
Version 7.4 Printed August 1, 2000

Factor Supplies and Specialization in the World Economy

James Harrigan and Egon Zakrajšek1

August 2000

Abstract

A core prediction of the Heckscher-Ohlin theory is that countries specialize in
goods in which they have a comparative advantage, and that the source of
comparative advantage is differences in relative factor supplies. To examine this
theory, we use the most extensive dataset available and document the pattern of
industrial specialization and factor endowment differences in a broad sample of
rich and developing countries over a lengthy period (1970-92). Next, we develop
an empirical model of specialization based on factor endowments, allowing for
unmeasurable technological differences and estimate it using panel data
techniques. In addition to estimating the effects of factor endowments, we also
consider the alternative hypothesis that the level of aggregate productivity by itself
can explain specialization. Our results clearly show the importance of factor
endowments on specialization: relative endowments do matter.
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Factor Supplies and Specialization in the World Economy

Since Ricardo, trade economists have had a persuasive explanation for international

output specialization: countries specialize in goods in which they have a comparative advantage.

The central problem with this elegant theory is that it links the observables to be explained,

outputs, to inherently unknowable, if not metaphysical, autarky prices. The theory of comparative

advantage is empirically empty unless autarky prices can be linked to observables, as they are in

the Ricardian, Heckscher-Ohlin, and other versions of the theory. If trade theory is to be useful in

understanding the world, it is imperative to confront these models with the data.

Our paper is a contribution to this project. We collect and analyze the most extensive data

set currently available on production and factor supplies, with a focus on the question: how does

the world distribution of productive resources influence the pattern of output specialization?

We look at the pattern of specialization rather than the pattern of trade, because most of

the intellectual capital of trade theory is invested in explaining production. Almost all flavors of

comparative advantage theory combine a sophisticated model of production with a rudimentary,

if not naïve, model of consumption. The best-known example of this is the Heckscher-Ohlin

theorem, the proof of which consists of the remarkable Rybczynski theorem combined with the

assumption of identical and homothetic preferences1. Despite the fact that the bulk of the

intellectual content of comparative advantage theory is about production, almost all empirical

work on comparative advantage, from Leontief (1954) to Trefler (1995), has used trade data and

has not directly measured production.

Reasoning that economists won't be able to understand trade until they understand

specialization, Leamer (1987), Harrigan (1995, 1997), Bernstein and Weinstein (1998), and

Schott (1999) have looked directly at production data. Each of these papers focused on

endowment differences as a source of specialization. With the exception of  Harrigan (1997),

who showed the importance of industry-specific technological differences, these papers used

quite restrictive models: Harrigan (1995) and  Bernstein and Weinstein (1998) used the even

general equilibrium model with factor price equalization,  while Leamer (1987) and Schott relied

on the 2- or 3-factor identical technology model. Related work on the factor content of trade by
                                                          
1 Plus, of course, the assumption that countries share the same technology.
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Trefler (1993, 1995) also used restrictive models that relied heavily on modified forms of factor

price equalization.

In contrast, Harrigan (1997) used a more flexible model that did not rely on factor price

equalization assumptions and allowed for non-neutral technology differences. Using a within-

country estimator, Harrigan  (1997) found that technological differences were an important

determinant of specialization in a panel of OECD countries. Harrigan's statistical model with

country fixed effects offered consistent estimates but has the conceptual disadvantage that the

model did not use cross-country variation to help identify the effects of factor supplies on

specialization.

Our paper builds on Harrigan (1997) and the related literature in several ways. We ask the

question: how well can relative factor endowments alone explain specialization? To answer this

question, we begin with an extended data description that documents the pattern of industrial

specialization and factor endowment differences in a broad sample of countries over a long time

period (1970-92). This data description reveals the importance of country-specific influences on

specialization but also suggests an important role for factor supply differences.

Next, we develop an econometric model that allows us to estimate the effects of factor

endowments alone in a world where technology differences may also be important influences on

specialization. Unlike Harrigan (1995), Trefler (1993, 1995), and Bernstein and Weinstein

(1998), we make no use of any form of factor price equalization result. Unlike Harrigan (1997),

we bypass the difficult problems of measuring technology levels, and we also dispense with the

strong assumption that cross-country technology differences are exclusively Hicks-neutral at the

industry level.  We use panel data techniques to estimate this flexible model of specialization as a

function of factor endowments.

A further contribution of our paper is that we consider an explicit alternative hypothesis.

This competing explanation is the ladder-of-development or product-cycle hypothesis: a

country's output mix depends on its stage of development, with countries moving from

agriculture to labor-intensive manufactures to high-tech manufacturing and services as their

aggregate labor productivity increases. This development story is consistent with both technology

and factor supplies being important, but it is simpler and more parsimonious than models that



3

stress the interactions between factor supplies, factor intensities, and non-neutral technological

differences.

Our results show that factor endowments are a major influence on specialization: for

most large industrial sectors, relative factor supplies are a statistically and economically

significant determinant of the location of production. However, the simple ladder-of-

development model also has good explanatory power and dominates the factor proportions model

on purely statistical grounds. We interpret these results as confirming  the empirical relevance of

factor proportions theory, and as suggesting that a full account of the workings of the global

economy must assign an important role to relative factor supply differences.

1 Theory

The theory used to frame the data analysis is resolutely neoclassical: technology is

assumed to be constant returns to scale, and markets are assumed to be perfectly competitive. We

dispense with most of the other assumptions that are usually used in trade theory models, such as

the assumptions that production is non-joint with some specific relationship between the number

of goods and factors. We also make no use of any form of factor price equalization result, either

relative or absolute. The use of a neoclassical model is not intended to rule out the importance of

increasing returns or economic geography for specialization, but these considerations are very

difficult to nest in a model that has relative factor endowments as a central driving force for

specialization2.

1.1 Technology differences and the revenue function

A convenient way to summarize the production side of the neoclassical model is with the

revenue function, which gives the maximal level of national income Y for given endowments v

and final goods prices p3:

( )Y r= p, v ,N M∈ ∈p v

The revenue function r(p,v) is homogeneous of degree one in p and in v. The net output vector y

of the economy is given by the gradient of r(p,v) with respect to prices4:

                                                          
2 For some progress on marrying economic geography and factor proportions models, see Davis and Weinstein
(1999).

3 For a careful development of the revenue function and its properties, see Dixit and Norman (1980) and Woodland
(1982).
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( )r= py p, v N∈y (1)

If technology is the same across countries, then (1) says that outputs differ only to the extent that

p and v differ. In the more likely case that technology differs across countries, outputs will differ

even for the same p and v. If we allow technology to differ arbitrarily across countries then (1) is

useless as a framework for cross-country analysis. By restricting the way that technology  differs

across countries, however, modified versions of  (1) can be used to study variation in outputs

over time and across countries.

A simple specification is to suppose that technology differs in a Hicks-neutral fashion

across industries and countries. Let  θict be a scalar productivity parameter for industry i, country

c, in year t, relative to a numeraire value of  θi11 = 1 in country 1 in year 1. By definition, Hicks-

neutral technology differences mean that, given the same inputs, industry i in country c in year t

produces  θict times as much output as the numeraire country/year. An appealing aspect of this

specification is that Hicks-neutral technology differences are in principle measurable by applying

the theory of total factor productivity measurement to data on industry inputs and outputs (see,

for example, Caves, Christensen and Diewert (1982)). It is straightforward to show (e.g., Dixit

and Norman (1980)) that Hicks-neutral technology differences have general equilibrium effects

on outputs that can be summarized by

( )r= py p, vΘΘΘΘ (2)

where { }diagΘ = θθθθ  is a diagonal matrix of Hicks-neutral technology differences. This is the

model implemented by Harrigan (1997).

Alternatively, technology may differ because of differences in factor quality across

countries. For example, a hectare of agricultural land may differ in productivity across countries,

or a primary school education may embody greater human capital in one country than in another.

In this case, observed cross-country technology differences at the industry level arise because of

the industry's use of factors that differ in their quality across countries. If we denote the quality of

factor j in country c in year t, again relative to a base country/year, as  λjct , then we have the

result (Dixit and Norman (1980)) that
                                                                                                                                                                                          
4 These derivatives need not exist and will not if there are more produced goods than factors and there is no joint
production. For our purposes in this paper, potential output indeterminacy is an empirical issue, and we assume
differentiability of r(p,v) for the rest of this section for expositional convenience.
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( )r= py p, vΛΛΛΛ (3)

where { }diagΛ = λΛ = λΛ = λΛ = λ is a diagonal matrix of factor quality parameters.

If the Hicks-neutral technology parameters are constant across sectors, given by a scalar

θ, then the homogeneity of r(.,.) implies that aggregate nominal income is given by ( )Y rθ= ⋅ p, v

and

( )rθ= ⋅ py p, v (4)

Similarly, if cross-country factor quality differences are the same across factors, given by a scalar

λ, then we have ( )Y rλ= ⋅ p, v and

( )rλ= ⋅ py p, v (5)

Clearly, in either case the cross-country differences in technology are pure scale effects and have

no impact on the composition of output5. Multiplying both sides of equations (1), (4), or (5) by a

matrix P = diag{p} with prices along the diagonal and dividing by nominal GDP, we can write

this result as

1 ( )
Y

= ⋅s P y p, v 1NS −∈s (6)

where s is the vector of outputs as shares of GDP, and SN-1 is the unit simplex. It is

straightforward to show that (6) is homogeneous of degree zero in p and in v, meaning that only

relative prices and relative endowments matter for the determination of output shares. If all

countries face the same final goods prices and technology differs across countries in a neutral

way, then (6) boils down to a very simple prediction: output share differences across countries

and over time depend on relative factor supply differences.

                                                          
5 This is the model that is empirically preferred by Trefler (1995). Because technology differences, which are neutral
across industries or factors, do not affect the composition of output, technology differences do not influence
comparative advantage in Trefler's model.
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1.2  An empirical model

Our next step is to devise an empirical model based on the above theory that can be used

to draw inferences about the effects of factor supplies on specialization. To begin, we make the

assumption that r(p,v) can be approximated by a translog functional form6. Abusing notation

slightly, let lower case non-bold face p and v denote the logs of price and factor supply vectors

respectively. A translog approximation for the revenue function is then given by:

1 1ln ( )
2 2

r p v p p v v p v′ ′ ′ ′ ′= + + + +p, v a b A B R (7)

The matrices A and B are symmetric, and homogeneity requires that a′ιιιι = ιιιι  , b′ιιιι = ιιιι , Aιιιι  = 0, Bιιιι

= 0, Rιιιι  = 0, and R′ιιιι   = 0, where ιιιι is a conformable vector of ones. In what follows, let i and k

index industries, c index countries, j index factors, and t index time. Assume that (7) holds for all

countries and time periods. Taking the derivative of (7) with respect to pi gives the share of

industry i in country c's GDP, denoted by sict, as :

1 1

N M

ict i ik kct ij jct
k j

s a a p r v
= =

= + +∑ ∑ (8)

If there are Hicks-neutral technology differences, then (2) implies that (8) becomes

1 1 1

N N M

ict i ik kct ik kct ij jct
k k j

s a a p a r vθ
= = =

= + + +∑ ∑ ∑ (8a)

Notice that homogeneity of the revenue function implies that 
1 1

0
N M

ik ij
k j

a r
= =

= =∑ ∑ . Consequently, if

the Hicks-neutral parameters do not differ across sectors, or if the factor quality terms do not

differ across factors, then (8a) and (8b) collapse to (8), as would be expected from the discussion

in the previous section. On the other hand, if the technology differences of either type are

constant over time, but otherwise unrestricted, then the influence of technology differences

collapses to a country-specific constant, and (8a)-(8b) become:

                                                          
6 Kohli (1991) presents a comprehensive account of this methodology for time series analysis, which Harrigan
(1997) adapted for panel data models.

Similarly, if there are factor-augmenting technology differences, (3) implies that (8) becomes

1 1 1

N M M

ict i ik kct ij jct ij jct
k j j

s a a p r v r λ
= = =

= + + +∑ ∑ ∑ (8b)
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1 1

N M

ict i ic ik kct ij jct
k j

s a b a p r v
= =

= + + +∑ ∑ (9)

Unfortunately, internationally comparable data on prices are not available. Instead, we assume

that trade equalizes prices across countries at a point in time up to a mean-zero error term  εict

and (possibly) a country-specific mean. Then the first summation in the previous four equations

becomes

1

N

ik kct ic it ict
k

a p d d ε
=

= + +∑ (10)

Substituting (10) into (9), we arrive at the following error-components specification for output

shares:

1

M

ict i it ic ij jct ict
j

s a d r vδ ε
=

= + + + +∑ (11)

This is the equation that we estimate. Given data on output shares and factor supplies over time

and across countries, the parameters of (11) can be estimated by a regression of output shares on

log factor supplies, treating the country effects as either fixed or random. The coefficients on log

factor supplies, the rij, are related to Rybczynski derivatives: a positive estimate for rij means that

accumulation of factor j raises the share of industry i in national income7. A zero factor supply

coefficient will arise if there are no factor intensity differences across sectors, so that

accumulation leads all outputs to expand proportionately.

Several features of the model in equation (11) are worth emphasizing. First, the country

effects  δic = bic + dic reflect the combined influence of non-neutral technology differences, plus

any differences in internal relative prices, such as differences in internal or external taxes and

subsidies. Second, the model potentially applies to all sectors in the economy, not just the

manufacturing sectors that we focus on in our empirical work below. Third, the assumption that

the translog functional form is an adequate approximation over the entire sample may be

restrictive, particularly if the effects of endowments on outputs differ depending on where a

                                                          
7 When every factor is used in at least two sectors, and every sector uses at least two factors, and there is non-joint
production, accumulation of a factor necessarily reduces the output of at least one sector (see, for instance, Jones and
Scheinkman (1977)). Because we are not imposing any such assumptions, no such result holds, and it is possible that
factor accumulation raises the output of all sectors (think of labor growth in the simplest specific factors model).
Nevertheless, some sectors will generally expand faster than others when factor supplies change, leading to
corresponding increases and decreases in the shares of output in GDP.
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country is in the space of relative endowments – this is the possibility emphasized by Schott

(1999). We return to this issue at the end of Section 4. Fourth, the natural definition of

specialization that comes out of this model is differences in output shares of GDP. This contrasts

with ad-hoc definitions of specialization that have been used by other authors, such as output

shares of tradeable goods or indexes of “revealed comparative advantage” as pioneered by

Balassa (1965).

1.3 An alternative hypothesis

A limitation of most of the empirical work on comparative advantage models is that there

is usually no explicit alternative hypothesis.  Here we consider a simple alternative hypothesis:

the level of development, rather than factor abundance per se, explains a country's output mix.  In

this view of the world, countries develop through capital accumulation and technological

progress. With development comes a change in the output mix and pattern of trade, as countries

progress from specialization in agriculture through labor-intensive manufactures, capital-

intensive manufactures, and finally high-tech goods and tradeable services. This ladder-of-

development model is roughly consistent with a two-factor (capital and labor), many-good model

and is also consistent with product-cycle models. A simple expression of the ladder-of-

development model is that output shares depend only on the aggregate productivity level, or

ict i it ic i ct icts a d δ β θ ε= + + + + (12)

where θct is an index of aggregate output per worker. We estimate this model below along with

the factor endowments model of equation (11).

2 Data

Estimation of the model of equation (11) and (12) requires data on outputs, factor

supplies, and aggregate productivity for a panel of countries. The sample used covers 28 OECD

and non-OECD countries over the period 1970-1992. This is the broadest sample of countries for

which data on output and factor supplies are both available and includes both developed and

developing countries. See Table 1 for a description and summary of the dataset.

Our output data covers twelve tradeable sectors that cover all of manufacturing output

(aside from a small "miscellaneous" category). Data on other traded goods, such as mining and

agricultural output, are not available on a consistent basis.
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We consider three types of factor supplies: land, labor, and capital. Data on aggregate

capital stocks come from version 5.6 of the Penn-World Tables, available from the NBER

website8. The Penn-World Table classifies capital stocks into producer durables, non-residential

and other construction, and residential construction. We aggregate only the first two capital stock

measures, because for the purposes of this paper, residential construction is most appropriately

regarded as a component of consumption. Aggregate output per worker also comes from the

Penn-World Tables.

Our data on land comes from the World Bank's World Tables and is defined as arable

land9. This is a very crude measure of natural resources available for productive use, but a more

nuanced treatment of natural resource abundance is beyond the scope of this paper.

We classify labor endowments according to the educational levels of workers. The data

on educational attainment comes from Barro and Lee (1993), whose data are also available from

the NBER website. Barro and Lee construct estimates of the level of educational attainment in

the population, and we use their data to classify workers into two categories:

1. Higher Educated: workers who have at least some secondary education.

2. Lower Educated: workers who have no secondary education (most of this category

consists of workers with at least some primary education).

The Barro-Lee data ends in 1985, and we extend the data through the mid-1990s, following

Barro and Lee's methods and using updated versions of their data sources.

Before turning to statistical analysis, we look at the data through an extended series of

tables and charts. Table 2 shows each country's output share relative to the cross-country average

in 1980 (a middle year in our sample). There are two primary messages to take away from Table

2. First, most of the numbers are far from 100, which means that there is a lot of cross-country

variation in output shares. Second, there is also a lot of variation across a row for a given

country: countries have above average output in some sectors and below average output in other

sectors. These two elements of variability, across countries for a given sector and across sectors

for a given country, are what the models of this paper are trying to explain.

                                                          
8 www.nber.org

9 Arable land refers to land under temporary crops, temporary meadows for mowing or pasture, and land under
market and kitchen gardens.
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Table 3 shows factor endowments in 1980 relative to the cross-country average. As with

the output data, there is tremendous variation in relative endowments, even among the developed

countries. The US is only a little above average in capital per worker, below average in land per

worker, but has almost twice the percentage of highly educated workers as the sample average.

Japan is similar to the United States in capital abundance, but has a tiny land endowment.

Australia, New Zealand, and Canada are similar to each other: each is very land abundant, has a

well-educated labor force, and capital per worker similar to the US level. Korea and Taiwan have

very little land, primarily low-educated workforces, and moderate levels of capital per worker.

Turning to the time-series variation in the data, the panels of Figure 1 illustrate output

share data for five of the twelve sectors10. A glance at these figures shows that most of the

variation in the data is cross-country, but that there is substantial within-country variation as

well. In the food sector, there is less of a correlation with land abundance than might have been

expected. However, the food category includes processed agricultural products and excludes raw

grains and produce as well as subsistence agriculture. The dominance of the Asian Tigers

(Taiwan and Korea) in apparel-textiles has faded somewhat over time, but not nearly fast enough

to match the virtual disappearance of apparel-textile manufacturing in places like Norway,

Sweden, and the Netherlands. The poorer European countries of Portugal, Spain, Greece, and

Turkey have held on to or expanded their apparel-textile sectors.

In the chemicals sector, there is great heterogeneity across countries that doesn't seem to

have any simple pattern. Turning to the machinery categories, we see several striking patterns:

Korea and Taiwan have seen the biggest expansions, while Germany and Japan have large

sectors that stayed roughly stable over time. Many other rich countries saw their big machinery

sectors gradually shrink, including Canada, the US, the UK, Sweden, Norway, and the

Netherlands. In electrical and non-electrical machinery, Ireland looks more like an Asian Tiger

than its European neighbors.

The informal look at the data in Figure 1 necessarily focuses on one industry at a time,

while the theory of comparative advantage involves double bilateral comparisons: a comparison

of relative output levels within and across countries, and a comparison of relative factor

abundance within and across countries. In Figures 2 and 3, we use "star charts" to make these
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double bilateral comparison for a selection of industries and countries in 1980 and 198511. In

Figure 2, each country's output mix is represented by five vectors. The direction of each vector

identifies the industry, while the length of the vector is proportional to the size of the industry.

Loosely speaking, if countries have similar shaped stars, then they have similar output mixes. If

on the other hand, they have very asymmetrical stars, then they are quite different from the

average country. The volume of each star also gives a rough indicator of the size of the overall

manufacturing sector.

Figure 2 shows that Turkey, Greece, and Norway have relatively little GDP produced by

these five sectors, while Taiwan, Korea, Germany, and Japan have large manufacturing sectors.

Figure 2 also illustrates that the United States has large machinery sectors and comparatively

small food and apparel-textile sectors, a pattern also seen in Japan, the UK, Germany, France,

Sweden, and other rich countries. Some countries have very extreme patterns of specialization:

Hong Kong's output is concentrated in apparel-textile and electrical machinery, while Chile

specializes in food and apparel-textiles. In contrast to richer industrial countries, Taiwan and

Korea are relatively more specialized in food and apparel-textiles and less in non-electrical

equipment. Figure 2 illustrates graphically what was pointed out in Tables 2: countries differ

dramatically in their output mixes.

Figure 3 uses the same technique to illustrate relative factor abundance in 198012. The US

is most abundant in highly-educated workers and also has a lot of land. Taiwan, Japan, and Korea

are all land-poor and differ in their educational mixes and capital per worker. Turkey is scarce in

everything except low-educated labor, while Norway is the opposite, abundant only in capital and

highly-educated workers. Many European countries have fairly similar relative factor supplies, as

can be seen by the similar shapes of their endowment stars. Figure 3 vividly illustrates the range

of endowment differences in our sample, and these differences are linked to the specialization

differences seen in Figure 2 by the econometric analysis that follows.

                                                                                                                                                                                          
10 The other seven sectors are omitted from Figure 1 to save space. The five sectors shown are illustrative of patterns
seen in the other sectors.
11 Our comparison year in Figure 2 is 1985, rather than 1980 as in the rest of the data displays, because we wanted to
include Japan, which has missing output data for 1980, in the figure.

12 Australia is excluded from this Figure, because its huge land endowment obscures variation in land among the
other countries.
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3 Econometric Specification and Estimation

The data review above, along with the theory behind equations (11) and (12), guide our

choice of estimation technique. For each of the twelve industries, the dependent variable is the

share of a sector's value added in national income (expressed as a percentage), and the data is an

unbalanced panel of countries and years. The regressors for equation (11) are the logs of relative

factor supplies, which include capital, two types of labor, and land13. For equation (12), the only

regressor is the log of aggregate productivity, measured as total real GDP per worker. The data

review suggests at least three issues that need to be addressed: trends, measurement error, and

country effects.

The models of equations (11) and (12) include time effects, and strong trends are clearly

evident in the data. Although inclusion of time fixed effects in our estimators is feasible, we

include linear time trends instead, for parsimony and for ease of reporting. This choice has no

noticeable impact on any of our inferences on other parameters. We also allow the error term  εict

to follow a stationary AR(1) process, with a common AR(1) parameter across countries for each

industry:

, 1ict i ic t ictε ρ ε ν−= +

where vict is white noise.

There is no question that all of our explanatory variables are measured with substantial

error. The largest amount of measurement error is surely in the cross-country dimension: land

quality differs across countries but is relatively stable over time, differences in educational

systems are large across countries but change only slowly within countries, and so on. If these

country-specific, time-invariant measurement errors are multiplicative in levels (and therefore

additive in logs), they will be absorbed into the country effects in our estimating equations. The

remaining measurement error is surely important. A solution to this  statistical problem requires

the use of an instrumental variables estimator, but unfortunately no plausible instruments are

available. This limitation should be kept in mind in reviewing our econometric results below.

The theory, the exploratory data analysis, and a consideration of measurement error all

                                                          
13 With four factor supplies and the imposition of homogeneity, there are three relative factor supplies. Since the
normalization is irrelevant, we report four separate factor supply effects in Table 5, but the coefficients sum to zero
by construction, and the covariance matrix is singular.
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argue for the inclusion of country effects in our regression models. A consistent estimator under

general conditions is the within or fixed effects estimator, which uses only time-series variation

within countries to identify the parameters of interest. However, a key feature of our sample is

that most of the variation is across countries, and in addition, a major objective of the theoretical

models is to explain specialization across countries at a point in time. We therefore want an

estimator that takes account of country effects but also uses at least some of the cross-sectional

variation in the data, and to this end, we develop a random effects estimator. The identifying

assumption that justifies the random effects estimator is that the random country effects are

orthogonal to the explanatory variables. This orthogonality assumption is a strong one, but we

believe that the benefits of using the cross-country variation in the data justify the discomfort

caused by making this assumption.  Below, we report both the fixed and random effects

estimators, so that the impact of the random effects assumption on inference can be assessed by

the reader. We also report estimates from a between estimator, which uses only the cross-

sectional variation in the data. Details of our estimators are given in the appendix.

One of our purposes in this paper is to compare the statistical performance of the two

competing models of specialization, the factor proportions and ladder-of-development models.

These models are not nested, so we compute two test statistics that are designed to discriminate

between non-nested models. The Akaike criterion is given by

lnk k kAIC L p= −

where lnLk is the maximized value of the log likelihood of model k, and pk is the number of

parameters. An alternative is the Schwartz criterion,

lnln
2

k
k k

p TSchwartz L= −

where T is the sample size. The model choice rule for both statistics is to choose the model with

the larger criteria value. Both models reward goodness of fit and penalize "complexity" as

measured by the number of parameters. The complexity penalty given by the Schwartz criterion,

which is derived from Bayesian principles,  is more severe for the sample sizes we consider.
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4 Results

Each of our 12 industry equations includes 23 to 28 countries, with 6 to 23 annual

observations per country. The average number of years per country is roughly 21, with overall

sample sizes per industry of 472 to 590 country-year observations.

Table 4 shows results for the fixed effects (FE), random effects (RE), and between

estimators of the factor proportions model given by equation (11), with statistically significant

coefficients shown in bold and t-statistics in italics14. The parameters on relative factor supplies

have the interpretation of semi-elasticities: for example, a one percent increase in the supply of

low-educated labor increases the share of food in GDP by 0.194 percentage points, according to

the fixed effects estimates. It may seem odd that the effect of land, which has essentially no time-

series variation, is identified in the fixed effects estimates. The identification is an artifact of

homogeneity, because the coefficient on land is constrained to equal minus the sum of the other

three factor supply effects, which do have substantial time series variation. For the FE estimates,

then, the land effect may be better thought of as the combined effect of all time-invariant factor

supplies, or alternatively, as an indicator of non-homogeneity in labor and capital.

In the food sector, which includes processed food and beverages but not raw agricultural

output, capital abundance reduces output, while labor abundance (especially skilled) raises it.

Similar patterns are visible in the wood-paper and oil-coal sectors, at least for the RE estimates.

Land has a statistically significant effect on food output in the between regressions, but a

negative effect in the FE and RE results.

The apparel-textile sector exhibits some informative disagreement between the FE and

between estimates. The between estimates generally confirm our intuition about this sector:

countries that are land and capital scarce and abundant in labor, specialize in apparel-textiles. In

contrast, the within or FE estimates show that increases in skilled labor over time reduce output.

The RE estimator offers an informative compromise: unskilled labor abundance and scarcity in

physical and human capital is what accounts for specialization in apparel-textiles. The large

positive effect of land in the RE estimates is due to the positive FE estimate of land, which is

itself a consequence of the large negative time series effects of  both physical and human capital.

                                                          
14In discussing the results, we will adopt the convention that a parameter is statistically different from zero if the
absolute value of the t-statistic is at least 1.62, that is, the approximate 10% critical value.
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Five of our small sectors can loosely be thought of as natural resource based (wood-

paper, printing, oil-coal, glass-stone-clay, and primary metals). Perhaps not surprisingly, given

that our empirical model does not include measures of resource supplies, the model does poorly

in explaining output in these sectors - most coefficients are not statistically significant. The

chemicals sector is also very poorly explained by the factor endowments model; according to the

RE estimates, abundance in labor and scarcity in land is reliably associated with higher output,

but no other inferences are possible.

The remaining four sectors, which include fabricated metals and the three machinery

sectors, have much stronger results: capital abundance and land scarcity lead to greater output in

all of these sectors. The FE estimates tend to be more precisely estimated than the between

estimates, perhaps because of the importance of country-effects in these sectors. In the electrical

and non-electrical machinery sectors there, is a strong positive effect of higher educated workers,

which is mirrored by a negative or insignificant effect of unskilled labor. In transportation

equipment, the strongest inference is that capital abundance is key; the labor effects, in contrast,

are imprecisely estimated.

Overall, the factor proportions model gives a noisy but fairly consistent story about

industrial specialization: human and physical capital abundance raise output in the heavy

industrial sectors, while physical capital lowers output in food and apparel-textiles. The model

has little success in explaining variation in output in the smaller, more resource-based sectors,

probably because we have no measurements of resource abundance. It is worth comparing our

results here to those of Harrigan (1997), which had a smaller sample and did not use the cross-

country variation in the data, but did have direct measures of technology. In that paper, Harrigan

found that technology and endowments were both important in explaining specialization among

OECD countries. To the extent that technological sophistication and endowments are not

orthogonal (it would be a surprise if they were), it is not surprising that we find it harder to

estimate the effects of endowments than did Harrigan (1997), because we do not measure

technology and include countries at widely different levels of development.

Turning to the simple ladder-of-development model of equation (12), Table 5 also

presents FE, RE, and between estimates. The results are roughly in line with what we would have

expected from the factor proportions results: higher aggregate productivity is associated with
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lower output of food and higher output in the heavy industrial sectors (fabricated metals and the

three machinery categories). In addition, the RE estimate for chemicals is positive and significant

as is the between estimate for printing. As with the factor proportions model, the within and

between effects are opposite in sign in the apparel-textiles sector. Aggregate productivity also has

mixed success in explaining output in the more resource-based sectors, with the notable

exception of primary metals.

Testing for statistical significance is important but begs the question: are the estimates

economically important? To address this issue, Table 6 reports standardized coefficients. These

are calculated by multiplying the regression coefficient from Tables 4 and 5 by the ratio of

sample standard deviations of the right and left hand side variables, so that a standardized

coefficient answers the question "by how many standard deviations does an output share change

with a one standard deviation increase in an explanatory variable?". Standardized coefficients

corresponding to statistically significant estimates from Tables 4 and 5 are in bold.

In the food and apparel-textiles sectors, the effects of  high educated labor and capital are

quite large: for example, a one standard deviation increase in capital lowers each sector by

around half of a standard deviation according to the RE estimates. For the fabricated metals and

machinery sectors, the statistically significant standardized effects are in the range of 0.1 to 0.4.

This implies that the effects of endowments are economically important, but relatively small

compared to the sample variation in output shares. For the other sectors (wood-paper, printing,

chemicals, oil-coal, and glass-stone-clay), the standardized coefficients are so small as to be

economically of second-order importance. In other words, country effects and noise are more

important than measured endowments for these sectors. By contrast, the ladder-of-development

model has much larger standardized effects in the sectors where aggregate productivity is

statistically significant, in most cases exceeding one in absolute value.

The results of Tables 4 through 6 indicate that both the factor proportions model and the

simple development model have some success in explaining the data. Table 7 reports

specification test statistics, with the "winning" model indicated in bold. For each industry, the

test statistics within a given row are comparable when the sample size is the same; that is, the

estimates that use the within variation are comparable to each other, while they cannot be directly

compared to the between estimates. Generally, the FE estimates of the development model are
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preferred among the estimates that use the within variation; in a few cases the Schwarz criteria

chooses the RE over the FE estimates, but in only one case, apparel-textiles, does either criteria

choose the factor endowment model over the more parsimonious development model. The

verdict is more mixed for the between estimates: in 4 of the 12 sectors (including food, apparel-

textiles, and electrical equipment), both criteria choose the factor endowment model, while in the

remainder of the sectors the "winner" is the development model. Overall, then, the development

model seems to be preferred on these purely statistical grounds.

A final specification issue concerns our working assumption that the translog functional

form is an adequate approximation to the true revenue function. We investigated this issue

informally, looking for break points in the sample where factor endowment effects changed sign,

to no avail. We also estimated an augmented version of equation (12), including the square as

well as the level of log real GDP per worker as an explanatory variable. There was not a single

statistically significant effect in the between estimates, but we did find statistically significant

quadratic terms in five cases with the FE estimator. The implied nonlinear relationship between

output shares and GDP per worker for these five sectors is plotted in Figure 4. The figure

indicates that with the possible exception of the food sector, with a peak at around $10,000 per

worker, the nonlinearities are not economically very important, and the relationship between

output shares and log GDP per worker can be well-approximated by a linear model. In brief, if

there are diversification cone effects in the world economy, we cannot find them in our data.

5 Conclusions

This paper uses a general version of the factor proportions model to organize a study of

the relationship between specialization and relative factor supplies. Using a panel of 28 countries

over 23 years, we report estimates using both the cross-section and time series variation in the

data. We also estimate a simple ladder-of-development model, which predicts specialization by

aggregate productivity alone.
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The results show that factor endowments do help predict specialization, particularly in

large industrial sectors that are not natural-resource based. These effects are economically large

as well as statistically significant. The ladder-of-development model is also useful in helping to

understand the data and is preferred on statistical grounds. The statistical analysis is motivated by

and supplemented with an extensive graphical display of the data, which is also suggestive of the

importance of factor supplies in explaining specialization.

The data analysis in this paper suggests a simple, if not very tidy, conclusion. Relative

factor endowments have a large influence on specialization, in ways that are consistent with

theory and stylized facts about the international economy. However, factor endowments leave

much that is unexplained: there is a great degree of country-specific idiosyncracy in

specialization patterns, and there is also a great deal of noise. A fuller account of specialization

will probably include roles for history, geography, technology, and economic policy, but such an

account will definitely include a role for relative factor supplies.
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Table 1 - Data Set Description
Years  1970-1992

Countries
21 OECD Australia (AUS), Austria (AUT), Belgium (BEL), Canada (CAN), Denmark

(DEN), Finland (FIN), France (FRA), Germany (GER), Greece (GRC), Iceland
(ICE), Ireland (IRL), Italy (ITA), Japan (JPN), Netherlands (NLD), New Zealand
(NZL), Norway (NOR),  Portugal (PRT), Spain (SPN), Sweden (SWE), the United
Kingdom (UK), and the United States (US).

7 non-OECD Argentina (ARG), Chile (CHL), Hong Kong (HKG), Korea (KOR), Mexico
(MEX), Turkey (TUR), Taiwan (TWN). None of these countries were in the OECD
in 1970.

Product Classification System: Twelve categories based on the International Standard Industrial
Classification (ISIC).

Food

311/2 Food manufacturing

313 Beverage industries

314 Tobacco manufactures

Textiles &
Apparel

321 Manufacture of textiles

322 Manufacture of wearing apparel except footwear

Wood & 
Paper

331 Wood products, except furniture

332 Furniture, except metal

341 Manufacture of paper and paper products

Printing 342 Printing, publishing, and allied industries

Chemicals
351 Manufacture of industrial chemicals

352 Manufacture of other chemical products

Oil & Coal
353 Products of  petroleum refineries

354 Miscellaneous products of petroleum and coal

Glass, Stone & Clay

361 Pottery, china, and earthenware

362 Glass and glass products

369 Other non-metallic mineral products

Primary Metals 371 Iron and steel basic industries

372 Non-ferrous metal basic industries

Fabricated Metals 381 Fabricated metal products, except machinery and equipment

Machinery ex-
Electric

382 Manufacture of machinery, except electrical

Electrical Machinery
383 Electrical machinery, apparatus, appliances and supplies

385 Professional, scientific, measuring and control equipment

Transport Equipment 384 Transportation equipment, including motor vehicles, ships, and aircraft
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Shares of each industry in GDP
Source: The Industrial Statistics Yearbook 1998, 3 Digit Level of ISIC Code from the 
United Nations Industrial Development Organization (UNIDO). 

.
Factor Endowments
Capital From version 5.6 of the Penn-World Table (PWT 5.6) Units: millions of 1985

international dollars. See Robert Heston and Alan Summers (1991) for details. 

Labor The economically active population (from PWT 5.6) is classified according to
education level: 1) low,  workers with at most primary education, 2) high, workers
with at least some secondary education. Units: Thousands of workers. The
educational classification for 1970, 1975, 1980, and 1985 comes from Barro and
Lee (1993); intervening years are interpolated. The original data set has been
updated to include the years 1990 and 1995, using the same equations and data
sources used by Barro and Lee (1993).

Land Agricultural land. Units: thousands of hectares. The source is the World Bank's
World tables on CD-ROM.

Aggregate GDP per Worker
From version 5.6 of the Penn-World Table (PWT 5.6) Units: thousands of 1985
international dollars per worker. See Robert Heston and Alan Summers (1991) for details. 
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Table 2 - 1980 Industry Output Shares Relative to the Mean Across Countries

Food and
Beverage

Textile and
Apparel

Wood and
Paper

Printing Chemicals Oil and
Coal

Glass, Stone
& Clay

Primary
Metals

Fabricated
Metals

Non-Electrical
Machinery

Electrical
Machinery

Transport
Equipment

ARG 183 127 73 80 171 491 99 96 123 72 56 139

AUS 86 45 76 113 64 21 79 125 104 70 47 96

AUT 89 65 93 80 73 14 124 115 112 116 102 50

BEL 110 69 87 78 124 47 92 139 118 114 96 87

CAN 86 56 194 115 83 59 62 108 113 81 78 122

CHL 169 62 115 84 84 92 79 315 57 24 20 32

DEN 116 33 65 126 82 17 96 21 84 132 67 53

FIN 89 73 363 209 84 90 97 79 99 155 72 87

FRA 86 63 74 99 99 193 107 82 123 132 114 145

GER 108 57 99 76 130 183 124 156 121 229 208 211

GRC 75 122 41 38 59 43 112 65 61 17 34 61

HKG 33 400 40 101 — — 21 14 151 36 217 34

ICE — 43 76 102 — — 69 78 — — — —

IRL 227 80 67 131 — — 196 14 112 121 115 51

ITA 50 85 64 66 109 28 126 126 85 111 106 124

JPN 77 75 110 160 131 68 138 188 143 200 192 165

KOR 139 216 63 68 150 143 151 141 67 57 129 99

MEX 40 — 20 7 — — 62 64 30 16 61 55

NLD 87 25 56 143 88 35 63 43 96 74 104 61

NZL 150 70 143 130 63 15 65 46 111 56 52 77

NOR 59 19 103 105 51 23 49 105 63 80 42 86

PRT 71 148 130 63 — — 138 50 76 32 53 82

SPN 106 87 94 71 101 73 142 117 118 92 84 122

SWE 69 25 216 145 85 37 72 96 139 169 107 158

TWN 121 205 115 52 124 231 141 137 95 56 219 116

TUR 79 90 26 14 76 216 92 92 39 40 31 43

UK 112 63 96 181 139 92 129 92 127 214 148 177

US 82 61 102 163 131 90 76 98 132 205 174 164

Notes to Table 2: This table shows each country's output shares in 1980, divided by the cross-country mean, and multiplied by 100.
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Table 3 - Factor Endowment Levels Relative to the Mean, 1980

Workers
1000's

 Capital
$/worker

Education level, % of total Cropland &
Pasture sq.km
/100 workersLow High

Argentina (83) 69 55 130 63 278

Australia 44 139 55 155 1240

Austria 22 114 107 91 19

Belgium 26 141 93 108 7

Canada 77 130 47 164 108

Chile 25 31 121 75 79

Denmark 18 127 90 112 19

Finland 16 151 94 108 20

France       155 131 127 68 23

Germany 176 196 138 54 12

Greece 24 89 133 60 43

Hong Kong 21 55 114 83 0

Iceland 1 59 111 86 337

Ireland 8 79 96 105 79

Italy 142 114 122 73 14

Japan       473 99 84 120 1

Korea 96 44 99 101 3

Mexico 141 63 159 29 80

Netherlands 36 130 79 126 6

New Zealand 9 127 24 192 233

Norway 13 185 3 216 8

Portugal 28 36 157 31 16

Spain 84 87 146 45 42

Sweden 27 129 76 129 15

Taiwan 48 61 123 72 3 

Turkey 125 29 160 27 35

UK 177 74 97 103 12

USA 720 124 13 205 67

Notes to Table 3: This table shows each country's factor  endowments in 1980, divided by the
cross-country mean, and multiplied by 100. Data for Argentina is from 1983.
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Figure 2 - Relative Output Shares, 1985

 Food & Beverages

 Apparel & Textiles

 Non-electrical machinery

 Electrical machinery

 Transport Equipment

Argentin Australi Austria Canada Chile

Taiwan Denmark Finland France Germ(W)

Greece HongKong Ireland Italy Japan

Korea(Re Netherla NewZeala Norway Portugal

Spain Sweden Turkey UK USA

Notes to Figure 2: For a country, each of the five vectors is proportional to the country's output share in that sector relative to the average
country's output in that sector.
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Figure 3 - Relative Endowments, 1980
  

 Capital per worker

 Low-educated workers

 High-educated workers

 Land per worker

Austria Belgium Canada Chile Taiwan Denmark

Finland France Germ(W) Greece HongKong Iceland

Ireland Italy Japan Korea(Re Mexico Netherla

NewZeala Norway Portugal Spain Sweden Turkey

UK USA

Notes to Figure 3: For a country, each of the four vectors is proportional to the country's endowment of that factor relative to the average
country's endowment of that factor.
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Table 4 - Regression Results, Factor Endowment Model

Fixed Eff. Random Eff. Between Fixed Eff. Random Eff. Between Fixed Eff. Random Eff. Between

Food and Beverages Textiles and Apparel Wood and Paper

Low Ed 0.194 0.165 0.136 0.013 0.019 0.860 0.181 0.112 -0.346

3.86 4.62 0.69 0.93 1.64 4.24 2.54 1.94 -2.25

High Ed 0.395 0.468 1.325 -0.229 -0.215 1.380 0.207 0.176 -0.141

2.22 5.04 2.04 -2.80 -3.79 2.63 2.18 3.29 -0.36

Capital -0.272 -0.456 -1.751 -0.478 -0.304 -1.658 -0.048 -0.142 0.495

-1.28 -4.21 -2.45 -3.50 -4.51 -3.41 -0.43 -2.1 1.06

Land -0.318 -0.178 0.289 0.694 0.500 -0.582 -0.340 -0.146 -0.008

-2.05 -6.13 1.69 5.14 16.81 -2.31 -1.88 -10.46 -0.12

Year -0.027 -0.022 -0.024 -0.031 -0.027 -0.021

-2.87 -4.01 -4.94 -15.69 -3.92 -6.81

Printing Chemicals Oil and Coal

Low Ed 0.043 0.015 -0.247 0.037 0.090 0.237 -0.002 0.027 0.493

2.38 0.94 -3.07 0.76 2.67 1.55 -0.11 2.03 2.98

High Ed -0.073 -0.025 0.239 0.044 0.181 0.265 0.038 0.119 0.120

-1.69 -0.86 1.78 0.24 2.28 0.73  0.39 2.74 0.34

Capital -0.025 0.007 0.033 0.047 0.018 -0.310 -0.083 -0.190 -0.710

-0.76 0.28 0.21 0.18 0.15 -0.81 -0.92 -3.59 -1.71

Land 0.055 0.003 -0.025 0.127 -0.289 -0.192 0.048 0.045 0.097

0.84 0.33 -0.98 0.64 -14.16 -2.75 0.37 4.67 0.74

Year 0.004 0.001 -0.002 -0.006 -0.003 -0.001

1.30 0.33 -0.16 -1.36 -0.54 -0.30

Notes to Table 4 This table presents fixed effects, random effects, and between estimates of the factor proportions model. T-statistics are in
italics. The dependent variable is output as a percentage of GDP, and the explanatory variables are log relative factor supplies. The coefficients
on the four factor supplies sum to zero by construction. See text for details.
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Fixed Eff. Random Eff. Between Fixed Eff. Random Eff. Between Fixed Eff. Random Eff. Between

Glass, Stone, & Clay Primary Metals Fabricated Metals

Low Ed 0.039 0.046 0.119 0.067 -0.001 0.152 0.056 -0.010 -0.119

3.13 3.83 2.39 0.67 -0.04 0.66 3.29 -0.26 -0.99

High Ed 0.258 0.170 -0.224 -0.070 0.003 0.583 0.288  0.097 -0.015

2.70 3.65 -1.44 -0.64 0.04 0.74 2.29 1.25 -0.10

Capital 0.055 -0.073 0.098 -0.056 -0.026 -0.793 0.371 0.054 0.212

0.48 -1.27 0.61 -0.45 -0.31 -0.76 2.44 0.92 1.10

Land -0.351 -0.142 0.007 0.059 0.024 0.058 -0.715 -0.140 -0.078

-5.23 -23.40 0.11 1.22 0.64 0.39 -5.11 -6.30 -2.20

Year -0.030 -0.021 0.008 -0.013 -0.715 -0.023

-8.42 -8.81 -1.37 -3.27 -3.80 -6.56

Non-Electrical Machinery Electrical Machinery Transport Equipment

Low Ed -0.103 -0.128 -0.333 0.056 0.014 0.012 -0.074 -0.057 -0.220

-2.91 -6.76 -1.43 3.62 0.44 0.04 -0.80 -2.98 -1.32

High Ed 0.272 0.234 -0.561 0.316 0.254 0.310 -0.032 -0.102 -0.330

2.78 2.70 -1.08 4.05 4.56 0.54 -0.23 -1.17 -0.74

Capital 0.279 0.310 1.053 0.386 0.224 0.100 0.334 0.281 0.600

2.95 3.89 1.95 2.17 3.73 0.16 1.55 3.49 1.30

Land -0.448 -0.416 -0.160 -0.758 -0.493 -0.421 -0.227 -0.123 -0.050

-3.72 -13.60 -1.30 -4.26 -18.47 -4.17 -0.90 -4.85 -0.51

Year -0.035 -0.035 -0.037 -0.028 -0.034 -0.028

-5.13 -9.45 -4.82 -10.35 -2.98 -6.29
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Table 5 - Regression Results, GDP per Worker Model

Fixed Eff. Random Eff. Between Fixed Eff. Random Eff. Between Fixed Eff. Random Eff. Between

Food and Beverages Textiles and Apparel Wood and Paper

Y/W -1.074 -1.098 -0.727 0.461 0.249 -2.511 0.738 0.634 0.725

-3.21 -6.78 -1.17 2.54 1.81 -2.69 4.24 6.55 2.12

Year -0.010 -0.009 -0.058 -0.055 -0.033 -0.031

-1.91 -2.43 -26.67 -25.60 -8.21 -11.04

Printing Chemicals Oil and Coal

Y/W -0.014 -0.006 0.635 0.304 0.201 -0.166 -0.336 -0.335 -1.409

-0.25 0.11 5.59 1.48 2.66 -0.46 -3.66 -8.42 -5.17

Year -0.000 -0.001 -0.003 -0.001 0.001 0.001

-0.41 -0.63 -0.6 -0.36 0.29 0.37

Glass, Stone & Clay Primary Metals Fabricated Metals

Y/W 0.688 0.560 -0.205 -0.021 -0.027 -0.632 1.014 0.690 0.541

5.67 6.87 -1.37 -0.20 -0.39 -0.87 4.39 12.10 4.01

Year -0.029 -0.027 -0.013 -0.013 -0.033 -0.027

-11.22 -12.90 -2.84 -3.22 -5.88 -7.09

Non-Electrical Machinery Electrical Machinery Transport Equipment
Y/W 0.648 0.783 1.292 0.584 0.648 0.125 0.289 0.403 0.764

2.99 7.41 3.80 2.91 10.56 0.19 1.29 3.72 2.22

Year -0.020 -0.023 -0.016 -0.017 -0.025 -0.026

-3.72 -5.84 -3.79 -4.82 -4.13 -5.30

Notes to Table 5 This table presents fixed effects, random effects, and between estimates of the ladder-of-development model. T-statistics are in
italics. The dependent variable is output as a percentage of GDP, and the explanatory variable Y/W is the log of aggregate GDP per worker. See
text for details.
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Table 6 - Standardized Parameter Estimates, Both Models

Fixed Eff. Random Eff. Between Fixed Eff. Random Eff. Between Fixed Eff. Random Eff. Between

Food and Beverages Textiles and Apparel Wood and Paper

Low Labor 0.229 0.195 0.161 0.016 0.025 1.126 0.127 0.078 -0.242
High Labor 0.540 0.639 1.810 -0.317 -0.298 1.913 0.154 0.132 -0.105

Capital -0.356 -0.597 -2.294 -0.639 -0.407 -2.216 -0.034 -0.102 0.356

Land -0.240 -0.134 0.218 0.688 0.495 -0.576 -0.179 -0.077 -0.004

Y/W -4.010 -4.102 -2.715 2.206 1.190 -12.018 1.897 1.629 1.864
Printing Chemicals Oil and Coal

Low Labor 0.013 0.004 -0.071 0.020 0.049 0.128 -0.002 0.018 0.325
High Labor -0.023 -0.008 0.074 0.028 0.119 0.174 0.030 0.095 0.096

Capital -0.007 0.002 0.010 0.031 0.012 -0.203 -0.067 -0.152 -0.568

Land 0.012 0.001 -0.006 -0.058 -0.131 -0.087 0.027 0.025 0.054

Y/W -0.015 0.006 0.680 0.537 0.355 -0.293 -0.726 -0.723 -3.041

Glass, Stone & Clay Primary Metals Fabricated Metals

Low Labor 0.010 0.012 0.031 0.058 -0.001 0.134 0.020 -0.004 -0.043

High Labor 0.072 0.047 -0.062 -0.068 0.003 0.572 0.117 0.040 -0.006

Capital 0.015 -0.020 0.026 -0.053 -0.024 -0.751 0.147 0.021 0.084

Land -0.068 -0.028 0.001 0.037 0.015 0.037 -0.172 -0.034 -0.019
Y/W 0.657 0.535 -0.196 -0.066 -0.086 -1.992 1.188 0.809 0.635

Non-Electrical Machinery Electrical Machinery Transport Equipment

Low Labor -0.087 -0.109 -0.283 0.053 0.013 0.011 -0.051 -0.039 -0.151

High Labor 0.261 0.225 -0.538 0.341 0.274 0.334 -0.025 -0.079 -0.256

Capital 0.261 0.290 0.985 0.405 0.236 0.105 0.253 0.213 0.454

Land -0.254 -0.236 -0.091 -0.484 -0.314 -0.269 -0.105 -0.056 -0.023

Y/W 1.790 2.162 3.569 1.812 2.011 0.388 0.647 0.901 1.707

Notes to Table 6 This table presents coefficients from Tables 4 and 5, re-scaled to units of sample standard deviations. See text for details.
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            Table 7 - Specification Test Statistics

FE RE Between FE RE Between FE RE Between

factors Y/W factors Y/W factors Y/W factors Y/W factors Y/W factors Y/W factors Y/W factors Y/W factors Y/W

Food Textiles and Apparel Lumber & Wood

Akaike 8.3 19.8 -19.3 -9.5 -2.33 -2.50 215.4 214.2 186.6 191.4 -2.20 -2.65 228.9 243.2 207.4 223.2 -1.73 -1.64

Schwarz -117.5 -101.6 -147.2 -133.1 -2.53 -2.60 89.1 92.3 58.1 67.3 -2.39 -2.75 97.5 116.2 73.8 94.0 -1.92 -1.73

p 58 56 59 57 4 2 58 56 59 57 4 2 60 58 61 59 4 2

N 565 27 575 27 590 28

Printing & Publishing Chemicals Oil & Coal

Akaike 684.9 691.0 676.1 686.0 0.28 0.33 101.4 109.0 87.1 92.0 -0.87 -1.00 150.2 157.1 145.6 156.1 -1.38 -1.17

Schwarz 553.4 563.9 542.4 556.7 0.09 0.24 -2.5 9.2 -8.5 0.5 -1.07 -1.10 46.3 57.3 50.0 64.6 -1.58 -1.27

p 60 58 61 59 4 2 50 48 46 44 4 2 50 48 46 44 4 2

N 592 28 472 23 472 23

Stone, Clay & Glass Primary Metals Fabricated Metals

Akaike 497.1 523.8 495.5 515.2 0.44 0.43 6.4 9.9 -14.2 -8.3 -2.06 -1.96 330.5 346.3 312.2 343.2 0.09 0.31

Schwarz 366.8 397.8 373.9 397.9 0.25 0.33 -124.6 -116.8 -136.5 -126.2 -2.25 -2.05 204.9 225.1 195.3 230.6 -0.10 0.22

p 60 58 56 54 4 2 60 58 56 54 4 2 58 56 54 52 4 2

N 569 28 583 28 561 27

Non-electrical Machinery Electrical Machinery Transportation Equipment

Akaike 227.1 227.1 200.4 200.7 -1.79 -1.66 202.6 209.6 177.6 182.5 -1.78 -2.11 119.9 129.9 97.8 108.4 -1.46 -1.30

Schwarz 101.5 105.9 83.5 88.1 -1.98 -1.75 77.0 88.4 60.7 69.9 -1.97 -2.21 -5.7 8.7 -19.1 -4.2 -1.65 -1.40

p 58 56 54 52 4 2 58 56 54 52 4 2 58 56 54 52 4 2

N 561 27 561 27 561 27

Notes to Table 7 This table presents specification test statistics for three estimates of each model for each industry. The "winning" model is indicated in
bold. p is the number of parameters in each model, and N is the sample size.The formula for the Akaike and Schwarz criteria are given in the text. 
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Figure 4 - Output shares and GDP per worker when non-linearities are significant
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Appendix

In this appendix, we discuss our estimation methods for equations (11) and (12).  For the
purposes of this appendix, we will generically write an unbalanced panel model for
output shares for industry i as

ict ic i ct icts xα β ε′= + + c = 1,...,C t = 1,...,Tic (A1)

where K
iβ ∈ is a vector of parameters to be estimated, and K

ctx ∈ is the

corresponding vector of explanatory variables. The time index notation emphasizes that
the panels are unbalanced.
A.1 Autocorrelation

As noted in the text, we allow the error terms εict to follow a stationary AR(1)

process, with a common AR(1) parameter iρ across countries for each industry:

, 1ict i ic t ictε ρ ε ν−= + (A2)

where vict is white noise. Our estimator first transforms the model so that the resulting
equation errors are serially uncorrelated. We use the panel data modification of the Prais-
Winsten (PW) transformation proposed by Baltagi and Li (1991).  The PW-
transformation, which amounts to quasi-differencing of equation (A1) with separate
treatment of the initial observation for each country, is valid for both the fixed and
random effects specifications. The transformation is applied to each industry-specific
equation separately and consists of two steps1.
     First, we estimate each industry equation by least squares with country fixed
effects and collect the residuals îctε . Our estimate of iρ is then simply the least squares

estimate of iρ from the following regression:

, 1ˆ ˆict i ic t icteε ρ ε −= + (A3)

The second step of the Baltagi-Li procedure is to transform (A1) as follows: for t = 1, we

multiply each observation by 21 iρ− , and for t  = 2,...,Tic, we multiply each

observation by (1-ρiL) where L is the lag operator. All of our fixed and random effects

estimators use the PW-transformed data, so that by construction the statistical models

have error processes free from first-order serial correlation. The error term of the PW-

transformed model is denoted by uict and is defined as



A2

21ict ict iu ε ρ= − t = 1
(A4)

, 1ict ict i ic tu ε ρ ε −= − t  = 2,...,Tic

A.2 Random effects estimation

For notational convenience we will drop the industry subscripts i in what follows,

with the understanding that each industry is estimated separately. We assume that the

error term  uct has a one-way error components structure with heterogeneous residual

variance:

ct c ctu θ ζ= +
2(0, )c cNθ γ (A5)

2(0, )ct cNζ σ

Note that we allow the variance of both the random country effect θc and the remainder

disturbance ζct to vary across countries. As it happens, allowing for heterogeneous
variances leads to large efficiency gains in our application. We also assume that the
random effects and the disturbances are uncorrelated.

     The C country-specific equations observed over Tc time periods can be
conveniently written in matrix form as

β β θ ζ=s = X + u X + Z + (A6)

where s is the (n x 1) vector of observed PW-transformed output shares, X is the (n x
(K+1)) matrix of observed PW-transformed explanatory variables, Z is the known (n x C)
design matrix, θ is the (C x 1) vector of unknown random effects, ζ is the (n x 1)

unobserved vector of remainder disturbances, and 
1

C

c
c

n T
=

= ∑  is the number of

country/year observations in the panel. The n × n covariance matrix of u is
Ω = ZGZ' + R (A7)

where the C × C matrix G and the n × n matrix R are defined as
2G [ ]cdiag γ=
2R [ ]

cc Tdiag Iσ=

                                                                                                                                                
1 As noted in the context of the time-series literature by Maeshiro (1979), the separate treatment of thefirst
observation in the PW transformation results in significant efficiency gains, especially if the explanatory
variables are trending (as they are in our dataset).
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Given some estimates for G and R, the feasible generalized least squares estimates of θ
and β are given by

1 1 1ˆ ˆ ˆ( )β − − −′ ′= Ω ΩX X X s (A8)
1ˆ ˆˆ ˆG ( )θ β−′= Ω −Z s X (A9)

Our normality assumptions are used in deriving an estimator for Ω. We use the
restricted/residual maximum likelihood (REML) method proposed by Patterson and
Thompson (1971). As discussed in detail by Harville (1977), the REML approach to
variance component estimation offers several significant advantages over ANOVA-type
(i.e., method-of-moments) estimators. The first favorable theoretical property of the
REML approach is that it accommodates an unbalanced panel design. Second, non-
negativity constraints on the variance components or other constraints on the parameter
space cause no conceptual difficulties. Third, REML estimates of variance components
take into account the loss in degrees of freedom resulting from the estimation of the
parameter vector β, thus yielding unbiased estimates of G and R in finite samples.2

     The REML approach reduces the maximization problem to one over only the
parameters in Ω.  The REML log-likelihood function is given by

( )1 11 1( ) constant ln ln ln
2 2 2

n Kl − −−′ ′Ω = − Ω − Ω − ΩX X b b (A10)

where b = s - X[X'Ω-1X] X'Ω-1s.  We use a ridge-stabilized Newton-Raphson algorithm
to maximize the log-likelihood function in equation (A10). Using the REML estimate of
Ω, we use equations (A8) and (A9) to calculate the FGLS estimators of θ and β . The

heteroscedasticity-consistent asymptotic covariance matrix of β̂ is computed according to

Diggle, Liang, and Zeger (1995):

( ) 1 1 1 1 1 1

1

ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( )
C

c c c c c c
c

V u uβ − − − − − −

=

 ′ ′ ′ ′= Ω Ω Ω Ω  
∑X X X X X X (A11)

where 1ˆ
c
−Ω and ˆcu  are the components of 1ˆ −Ω and û , respectively that correspond to

country c.

                                                
2The fact that likelihood-based estimators are derived under the assumption of a particular parametric form,
generally normality, for the distribution of the data vector is not as restrictive as it may seem at first glance.
As discussed by Harville (1977), the close relationship between the distribution-free estimators of variance
components, such as the class of locally best translation-invariant quadratic unbiased estimators (e.g.,
MIVQUE and MINQUE), and REML estimators indicates that the likelihood-based estimators of G, and R
derived under normality assumptions are reasonable, even when the form of the error-term distribution is
left unspecified.
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A.2 Fixed effects estimation

The fixed effects estimator treats the country effect θc as a parameter to be estimated as

opposed to an error component. Under this specification, G = 0 and 2= R [ ]
cc Tdiag IσΩ = .

As before, we use REML to estimate Ω, and the estimator of β is again given by equation

(A8); heteroscedasticity-consistent standard errors of β̂  are computed using (A11).

A.2 Between estimation

The between estimator of equation (A1) averages the country-specific data for each
industry. The time average of (A1) is given by

. . .ic i i ic ics xα β ε′= + + c = 1,...,C (A12)

where αi is the overall intercept and

.
1

1 icT

ic ict
tic

s s
T =

= ∑

.
1

1 icT

ic ct
tic

x x
T =

= ∑

.
1

1 icT

ic ict
ticT

ε ε
=

= ∑
We estimate equation (A12) for each industry i with weighted least squares, with weights

given by c icTω = .  The heteroscedasticity-consistent asymptotic covariance matrix of

the weighted least squares estimator β̂ is computed according to White (1980).
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