI Guidelines 

The guidelines proposed by the Japanese Ministry of International Trade and Industry (MITI), for 
assessing the decrease in fatigue life in LWR environments, have been presented by Higuchi et al.40  The 
reduction in fatigue life of various pressure vessel and piping steels in LWR environments is expressed in 
terms of an environmental fatigue life correction factor Fen, which is the ratio of the fatigue life in air at 
ambient temperature to that in water at the service temperature.  For austenitic SSs, Fen is expressed in 
terms of strain rate ˙ !  (%/s), temperature T (°C), and strain amplitude εa (%) as follows: 

ln(Fen) = (C – ˙ ! *) T*,  (11) 

where  

C = 1.182 (BWR) 
C = 3.910 (PWR)  (12) 

˙ ! * = ln( ˙ ! ) (0.0004 ≤ ˙ ! )  
˙ ! * = ln(0.0004) ( ˙ !  < 0.0004%/s).  (13) 

T* = 0.000813 T (BWR)  
T* = 0.000782 T (PWR, T ≤ 325°C)  
T* = 0.254 (PWR, T > 325°C)  (14) 

Fen = 1 (εa ≤ 0.11%). (15) 

The fatigue life in water is determined by dividing the life in air at ambient temperature by Fen.  The 
fatigue life N in air is expressed in terms of the strain amplitude εa as  

ln(N) = 6.871 – 2.118 ln(εa – 0.110). (16) 
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5.3 Model Developed by the Bettis Laboratory 

A model based on available fatigue ε–N data, has been developed by the Bettis Laboratory.41 In this 
model, the Smith–Watson–Topper (SWT) equivalent strain parameter42 is used to predict the fatigue life 
of austenitic SSs in LWR environments under prototypical temperatures and loading rates.  The model 
indicates that the fatigue life of Type 304 SS in water depends on the temperature, strain rate, applied 
strain amplitude, and water oxygen level.  For low–DO water, the fatigue life can be reduced by as much 
as a factor of 13 at high temperatures and low strain rates.  The Bettis model for predicting fatigue life N 
in LWR environments is of the following form:  

  

� 

N = A ! "SWT # "0( )b
! P + 1#P( ) !e#kZ

m

[ ] , (17) 

where A, b, P, k, ε0, and m are model constants, and the SWT parameter 
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in which maximum stress 
  

� 

!max  is the sum of the cyclic stress amplitude σa and mean stress σmean (i.e., = 
σa + σmean), E is the elastic modulus, and c is a constant determined from fatigue tests in air, in some of 
which a mean stress had been imposed.  The effects of temperature T (K) and strain rate   

� 

˙ !  (s–1) are 
incorporated into the model by using the Zener–Hollomon parameter Z, given by 

  

� 

Z = ˙ ! " e

Q

RT ,  (19) 

where R is the gas constant and Q is the fitted value of the activation energy.  The model constants were 
determined from the existing fatigue ε–N data in water.41  The values are as follows:* 

A = 1.185 x 10–2  (wrought SSs, other than 316NG, in PWR water) 
A = 1.185 x 10–2  (wrought SSs, other than 316NG, in BWR water) 
b = – 2.097  
ε0 = 9.068 x 10–4 mm/mm 
P = 0.109  (wrought SSs and welds)  
c = 0.7 
k = 149.0  (in PWR water) 
k = 383.7  (in BWR water) 
Q = 147.15 kJ/mol (35.17 kcal/mol) 
R = 8.314 J/mol K (1.987 cal/mol K) 
m = – 0.2233. 

The cyclic stress amplitude σa (MPa) corresponding to a given strain amplitude εa (mm/mm), is obtained 
from the cyclic stress–vs.–strain curves in air, given by 

σa = (175 – 0.342 T +7.10 x 10–4 T2) + (24010 – 4.54 x 10–2 T2 + 156 σmean) εa,  (20) 

                                                        
* T. R. Leax and D. P. Jones, Development of a Water Environment Fatigue Design Curve for Austenitic Stainless Steels, presented to ASME 

Subgroup on Fatigue Strength of Subcommittee Design, Sept. 24, 2002. 
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where T is the temperature (°C), and σm is the mean stress (MPa).  This cyclic stress–strain curve is valid 
for stresses above the proportional limit.  Below the proportional limit, the stress amplitude is simply the 
product of the elastic modulus and strain amplitude.  The fatigue ε–N curve at zero mean stress can be 
obtained from Eqs. 17–20 by substituting a value of zero for σmean in Eqs. 18 and 20.   
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6 Incorporating Environmental Effects into Fatigue Evaluations 

The effects of LWR coolant environments may be incorporated into the ASME Section III fatigue 
evaluations by either developing a new set of environmentally adjusted fatigue design curves or by using 
a fatigue life correction factor Fen to adjust the current ASME Code fatigue usage values for 
environmental effects.  For both approaches, the magnitude of key loading and environmental parameters 
that influence fatigue life must be known.  Estimates of fatigue life based on the two approaches may 
differ because of differences between the ASME mean curves used to develop the current design curves 
and the best–fit curves to the existing data that are used to develop the environmentally adjusted curves.  
However, either method provides an acceptable approach to account for environmental effects. 

6.1 Fatigue Design Curves 

A set of environmentally adjusted fatigue design curves may be developed from the best–fit of 
stress–vs.–life curves to the experimental data in LWR environments by following the procedure that was 
used to develop the current ASME Code fatigue design curves.  The stress–vs.–life curve is obtained from 
the ε–N curve, e.g., stress amplitude is the product of strain amplitude and elastic modulus.  The best–fit 
experimental curves are first adjusted for the effect of mean stress.  As mentioned earlier the current 
ASME Code fatigue design curve for austenitic SSs does not include a mean stress correction below 
106 cycles because, for the current Code mean curve, the fatigue strength at 106 cycles is greater than the 
monotonic yield strength of these steels.  The best–fit curve in a specific environment is corrected for 
mean stress effects with the modified Goodman relationship given by:  
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 is the adjusted value of stress amplitude, and 
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 are yield and ultimate strengths of the 

material, respectively.  Equations 21 and 22 assume the maximum possible mean stress and typically give 
a conservative adjustment for mean stress, at least when environmental effects are not significant.  The 
fatigue design curves are then obtained by lowering the adjusted best–fit curve by a factor of 2 on stress 
or 20 on cycles, whichever is more conservative, to account for differences and uncertainties in fatigue 
life that are associated with material and loading conditions.  

 
!S
a

 

For environmentally adjusted fatigue design curves, a minimum threshold strain is defined, below 
which environmental effects are insignificant.  The Pressure Vessel Research Council steering committee 
for Cyclic Life Environmental Effects* has endorsed this threshold value and proposed a ramp for the 
threshold strain: a lower strain amplitude below which environmental effects are insignificant, a slightly 
higher strain amplitude above which environmental effects decrease fatigue life, and a ramp between the 
two values. The two strain amplitudes are 0.10 and 0.11% for austenitic SSs (both wrought and cast).   

                                                        
* Welding Research Council Progress Report, Vol. LIX No. 5/6, May/June 1999. 
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An example of fatigue design curves for austenitic SSs in LWR environments at 289°C is shown in 
Fig. 29.  Because the fatigue life of Type 316NG is superior to that of Types 304 or 316 SS at high strain 
amplitudes, the design curves in Fig. 29 may be somewhat conservative for Type 316NG SS.  
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Figure 29. Fatigue design curves developed from statistical model for austenitic 
stainless steels in LWR environments at 289°C under service 
conditions where all threshold values are satisfied. 

6.2 Fatigue Life Correction Factor 

The effects of reactor coolant environments on fatigue life have also been expressed in terms of a 
fatigue life correction factor Fen, which is defined as the ratio of life in air at room temperature to that in 
water at the service temperature.  Values of Fen can be obtained from the statistical model, where:  

ln(Fen) = ln(NRTair) – ln(Nwater).  (23) 

The fatigue life correction factor for austenitic SSs, based on the ANL model, is given by 

Fen = exp(1.028 – T' 

� 

˙ ! ' O'),  (24) 

where the constants T', 

� 

˙ ! ', and O' are defined in Eqs. 8–10.  Fen based on the MITI guidelines is given in 
Eqs. 11–15.  To incorporate environmental effects into a Section III fatigue evaluation, the fatigue usage 
for a specific stress cycle, based on the current Code fatigue design curve, is multiplied by the correction 
factor.   
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7 Summary 

Fatigue tests have been conducted on two heats of Type 304 SS under various material conditions 
to determine the effect of heat treatment on fatigue crack initiation in these steels in air and LWR 
environments. A detailed metallographic examination of fatigue test specimens was performed, with 
special attention to crack morphology at the sites of initiation, the fracture surface, and the occurrence of 
striations.   

The results indicate that heat treatment has little or no effect on the fatigue life of  
Type 304 SS in air and low–DO PWR environments.  In a high–DO BWR environment, fatigue life is 
lower for sensitized SSs; life continues to decrease as the degree of sensitization is increased.  The cyclic 
strain–hardening behavior of Type 304 SS under various heat treatment conditions is identical, only the 
fatigue life varies in different environments. 

In air, irrespective of the degree of sensitization, the fracture mode for crack initiation (crack 
lengths up to ≈200 µm) and crack propagation (crack lengths >200 µm) is transgranular (TG), most likely 
along crystallographic planes, leaving behind relatively smooth facets.  With increasing degree of 
sensitization, cleavage–like or stepped TG fracture, and occasionally ridge structures on the smooth 
surfaces were observed.  In the BWR environment, the initial crack appeared intergranular (IG) for all 
heat–treatment conditions, implying a weakening of the grain boundaries. For all four conditions tested, 
the initial IG mode transformed within 200 µm into a TG mode with cleavage–like features.  It appears, 
however, that the size of the IG portion of the crack surface increased with the degree of sensitization.  By 
contrast, for all of the samples tested in PWR environments, the cracks initiated and propagated in a TG 
mode irrespective of the degree of sensitization.  Prominent features of all fracture surfaces in the PWR 
case were highly angular, cleavage–like fracture facets that exhibited well–defined “river” patterns.  
Intergranular facets were rarely observed, but when they were found, it was mostly in the more heavily 
sensitized alloys. 

Fatigue striations normal to the crack advance direction were clearly visible beyond ≈200 µm on 
the fracture surfaces for all material and environmental conditions.  Striations were found on both the TG 
and IG facets of the samples tested in BWR conditions, or co-existing with the “river” patterns specific to 
the samples tested in the PWR environment.  Evidence of extensive rubbing due to repeated contact 
between the two mating surfaces was also found.   

The orientation of the cracks as they initiated at the specimen surface was also a function of the test 
environment.  For air tests, cracks initiated obliquely, approaching 45°, with respect to the tensile axis.  
By contrast, for tests in either BWR or PWR environment cracks tended to initiate perpendicular to the 
tensile axis.  In all environments, the overall orientation of the crack became perpendicular to the tensile 
axis as the crack grew beyond the initiation stage.   

In air, the fatigue lives of Types 304 and 316 SS are comparable; those of Type 316NG are superior 
to those of Types 304 and 316 SS at high strain amplitudes.  The fatigue lives of austenitic SSs in air are 
independent of temperature in the range from room temperature to 427°C.  Also, variation in strain rate in 
the range of 0.4–0.008%/s has no effect on the fatigue lives of SSs at temperatures up to 400°C.  The 
fatigue ε–N behavior of cast SSs is similar to that of wrought austenitic SSs. 

Review of the available data show that the fatigue lives of cast and wrought austenitic SSs are 
decreased in LWR environments; the decrease depends on strain rate, DO level in water, and temperature.   
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A minimum threshold strain is required for environmentally assisted decrease in the fatigue life of 
SSs, and this strain appears to be independent of material type (weld or base metal) and temperature in the 
range of 250–325°C.  Environmental effects on fatigue life occur primarily during the tensile–loading 
cycle and at strain levels greater than the threshold value.  Strain rate and temperature have a strong effect 
on fatigue life in LWR environments.  Fatigue life decreases logarithmically with decreasing strain rate 
below 0.4%/s.  The effect saturates at 0.0004%/s.  Similarly, the fatigue ε–N data suggest a threshold 
temperature of 150°C; in the range of 150–325°C, the logarithm of life decreases linearly with 
temperature.   

The fatigue lives of wrought and cast austenitic SSs are decreased significantly in low–DO (i.e., 
<0.01 ppm DO) water.  In these environments, the composition or heat treatment of the steel has little or 
no effect on fatigue life.  However, in high–DO water the environmental effects on fatigue life are 
influenced by the composition and heat treatment of the steel.  For a high–carbon heat of Type 304 SS, 
environmental effects were significant only for the sensitized steel. For a low–carbon heat of Type 
316NG SS, some effect of environment was observed even for MA steel in high–DO water, although the 
effect was smaller than that observed in low–DO water.  Limited fatigue ε–N data indicate that the fatigue 
lives of cast SSs are approximately the same in low– and high–DO water and are comparable to those 
observed for wrought SSs in low–DO water.  

Statistical models for the fatigue life of austenitic SSs as a function of material, loading, and 
environmental parameters have been developed.  The functional form of the model and bounding values 
of the important parameters are based on experimental observations and data trends.  The models are 
recommended for predicted fatigue lives of ≤106 cycles. Consistent with previous work by Jaske and 
O’Donnell, the present results indicate that even in air the ASME mean curve for SSs is not consistent 
with the experimental data.  The ASME curve is nonconservative.  The results that correspond to the 50th 
percentile of the statistical model are considered to be the best fit to the experimental data. 

Two approaches are presented for incorporating the effects of LWR environments into ASME 
Section III fatigue evaluations.  In the first approach, environmentally adjusted fatigue design curves are 
developed by adjusting the best–fit experimental curve for the effect of mean stress and by setting 
margins of 20 on cycles and 2 on strain to account for the uncertainties in life associated with material 
and loading conditions.  These curves provide allowable cycles for fatigue crack initiation in LWR 
coolant environments.  The second approach considers the effects of reactor coolant environments on 
fatigue life in terms of an environmental correction factor Fen, which is the ratio of fatigue life in air at 
room temperature to that in water under reactor operating conditions.  To incorporate environmental 
effects into the ASME Code fatigue evaluations, a fatigue usage factor for a specific load set, based on the 
current Code design curves, is multiplied by the correction factor. 
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