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ABSTRACT 
 
This report describes a strategy that 
embodies a systematic and comprehensive 
approach to hydrogeologic 
conceptualization, model development and 
predictive uncertainty analysis. The strategy 
is comprehensive in that it considers all 
stages of model building and accounts 
jointly for uncertainties that arise at each of 
them. The stages include regional and site 
characterization, hydrogeologic 
conceptualization, development of 
conceptual-mathematical model structure, 
parameter estimation on the basis of 
monitored system behavior, and assessment 
of predictive uncertainty. In addition to 
parameter uncertainty, the strategy concerns 
itself with uncertainties arising from 
incomplete definitions of (a) the conceptual 

framework that determines model structure, 
(b) spatial and temporal variations in 
hydrologic variables that are either not fully 
captured by the available data or not fully 
resolved by the model, and (c) the scaling 
behavior of hydrogeologic variables. The 
strategy is generic but designed to be of 
practical use to NRC licensing staff in their 
review of decommissioning plans, and 
performance assessment of high-level and 
low-level radioactive waste disposal sites as 
well as uranium recovery facilities. An 
important component of the strategy is a 
systematic sequence of logical questions, 
guidelines and criteria with analytical 
methods appropriate for NRC review and 
performance evaluation. 
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EXECUTIVE SUMMARY 
 
This report describes a strategy that 
embodies a systematic and comprehensive 
approach to hydrogeologic 
conceptualization, model development and 
predictive uncertainty analysis. The strategy 
is comprehensive in that it considers all 
stages of model building and accounts 
jointly for uncertainties that arise at each of 
them. The stages include regional and site 
characterization, hydrogeologic 
conceptualization, development of 
conceptual-mathematical model structure, 
parameter estimation on the basis of 
monitored system behavior, and assessment 
of predictive uncertainty. In addition to 
parameter uncertainty, the strategy concerns 
itself with uncertainties arising from 
incomplete definitions of (a) the conceptual 
framework that determines model structure, 
(b) spatial and temporal variations in 
hydrologic variables that are either not fully 
captured by the available data or not fully 
resolved by the model, and (c) the scaling 
behavior of hydrogeologic variables. 
 
The strategy is generic but designed to be of 
practical use to NRC licensing staff in their 
review of decommissioning plans and 
performance assessment of high-level and 
low-level radioactive waste disposal sites as 
well as uranium recovery facilities. For this 
purpose, the strategy is cast in the context of 
a framework that is useful to NRC staff 
review and performance evaluation needs. 
The context is defined in terms of 
corresponding performance measures (as 
identified by the NRC staff in Appendix A), 
hydrogeologic analyses that are needed to 
assess them, the desired reliability of such 
assessments, and the expenditure (in time, 
effort and money) that is allowed to achieve 
it. Examples from various case studies are 
included to help illustrate some aspects of 
these analyses. An important component of 

the strategy is a systematic sequence of 
logical questions, guidelines and criteria 
with analytical methods useful for NRC staff 
review and performance evaluation. 
 
The strategy encourages exploration of 
varied conceptual frameworks and 
assumptions at all stages of hydrogeologic 
model development through a 
comprehensive evaluation of a broad range 
of regional and site data, their translation 
into coherent and internally consistent 
conceptual-mathematical models, and 
computation and visualization based on 
these data and models. Included among 
these frameworks and assumptions are 
various model simplification and abstraction 
schemes. The strategy recognizes that site 
characterization and monitoring data are 
expensive and difficult to collect, leading to 
a ubiquitous scarcity of hard site 
information. It is therefore critically 
important to assess the role that such data 
play in rendering the hydrogeologic 
performance analysis credible. The strategy 
stresses the role of characterization and 
monitoring data in helping one identify and 
test alternative conceptual models, make 
rational choices among them, gauge and 
reduce model bias and uncertainty through 
proper model selection and calibration, 
assess the reliability of model predictions, 
and confirm the assessment through 
independent peer review as well as at least 
some degree of direct verification. 
 
The strategy encourages an iterative 
approach to modeling, whereby a 
preliminary conceptual-mathematical model 
is gradually altered and/or refined until one 
or more likely alternatives have been 
identified and analyzed. The idea is to start 
with a conceptual-mathematical model that 
is as simple as may appear warranted by the 
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context of the problem and the available 
data. This model is then tested for 
qualitative consistency with the available 
data, made quantitatively compatible with 
the data through calibration (parameter 
estimation via an inverse solution), and 
subjected to an assessment of its predictive 
reliability (in terms of potential bias and 
uncertainty). Next, the model structure is 
altered and/or refined (by modifying its 
hydrogeologic makeup or features; 
dimensionality; scale of resolution in space-
time; type of driving forces or events 
including sources, initial and boundary 
conditions; and governing equations or 
processes), the model is retested and 
compared with the former. 
 
The iterative procedure is repeated until 
there is good reason to conclude that any 
additional alterations or refinements of the 
models would lead at best to minor 
improvements in their predictive capability. 
Models whose predictive capability is 
deemed low in comparison to other are 
discarded and the rest retained for further 
analysis. The retained models are analyzed 
jointly to assess their aggregate predictive 
bias and uncertainty. If the latter are deemed 
acceptable for the stated purpose of the 
analysis, the iterative process is halted and 
the models declared reliable and credible 
within a clearly stated conditional (on the 
available information and selected set of 
models) margin of error. The conditional 
nature of this error estimate is taken to imply 
that it constitutes a lower bound, and that the 
actual predictive error may (and most 
probably is) larger to an unknown degree. 
 
If the models are deemed unacceptable, a 
sensitivity analysis is performed to help 
identify the type and quantity of additional 
site data that might materially enhance their 
reliability and credibility. A decision is then 
made, based on the potential benefit (in 

terms of bias and uncertainty reduction) and 
cost (in terms of time, effort and money) of 
such data, whether or not to collect them and 
how. If and when new data of significant 
weight are obtained, the iterative process is 
repeated till its cost-benefit ratio reaches a 
value that is not considered worth 
exceeding. 
 
The strategy recognizes that it is often 
possible to postulate hydrogeologic 
conceptual models or hypotheses for a site 
on the basis of publicly available geologic 
and geographic information about its 
surroundings. Additional conceptualization 
can be done on the basis of generic data 
about similar regions and the properties of 
similar materials elsewhere. Several such 
regional and generic sources of information 
are identified and discussed in this report. 
Yet each site is unique and so virtually 
guaranteed to reveal additional features, 
properties and behaviors when characterized 
in some detail locally. Hence the strategy 
considers local characterization essential for 
the postulation of acceptably robust 
conceptual hydrogeologic models for a site. 
 
Regional and site characterization data tend 
to represent a wide range of measurement 
scales, not all of which are compatible with 
the intended scale of hydrogeologic model 
resolution. The strategy promotes 
recognition of this important issue and an 
effort to render the scale of measurement 
compatible with the scale of model 
resolution. This can be done by either 
rescaling the data to fit the scale of model 
resolution (which often entails averaging or 
upscaling over computational grid cells) or 
adapting model resolution to fit the scale of 
measurement (which often entails adapting 
the size of grid cells to the size of the data 
support). Recent advances in scaling theory 
and practice are briefly reviewed to promote 
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awareness of fundamental issues associated 
with the scaling of hydrogeologic variables. 
 
The strategy encourages the analyst to 
associate model parameters, derived from 
regional and site characterization data, with 
statistical measures of their uncertainty. 
Such prior statistics provide the only way to 
assess model predictive uncertainty when 
suitable monitoring data are not available. 
Methods are discussed and an example 
given to derive such statistics from generic 
data sources on the basis of similarity in soil 
or rock textural features; to update these 
statistics on the basis of site-specific data 
using a Bayesian approach; and to 
interpolate, extrapolate and/or average 
parameters across the site geostatistically on 
the basis of measured values at discrete 
points in space. 
 
While hydrogeologic characterization of a 
site and its surroundings makes 
conceptualization possible, it does not 
provide the means to test conceptual models 
or compare them with other alternatives. For 
this, it is necessary to have monitoring data 
that constitute observations of actual 
hydrologic behavior at and around the site. 
Only with such data can one evaluate the 
ability of models to mimic real system 
behavior (qualitatively at the conceptual 
level, quantitatively at the conceptual-
mathematical level), improve their ability to 
do so through calibration against the 
monitoring data, determine their optimum 
degree of refinement or complexity, and 
compare them with each other (qualitatively 
and quantitatively). The strategy discusses 
ways to accomplish these tasks in the 
context of traditional deterministic 
groundwater flow and transport models. 
 
The strategy encourages the analyst to 
employ statistical measures of model 
performance (or fit between simulated and 

observed hydrologic behaviors) where 
possible; to determine feasible tradeoffs 
between model fit and complexity by relying 
on multiobjective approaches; and to rank 
models based on (a) statistical indicators of 
the quality of fit they produce (as obtained 
from an analysis of residuals), and (b) 
likelihood-based model discrimination 
criteria (which penalize models for using an 
excessive number of free parameters to 
achieve a given quality of fit). Models that 
show relatively poor fits and rank low on the 
list can be subjectively eliminated from 
further consideration at this stage. 
 
An important byproduct of model 
calibration is information about parameter 
uncertainty. When reliable and relevant (in 
terms of type and scale) prior statistics about 
the parameters are available from site 
characterization, the strategy encourages 
their use as input into the calibration 
process. Regardless of whether or not 
suitable prior statistics are available and 
employed for model calibration, the latter 
should produce posterior statistics for the 
optimum parameter estimates. The strategy 
considers the posterior parameter estimates, 
and their error statistics, more suitable for 
the analysis of model predictive uncertainty 
than the prior estimates and their statistics. 
This is so because calibration improves the 
ability of the model to reproduce simulated 
hydrologic behavior, and a calibrated model 
is therefore deemed more reliable and 
credible as a predictive tool than an 
uncalibrated model. The same holds true for 
the associated parameter estimation 
statistics. 
 
The strategy considers two alternative 
methods to assess the predictive uncertainty 
of a deterministic groundwater model under 
assumed future scenarios. The first method 
relies on Monte Carlo simulation of these 
scenarios using either prior or posterior 
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parameter estimates and statistics. The 
second method establishes approximate 
error bounds, or confidence limits, for such 
scenarios by linearization, using the same 
parameter estimates and statistics. The first 
approach is more accurate but costly in 
terms of computer time and effort. In both 
cases, the strategy favors the use of posterior 
estimates over that of priors on the 
understanding that the former are less biased 
and uncertain than the latter. 
 
To render optimum predictions by means of 
all calibrated models that have been retained 
as constituting potentially viable 
alternatives, and to assess their joint 
predictive uncertainty, the strategy relies on 
a newly developed Maximum Likelihood 
Bayesian Model Averaging approach, 
MLBMA. The final outcome is conditional 
on the choice of models and data. It 
accounts jointly for uncertainties in the 
conceptual-mathematical model structure 
and its parameters. 
 
If suitable monitoring data are not available, 
then there is neither an objective nor a 
quantitative basis for the comparison of 
potentially viable conceptual-mathematical 
models. To quantify the predictive 
uncertainty of each such model, one can 
either weigh all models equally or associate 
them with subjective weights based on the 
professional judgment of the analyst or a 
group of experts. 
 
To help evaluate what if any additional data 
might be worth collecting so as to materially 
reduce model uncertainty (by further 
constraining the range of alternative 
structures and parameters), the strategy 
suggests conducting a sensitivity analysis to 
indicate what system behavior appears to be 
most sensitive to which parameters at what 
locations. The next step is to consider 
performing additional site characterization 

where existing parameter estimates are least 
certain and the model is relatively 
insensitive to their values, and monitoring 
system behavior where it is most sensitive to 
model parameters while prediction errors 
appear to be relatively large and 
consequential. 
 
Calibration of a deterministic groundwater 
model yields effective parameter estimates, 
which compensate to some degree for lack 
of knowledge about variability on space-
time scales that are not resolved by the data 
or the model. This is less true for transport 
than for flow, because transport processes 
due to unresolved variations in permeability 
and porosity cannot be validly represented 
by traditional effective parameters (such as a 
constant dispersivity) except in special cases 
or as a crude approximation. The reliance on 
effective parameters is also less valid for 
strongly heterogeneous media with 
preferential flow paths such as some 
fractured rocks and soils that contain 
relatively large and elongated openings 
created by burrowing animals or plant roots. 
When the deterministic effective parameter 
approach fails, the most common and 
powerful alternative is to employ stochastic 
concepts and models. 
 
A stochastic approach to groundwater 
modeling requires that the spatial variability 
of input parameters, such as permeability 
and unsaturated soil properties, be 
characterized with the aid of geostatistical 
methods. A key component of geostatistical 
characterization is the assessment of spatial 
covariance structure (in terms of a 
covariance function or variogram). The 
strategy promotes this approach and the 
report illustrates it by examples. In the 
absence of site characterization data that are 
amenable to geostatistical analysis, one can 
treat the structural parameters (of the 
variogram or covariance function) as free 
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parameters to be estimated by model 
calibration. This too is illustrated by 
example in the report. 
 
The strategy supports two general 
approaches to predict stochastic 
groundwater flow and transport on the basis 
of geostatistical input: High-resolution 
numerical Monte Carlo simulation and 
direct (deterministic) prediction of mean 
behavior. The latter approach relies on 
stochastically derived deterministic 
ensemble mean flow and transport equations 
in which the dependent variables represent 
not actual system states (such as head, 
concentration or flux) but rather their 
(ensemble) mean values or statistical 
expectations. These mean or expected values 
represent optimum unbiased predictors of 
the unknown, actual system states. Similar 
values are obtained upon averaging the 
results of numerous Monte Carlo 
simulations. Both the Monte Carlo and the 
mean equation approaches allow the 

reduction of predictive uncertainty by 
conditioning the predictions on actual 
measurements of the input parameters at 
discrete locations in space. 
 
The variance-covariance of high-resolution 
(conditional) Monte Carlo simulations 
serves to quantify predictive uncertainty. An 
alternative is to compute this variance-
covariance directly (deterministically) by 
means of corresponding moment equations. 
Both options are supported by the strategy. 
 
Conditioning the stochastic flow and 
transport equations not only on measured 
input variables (derived from site 
characterization) but also on monitored 
system behavior tends to improve their 
reliability. This is accomplished through 
novel inverse procedures, which form part 
of the proposed strategy. 
In virtually all other respects, the strategy is 
the same for stochastic as for deterministic 
models of groundwater flow and transport.

 



xx 
 
 



xxi 
 
 

FOREWORD 
 
This technical report was prepared by 
researchers at the University of Arizona 
(UAZ) under a contract (NRC-04-97-056) 
with NRC’s Office of Nuclear Regulatory 
Research.  The research objective was to 
develop a methodology with supporting 
technical bases and guidance for selecting 
and evaluating appropriate ground-water 
flow and transport models for use in 
simulating performance of nuclear waste 
disposal facilities and possible remediation 
actions at decommissioning sites.  The 
technical focus was on identifying and 
quantifying sources of uncertainty in 
ground-water models as related to specific 
performance measures defined by NRC 
regulations and guidance.  These 
performance measures include well-
discharge concentrations, expected values or 
potential maximum values of point 
concentrations, and dose from drinking 
water.  The focus was not on computer code 
development, but rather on how to evaluate 
and compare ground-water models 
beginning with selection of alternative 
conceptual models and ending in 
performance assessment of the nuclear 
facility and site.  Use of this research to 
support regulatory decisions will contribute 
to the NRC Strategic Plan’s performance 
goal of making NRC activities and decisions 
more effective, efficient and realistic.  
 
This report provides a systematic strategy 
for evaluating site-specific ground-water 
models and their attendant uncertainties.  
Specifically the strategy identifies tools and 
analysis methods for interpreting hydrologic 
and environmental data important to 
formulating alternative conceptual models 
and in estimating their parameter values and 
modeling assumptions.  The report presents 
approaches for quantitative comparison and 

ranking of alternative models with field 
examples.  It also addresses fundamental 
questions related to assessing model 
predictive uncertainty.  Finally, the report 
considers important questions on model 
confirmation and assessment of data needs 
(e.g., when shall data collection end?).  
Many of these technical questions and the 
related narratives were developed through 
discussions between the UAZ researchers 
and the NRC licensing staff who are seeking 
ways to reduce the regulatory burden 
through more realistic modeling. 
 
This report serves as a technology transfer 
document to the NRC staff for their 
consultative use in reviewing ground-water 
models.  The implementation of the strategy 
and its research findings provide a 
framework for more realistic modeling.  
Earlier drafts of this report were used in 
training workshops presented at NRC 
Headquarters on August 14-15, 2001 and 
August 1-2, 2002.  The report was also 
circulated to cooperating federal agencies 
working under a Memorandum of 
Understanding on research into multi-media 
environmental models.  The report was peer-
reviewed by Pacific Northwest National 
Laboratory investigators who developed a 
companion hydrologic parameter 
uncertainty methodology. 
 
 
 
 
Cheryl A. Trottier, Chief 
Radiation Protection, Environmental Risk 

and Waste Management Branch 
Division of Systems Analysis and 

Regulatory Effectiveness 
Office of Nuclear Regulatory Research 
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1 INTRODUCTION 
 

1.1 Background 
 
This report describes a comprehensive 
strategy for constructing hydrogeologic flow 
and transport models and assessing their 
predictive uncertainty. The emphasis is on 
hydrogeologic conceptualization and its 
effect on the reliability of predictions 
relevant to decommissioning reviews and 
performance assessment (PA) of high-level 
(HLW) and low-level (LLW) radioactive 
waste disposal sites, as well as uranium 
recovery facilities.  
 
The strategy is the outcome of a study 
commissioned in 1997 by the U.S. Nuclear 
Regulatory Commission (NRC). Its purpose 
is to address a concern on the part of the 
NRC staff that conceptual models of site 
hydrogeology, and factors (physico-
chemical processes, parameters, forcing 
functions representing sources and 
initial/boundary conditions) which control 
subsurface flow and transport, constitute a 
major source of uncertainty in assessing the 
expected performance of such sites. The 
stated objective of the study was to develop 
a strategy, with supporting technical bases 
and guidance, for selecting and evaluating 
appropriate groundwater flow and transport 
models and assessing uncertainties of related 
performance measures. 
 
Some of the questions addressed in the 
report have been the subject of two round-
table discussions held at a Workshop on 
Ground-Water Modeling Related to Dose 
Assessments on June 23–24, 1999, at NRC 
Headquarters in Rockville, Maryland.  
The first round-table discussion, devoted to 
Conceptual Model Uncertainties, focused on 
the following questions: What is a 
conceptual model? Through what process of 
information gathering and analysis does one 

develop and identify a conceptual model? 
What are typical examples of conceptual 
models used in groundwater flow and 
contaminant transport analyses? How 
important are the assumptions dealing with 
parameter representation of heterogeneities, 
dimensionality and scaling factors? What 
role do conceptual models have in 
performance assessments? How does one 
identify alternative conceptual models for 
a specific site and specified performance 
measure(s)? How does one quantify 
differences in the competing conceptual 
models? Are these differences significant 
to the performance measure of interest 
(e.g., well-discharge concentrations, point 
concentrations of expected values or 
potential maximum values, drinking-water-
related dose? How does one quantify these 
performance-measure uncertainties for site 
specific hydrogeologic systems? How 
important is the issue of model confirmation 
for conceptual models?  
 
The second round-table discussion dealt 
with Parameter Uncertainties. It asked: 
How are conceptual model and parameter 
uncertainties related? What statistical 
methods are appropriate for evaluating 
parameter uncertainty? How can the 
following topics be handled in a parameter 
uncertainty strategy: (a) representation 
heterogeneities; (b) scaling of representative 
parameter values; (c) assumptions of 
dimensionality, transient versus steady state 
flow and transport, and initial and boundary 
conditions; and (d) model confirmation 
using specific examples such as the 
INTRAVAL Project test cases, the 
decommissioning reviews, and in situ leach 
uranium extraction license applications? 
What reasonable expectations can be met 
in quantifying parameter uncertainty in the 
next 2 years? 
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• 

• 

• 

The strategy described in this report 
addresses and answers many of the above 
questions. 
 
1.2 State-of-the-Art Summary 
 
1.2.1 Preliminary Assessment 
 
Prior to developing the strategy described in 
this report, a study was conducted to identify 
information needs and objectives for the 
evaluation of hydrogeologic flow and 
transport models relevant to the PA of HLW 
and LLW radioactive waste disposal sites, 
decommissioning reviews, and uranium 
recovery facilities. The study included an 
assessment of hydrogeologic issues common 
to performance analyses of nuclear facilities 
and sites; a review and summary of 
approaches currently used to identify 
conceptual, mathematical and computational 
frameworks for the hydrogeologic flow and 
transport modeling of such facilities and 
sites; a discussion of uncertainties that may 
arise in the context of such framework 
formulations; a review and summary of 
approaches currently used to assess these 
uncertainties; and a preliminary 
identification of ways to extend and/or 
modify existing approaches so as to achieve 
the objectives of the contract. The review 
included technical literature that focuses on 
relations among site characterization, 
monitoring and modeling strategies related 
to constructing and applying groundwater 
flow and transport models, and their 
application to site specific information and 
databases. 
 
 

1.2.2 Key Conclusions from Preliminary 
State-of-the-Art Assessment 
 
The preliminary state-of-the-art assessment 
led to the following interim conclusions: 
 
• Analyses of groundwater flow and 

transport typically rely on a single 
conceptual model of site hydrogeology. 
This exposes such analyses to Type I 
model errors, which arise when one 
rejects (in this case by omission) valid 
alternative models. 
Critiques of groundwater flow and 
transport analyses, and legal challenges 
to such analyses, typically focus on the 
validity of the underlying conceptual 
model. By adopting (not rejecting) an 
invalid conceptual framework, one 
commits a Type II model error. If 
exposed to be severe, it may damage 
one's professional credibility and result 
in the loss of a legal contest. 
Analyses of model uncertainty based on 
a single hydrogeologic concept are prone 
to statistical bias (by committing a Type 
II error through reliance on an invalid 
model) and underestimation of 
uncertainty (by committing a Type I 
error through under-sampling of the 
relevant model space). 
The bias and uncertainty that result from 
reliance on an inadequate conceptual 
model are typically much larger than 
those introduced through an inadequate 
choice of model parameter values. Yet 
most uncertainty analyses of flow and 
transport ignore the former and focus 
exclusively on the latter. This often leads 
to overconfidence in the predictive 
capabilities of the model, for which there 
is no justification. 
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• 

• 

• 

Each site is unique and there is no valid 
way to represent its hydrogeology by 
means of a generic conceptual model or 
set of parameters, regardless of purpose. 
Whereas simplicity may at times be 
desirable and justified, there is no 
guarantee that simple models of 
hydrogeology would necessarily yield 
conservative assessment of system 
performance; the opposite was found to 
be true in virtually all cases examined by 
the report. 
There is no established literature on 
ways to construct alternative conceptual 
models of site hydrogeology or methods 
to assess related uncertainties in 
groundwater flow and transport 
analyses. 

 
1.2.3 Uniqueness of Sites versus 

Non-Uniqueness of Models 
 
The idea that each site is unique and there is 
no valid way to represent its hydrology by 
means of a generic conceptual model or set 
of parameters has found eloquent support in 
a recent article be Beven (2000). According 
to him, 350 years of scientific hydrology 
have established some general hydrologic 
principles at all scales from single pore to 
continental river basins. Why then are 
hydrologic predictions, which are so 
important in water resources management 
and pollution control, so uncertain? Why 
does it appear so difficult to use our 
understanding, as embodied in the form of 
theories and models, in practice? The 
primary reason is that practicing 
hydrologists cannot deal in generalities but 
must deal with specific instances of sites 
that are unique in their characteristics over 
periods that are unique in their atmospheric 
and anthropogenic forcing. 
 

According to Beven, the latter has not been 
considered as a problem in the past. The 
attitude has been that if the modeling 
concepts were sufficiently accurate then it 
would be possible to represent the 
uniqueness of individual sites by specific 
values of model parameters. In principle this 
might be possible; in practice it proves to be 
untenable because of the impossibility of 
fully describing the system, and particularly 
the heterogeneity of its subsurface 
characteristics. 
 
In Beven's view, experience with predictive 
models in a wide variety of hydrological 
contexts suggests that, given the data 
available in even intensively studied 
locations, there is generally a very wide 
range of models and parameter sets within 
models that will yield acceptable 
simulations. Beven and Freer (2001) have 
attributed to Hornberger and Speer (1981) 
the notion that this is not simply a problem 
of identifying a correct or optimal model 
given limited data. Beven (1993) has called 
this the equifinality problem to stress that 
this is a generic problem in modeling 
complex hydrologic systems, and not simply 
a problem of identifying the "true" model 
structure or parameter set. According to 
Beven (2000), the equifinality problem 
arises from the limitations of current model 
structures in representing heterogeneous 
surface and subsurface flow systems, from 
limitations of measurement techniques and 
scales in defining system characteristics and 
the initial and boundary conditions for a 
model, and from the uniqueness of 
individual sites. 
 
Beven (2000) opines that in recent years 
there has been a move towards more and 
more detailed studies of flow in rivers, soils 
and aquifers, using more and more 
sophisticated instrumentation. The result has 
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generally been to demonstrate complexity of 
flow pathways, due to heterogeneity on 
different scales and interactions between the 
geometry of the flow domain and the 
prevailing hydraulic gradients and flow 
pathways (including both "dead zones" and 
"preferential" flows). It has proven difficult 
to use such information in applications of 
predictive models which are generally 
required to be used at scales larger than the 
detailed measurements. 
 
The problem is much less one of 
understanding than of uniqueness of place. It 
is not so much that the complexity of the 
measurements is not accessible to adequate 
interpretation (or even in some cases to 
being adequately modeled). The problem is 
that the measurements are specific to the 
study site with little or no guarantee that 
they can be considered representative even 
of sites that are hydrologically similar (in 
climate, physiography, ecology and 
geology). But to do detailed measurements 
throughout an area of interest is both 
impractical and unfeasibly expensive. The 
unique characteristics of a site of interest are 
therefore inherently unknowable. All that 
can be done is to constrain the model 
representations of the site to those that are 
acceptably realistic, usually in the sense of 
being consistent with the data. 
 
Given limited measurements on a 
hydrologic system, a uniquely correct model 
would not be identifiable even if one had a 
perfect model available. The current 
generation of model structures, while useful, 
may not be sufficiently accurate 
representations of the complexities of the 
flow pathways that are easy to perceive and 
understand but difficult to represent in 
mathematical form without making grossly 
simplifying assumptions. This implies that 
there may also then be many different model 

structures that might be consistent with the 
available observational data. Likewise, it 
will always be impossible to have sufficient 
information to identify a uniquely correct set 
of model parameters for any given model 
structure. We should therefore expect 
equifinality of model structures and 
parameter sets in the representation of 
unique places and hydrologic systems. 
 
In Beven’s view, existing models are useful 
only because of a form of circular reasoning 
called model calibration. Hydrologists are 
prepared to accept that a model is adequate 
if it gives reasonable predictions of the 
available observations. Because of 
uniqueness of place, one does not expect 
that a model will provide reasonable 
predictions with only a priori estimates of 
parameter values (why should it?). Some 
form of calibration is therefore necessary. 
Such models may be more useful in 
allowing a decision to be made than in 
providing accurate predictions. 
 
1.2.4 Desired Level of Model Complexity 
 
The degree of complexity that a 
groundwater model should incorporate was 
the subject of a special session, 
"Groundwater models: How much 
complexity is warranted?" at the 1998 
Spring Meeting of the American 
Geophysical Union (Hunt and Zheng, 1999). 
The central questions addressed at the 
session were: We know that the natural 
world is characterized by complex and 
interrelated processes. Yet do we need to 
explicitly incorporate these intricacies and to 
perform the tasks we are charged with? In 
this era of expanding computer power and 
development of sophisticated preprocessors 
and postprocessors, are bigger and better 
machines making better models? 
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A common concern expressed at the special 
AGU session was that the extensive data 
required to construct a complex groundwater 
model may result in less time spent 
understanding the system and more time 
spent constructing and managing data input 
and output. It was suggested that careful 
quality assurance and quality control are 
required when the input data are large, and 
that peer review of modeling and data 
acquisition activities may be important in 
the regulatory context. On one hand, the 
opinion was voiced that contaminant 
transport models do not necessarily enjoy 
greater success as predictive tools with the 
inclusion of increasing levels of complexity; 
one should take models for what they are, 
namely, powerful heuristic tools with 
limited predictive capabilities. On the other 
hand, it was recognized that to capture 
certain flow and transport phenomena, 
models of appropriate complexity may be 
required. The degree of complexity should 
thus be in part a function of its intended use. 
Fractal scaling and stochastic methods were 
recognized as capable of capturing flow and 
transport behaviors in complex 
hydrogeologic systems by means of 
relatively simple models. 
 
1.2.5 Traditional Approach to Model 

Uncertainty Analysis 
 
The traditional approach to hydrologic 
model uncertainty analysis has been to 
postulate a deterministic model structure and 
treat its parameters as being imperfectly 
known. To quantify this imperfect 
knowledge, one must postulate a prior 
parameter uncertainty model. 
 
In cases where a statistically significant set 
of measured, site specific parameter values 
is available, one could postulate a Type A 
probabilistic model of prior parameter 

uncertainty based on statistics derived from 
these data. Ideally, the data would include 
measurements of the parameters proper on 
spatial and temporal scales compatible with 
the scale of resolution to be adopted in the 
intended model. The data would also include 
probabilistic information about errors of 
measurement and test interpretation that 
suffer from a known amount (ideally zero) 
of statistical bias. 
 
In cases where no such data are available in 
statistically significant quantities, one has 
the option of postulating a Type B model of 
prior parameter uncertainty on the basis of 
subjective probabilities. Such a model 
should always be suspected of suffering 
from an unknown amount of statistical and 
personal bias. Statistical bias is introduced 
due to lack of site specific information about 
mean values of the parameters in question. 
A personal bias tends to manifest itself in 
the form of assigned uncertainty measures 
(most importantly bias and error variance) 
that are either too small or too large. The 
first is a manifestation of over-confidence in 
the model parameters, the second of unduly 
low confidence in their values. 
 
Intermediate between Type A and Type B 
parameter uncertainty models is the case 
where indirect information about the 
parameters is available, from which relevant 
prior statistics can be derived formally. Such 
information may include (a) off-site 
measurements of the parameters proper 
(quite often on scales other than those 
corresponding to the intended scale of model 
resolution) and/or (b) surrogate 
measurements on site that are known to 
correlate with the parameters of interest (for 
example, porosities or geophysical 
signatures that correlate in known ways with 
permeabilities, water contents or fracture 
densities). Statistics derived from off-site 
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data must be considered potentially biased 
(due to a lack of site-specific information 
about mean parameter values and 
incompatibility of geology and scale). The 
associated variance may be too small or too 
large, depending on the quantity and quality 
of such data. Statistics derived from 
surrogate data may suffer from poorly 
defined correlations and incompatibility of 
scale. 
 
The traditional approach to reduce 
parameter bias and uncertainty has been to 
calibrate the model against monitored 
observations of hydrologic system behavior. 
The process is also known as parameter 
identification or estimation, inverse solution 
or history matching. Its goal is to render the 
model compatible with available monitoring 
data and thereby increase the chance that it 
would provide reliable predictions of 
hydrologic behavior in the future. 
 
The last thirty years have seen major 
advances in the development of theories and 
algorithms for the estimation of 
deterministic model parameters. Many 
(though not all) of these theories and 
algorithms are "statistical" in that they 
include analyses of parameter estimation 
uncertainty. Such analyses typically accept, 
but do not necessarily require, information 
about prior parameter statistics as input. The 
output includes posterior statistics of 
parameter estimation errors, which are 
generally less biased and smaller than the 
prior estimation errors.  A recent summary 
and comparison of various statistical inverse 
methods for groundwater flow models has 
been published by Zimmerman et al. (1998). 
Public domain or commercially available 
inverse codes include those developed by 
Poeter and Hill (1998), Doherty et al. 
(1994), Finsterle (1999a-c) and Simunek et 
al. (1999). A detailed set of guidelines for 

the effective calibration of deterministic 
groundwater flow models has been prepared 
by Hill (1998).  
Bias and uncertainty in model parameters 
translate into bias and uncertainty in 
hydrologic model predictions. To assess the 
latter a priori, it is necessary to "propagate" 
the former through the model under assumed 
future scenarios. This is in contrast to a 
posteriori assessment on the basis of so-
called post audits, in which the model 
predictions are compared with monitored 
future behavior of the hydrologic system. If 
the post facto comparison is deemed 
successful, the model is considered 
"confirmed" or "validated" with reference to 
the available monitoring data. 
 
The most common way to propagate input 
errors through an otherwise deterministic 
model is by means of Monte Carlo 
simulations. This is done by generating 
multiple, equally likely sets of randomized 
inputs; computing deterministically a set of 
corresponding model outputs for each; and 
analyzing the resultant multiple, equally 
likely random output sets statistically. This 
approach is common in the performance 
assessment of nuclear facilities and sites, in 
which prior input statistics of Type B are 
often used due to insufficiency of site 
specific parameter and monitoring data. 
Another approach is to associate the model 
predictions with approximate error bounds, 
or confidence limits, computed on the basis 
of linear regression theory applied to the 
(typically nonlinear) groundwater inverse 
model (Poeter and Hill, 1998; Hill, 1998). 
 
1.2.6 Accounting for Conceptual Model 

Uncertainty 
 
Carrera and Neuman (1986a-b) and Samper 
and Neuman (1989a-b) have noted that an 
inadequate model structure 
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(conceptualization) is far more detrimental 
to its predictive ability than is a suboptimal 
set of model parameters. This helps explain 
why the National Research Council (2000), 
in a recent study of Research Needs in 
Subsurface Science for the Environmental 
Management Program of the U.S. 
Department of Energy, has listed as second 
among four recommended research 
emphases the development of tools and 
methodologies for conceptual modeling with 
emphasis on heterogeneity, scale and 
uncertainty bounds on the basis of field 
experimental data. 
 
Recently, a panel was convened by the 
National Research Council (2001) to 
describe the process through which 
conceptual models of flow and transport in 
the fractured vadose zone are developed, 
tested, refined and reviewed. The panel 
concluded that development of the 
conceptual model is the most important part 
of the modeling process. The conceptual 
model is the foundation of the quantitative 
mathematical representation of the field site 
(i.e., the mathematical model), which in turn 
is the basis for the computer code used for 
simulation. Reasonable alternative 
conceptualizations and hypotheses should be 
developed and evaluated. In some cases, the 
early part of a study might involve multiple 
conceptual models until alternatives are 
eliminated by field results. 
 
According to the panel, it is important to 
recognize that model predictions require 
assumptions about future events or 
scenarios, and are subject to uncertainty. 
Meaningful quantification of uncertainty 
should be considered an integral part of any 
modeling endeavor, as it establishes 
confidence bands on predictions given the 
current state of knowledge about the system. 
A suite of predictions for a range of different 

assumptions and future scenarios is more 
useful than a single prediction. 
 
In fact, we have seen earlier that hydrologic 
models are prone to equifinality (Beven, 
2000) in both their structures and parameter 
sets. This means that there is uncertainty not 
only about the parameter values that should 
enter into a given model (as characterized by 
its structure), but also about the very 
structure (conceptual and mathematical) of 
the model that should represent the 
hydrologic system of interest. The 
traditional approach to model uncertainty 
analysis, which considers only a single 
deterministic model structure, fails to 
adequately sample the complete space of 
plausible hydrologic models. As such, it is 
prone to modeling bias and underestimation 
of model uncertainty. 
 
An example of how one could account 
quantitatively for structural model 
uncertainties was given by James and 
Oldenburg (1997). They investigated the 
uncertainty of simulated TCE 
concentrations, at the point of potential 
human exposure, due to uncertainty in the 
parameters (permeability, porosity, 
diffusivity, solubility, adsorption) and 
variations in the conceptual-mathematical 
model (injection rate of TCE source; initial 
TCE source saturation; regional 
groundwater flow; heterogeneity of 
permeability). The authors used the three-
dimensional code T2VOC to simulate three-
phase (gas, aqueous, NAPL), three-
component (air, water, VOC) nonisothermal 
flow based on an actual site with a 25 m 
thick vadose zone and a saturated zone. To 
assess parameter uncertainty associated with 
a given model, they used the inverse code 
ITOUGH2. Their final step was to assess the 
range of outcomes that one obtains with the 
entire set of alternative conceptual-
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mathematical models. James and Oldenburg 
found that uncertainties in their model 
outcomes span orders of magnitude, and that 
both parameter and model uncertainty 
contribute significantly to this wide range of 
outcomes. They concluded that "risk 
assessment and remediation selection ... is 
meaningful only if analysis includes 
quantitative estimates of ... uncertainty" in 
both the parameters and the conceptual-
mathematical models. 
 
A similar approach has been advocated more 
recently by Samper and Molinero (2000). 
The authors consider the main uncertainties 
in predicting groundwater flow and transport 
to be those associated with the selection of 
future scenarios, choice of model structure 
and assignment of model parameters. The 
authors consider parameter uncertainty to be 
minor in comparison to structural (i.e. 
conceptual) model errors. They suggest to 
evaluate model predictive uncertainty by 
calibrating a number of conceptual-
mathematical models against available 
monitoring data, to retain those calibrated 
models that can adequately reproduce past 
observations, to assess the predictive 
uncertainty of each model due to the 
uncertainty of its parameters, to treat the 
predictive uncertainty of each model as 
being equally likely, and to produce a single 
combined range of predictive uncertainties. 
 
Rather than relying on model calibration and 
treating the outcomes of different structural 
models as being equally likely, Beven and 
Binley (1992) have proposed a strategy to 
which they refer as GLUE (Generalized 
Likelihood Uncertainty Estimation). The 
strategy calls for the identification of several 
alternative structural models and the 
postulation of a prior probabilistic model of 
parameter uncertainty for each. Each 
structural model, coupled with its 

corresponding parameter uncertainty model, 
is used to generate Monte Carlo realizations 
of past hydrologic behaviors and to compare 
the results with monitored system behavior 
during the same period. Likelihood 
measures are defined to gauge the degree of 
correspondence between each simulated and 
observed record of system behavior. If a 
likelihood measure falls below a 
subjectively defined "rejection criterion," 
the corresponding combination of model 
structure and parameter set are discarded. 
Those combinations which pass this test are 
retained to provide predictions of system 
behavior under selected future scenarios. 
Each prediction is weighted by a 
corresponding normalized likelihood 
measure (so as to render the sum of all 
likelihood measures equal to one), to 
produce a likelihood-weighted cumulative 
distribution of all available predictions. 
 
As of 1992, the GLUE strategy has been 
applied to a variety of hydrologic problems 
including rainfall-runoff modeling, solute 
transport in rivers and groundwater, flood 
frequency and flood inundation analyses, 
critical load modeling, nitrogen budget 
calculations and the analysis of distributed 
land surface to atmosphere vapor and heat 
fluxes. For recent discussions of GLUE and 
its applications the reader is referred to 
Beven (2000) and Beven and Freer (2001). 
 
A Bayesian approach to the quantification of 
errors in a single groundwater model was 
recently proposed by Gaganis and Smith 
(2001). Like GLUE, it relies on Monte Carlo 
simulations without model calibration and 
on subjective criteria of “model 
correctness.”  
 
It must be understood that the set of 
predictions one produces with any given 
choice of alternative structural models and 
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parameter sets, by whatever method, is 
conditional on the choice of models and the 
data used to support them. As such, these 
predictions do not represent all possibilities 
but only a limited range of such possibilities, 
associated with these models and data. Any 
change in the latter would generally lead to a 
different assessment of predictive model 
uncertainty. There thus appears to be no way 
to assess the uncertainty of hydrologic 
predictions in an absolute sense, only in a 
conditional or relative sense. 
 
1.2.7 Multiobjective Tradeoffs between 

Model Fit and Complexity 
 
The National Research Council (2001) panel 
on conceptual models of flow and transport 
in the fractured vadose zone noted that a 
conceptual model is by necessity a 
simplification of the real system. However, 
the degree of simplification must be 
commensurate with the problem being 
addressed. Yet neither the panel nor the 
broader literature offer any systematic 
guidelines about how to determine the 
optimum degree of model simplification for 
a given purpose. 
 
One important measure of model complexity 
is the number of free parameters (degrees of 
freedom) that it contains. This is the number 
of parameters that are free to be adjusted 
during calibration so as to achieve an 
optimum model fit with monitored system 
behavior. A model with a given set of free 
parameters, which describe a spatially 
varying quantity such as permeability or 
porosity, might be more or less complex 
depending on their mode and degree of 
variation in space. Several such measures of 
complexity have been introduced by 
Emsellem and de Marsily (1971), Neuman 
(1973), Distefano and Rath (1975) and 
Neuman and De Marsily (1976). 

The approach taken by these authors was to 
calibrate a series of hydrologic models with 
gradually increasing degrees of model 
complexity. Each calibration yields a 
measure of model fit that corresponds to a 
particular measure of model complexity. By 
plotting the measure of fit versus the 
measure of complexity, one usually finds the 
former to improve (decrease) as the model 
becomes more complex. The improvement 
is rapid when the model is relatively simple 
and slow when the model is relatively 
complex. Clearly, the standard hydrologic 
objectives of achieving a good fit between 
simulated and observed system behavior, 
and keeping the model simple, are in 
conflict. Instead of one optimum solution to 
this multiobjective or Pareto optimization 
problem, there is a range of feasible (or 
Pareto) solutions among which one must 
choose the optimum tradeoff subjectively 
(Neuman, 1973). The optimum tradeoff is 
achieved at a point beyond which any 
further increase in model complexity would 
bring about only a relatively insignificant 
improvement in model fit. A similar idea has 
been espoused more recently by Sun and 
Yeh (1985) and summarized by Sun (1994) 
in a book on Inverse Problems in 
Groundwater Modeling. 
 
It is possible to postulate multiple, non-
commensurate model fit criteria (Gupta et 
al., 1998) and model complexity measures 
(Neuman, 1973) within a multiobjective 
framework. Typically, models lack the 
ability to simulate all relevant aspects of 
hydrologic behavior with an equal degree of 
fidelity. For example, a subsurface transport 
model may not be able to simulate 
accurately observed contaminant 
concentration versus time records at several 
monitoring locations simultaneously without 
becoming overly complex and cumbersome. 
Or the model may be unable to reproduce 
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equally well the peak arrival time, 
magnitude, rate of ascent and rate of 
recession of a contaminant breakthrough 
record. One then has the option of defining 
multiple criteria of model fit, each 
representing a different aspect of desired 
model performance. Multiobjective 
programming techniques are available (e.g., 
Duckstein et al., 1991) that should then 
make it possible for the modeler to 
investigate the range of feasible solutions to 
the problem and solve it by determining 
(subjectively) an acceptable tradeoff 
between all of its conflicting and 
incommensurate objectives. A 
computationally efficient and 
mathematically rigorous method to generate 
binary graphs of tradeoff between each pair 
of conflicting objectives, and to determine 
an optimum tradeoff between all of them 
interactively, was developed by Neuman and 
Krzystofowicz (1977). 
 
1.2.8 Combined Measures of Model Fit 

and Complexity 
 
Several combined measures of model fit and 
complexity have been developed in the 
context of time series analysis by Akaike 
(1974, 1977), Hannan (1980) and Kashyap 
(1982). In recent years, such measures have 
been used with increasing frequency to rank 
and discriminate between alternative 
geostatistical (Samper and Neuman, 1989a-
b; Chen et al., 2000) and dynamic (Carrera 
and Neuman, 1986a-b; Finsterle and 
Faybishenko, 1999) groundwater models. 
The model discrimination criteria combine a 
log-likelihood function, which gauges the 
quality of model fit to monitoring data, with 
a term proportional to the number of free 
model parameters. By ranking the models in 
ascending order of their associated 
discrimination criteria, one favors the least 
complex among those that perform equally 

well in terms of model fit. Among models of 
equal complexity, those that fit the 
monitoring data better are favored. 
 
The model discrimination criterion of 
Kashyap contains yet another term that 
gauges the information content of the 
available data. It thus allows considering 
models of growing complexity as the data 
base improves in quantity and quality. 
Stated otherwise, the criterion recognizes 
that when the data base is limited and/or of 
poor quality, one has little justification for 
selecting an elaborate model with numerous 
parameters. Instead, one should then prefer a 
simpler model with fewer parameters, which 
nevertheless reflects adequately the 
underlying hydrogeologic structure of the 
system, and the corresponding flow and 
transport regime. Kashyap's criterion favors 
that model which, among all alternatives 
considered, is least probable (or likely, in an 
average sense) to be incorrect. Stated 
otherwise, the criterion minimizes the 
average probability of selecting the wrong 
model among a set of alternatives. 
 
1.2.9 Effects of Scale on Hydrologic 

Predictability 
 
In September 2000, a workshop entitled 
Predictability and Limits to Prediction in 
Hydrologic Systems was held at the 
National Center for Atmospheric Research 
in Boulder, Colorado, under the auspices of 
the National Research Council. The 
workshop concluded that (Entekhabi, 2000) 
hydrologic systems contain heterogeneous 
geological, topographic, and ecological 
features that vary on multiple scales. This 
multiplicity of scales has a pervasive effect 
on hydrologic characterization and 
prediction. In general, the effective response 
of systems at larger scales is not completely 
determined by scaling local processes. 
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In hydrologic science, heterogeneity is a rule 
and it cannot necessarily be fully captured 
by randomization of parameters (essentially 
an after-thought). Interactions among micro-
scale features often lead to effects that are 
not completely represented in macro-scale 
predictions based on effective parameters 
for micro-scale models.   
Examples include enhanced surface flux due 
to land-breeze circulations over 
heterogeneous patches, regional recharge 
and discharge patterns over complex terrain. 
There are processes and conditions when the 
effective parameter approach to scaling may 
be feasible. In the remaining circumstances, 
the macro-scale and micro-scale predictive 
relations for hydrologic processes may have 
different functional forms and dependencies. 
Furthermore, there may be organizing 
principles at work that result in simple 
procedures for statistically relating variables 
across a wide range of scales in the 
hydrologic system. We add that such 
principles have been noted and procedures 
developed (with applications to the 
permeability and dispersivity of geologic 
media) by Neuman (1990, 1994), Di 
Federico and Neuman (1997; see also 
Neuman and Di Federico, 1998) and Di 
Federico et al. (1999). 
 
According to Entekhabi (2000), it has been 
traditional to assume that spatially and 
temporally averaged hydrologic quantities 
are less prone to predictive uncertainty than 
quantities that are localized in space-time. 
While this may be true for systems that are 
statistically homogeneous and stationary, 
such systems are the exception rather than 
the rule. Spatial and temporal averages are 
not necessarily more predictable as 
traditionally believed if the averaging covers 
a scale that contains a strong transition or 
change in behavior (analogous to bifurcation 
in nonlinear dynamic systems). 

1.2.10 Prediction Uncertainty Due to 
Random Fluctuations in 
Hydrologic Variables 

 
Hydrogeologic environments consist of 
natural soils and rocks that exhibit both 
systematic and random spatial variations in 
hydraulic and transport properties on a 
multiplicity of scales. Groundwater flow and 
solute transport take place under the action 
of forces whose exact nature, magnitude and 
space-time distribution are generally 
uncertain. Traditional deterministic methods 
of analyses capture at best the larger-scale, 
systematic components of these variations 
and distributions. They however fail to 
resolve smaller scale variations or account 
for their uncertain nature. Yet capturing 
hydrologic complexity on a wide range of 
scales, and quantifying the associated 
uncertainty, is proving to be of paramount 
importance for a wide array of applications 
such as the characterization and remediation 
of contaminated sites, risk analysis and 
monitoring design for sites subject to 
potential future contamination, and 
performance assessment of nuclear facilities 
and sites. 
 
A recent study of groundwater and soil 
cleanup by the National Research Council 
(1999) recognizes that the subsurface is 
usually highly heterogeneous and 
characterizing this variability is extremely 
difficult. This heterogeneity and difficulty in 
characterization complicate the design of 
subsurface cleanup systems because 
predicting system performance under such 
uncertain conditions is difficult. An accurate 
knowledge of geological heterogeneities is 
vital for evaluating the hydrogeologic limits 
on subsurface contaminant remediation. 
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In a recent editorial titled "It's the 
Heterogeneity!", the Editor of the most 
widely read groundwater journal (Wood, 
2000) opines that the natural system is so 
complex that it will be many years before 
one can effectively deal with heterogeneity 
on societally important scales.  
 
The complex nature of the subsurface and of 
the conditions that control groundwater flow 
and transport within it throw into question 
the reliability of traditional deterministic 
methods of hydrogeologic analysis. The 
emphasis is therefore shifting from 
deterministic to probabilistic methods that 
are better suited for these needs. The trend 
has become to describe the spatial variability 
and scaling of hydrogeologic medium 
properties geostatistically, and to analyze 
subsurface fluid flow and solute transport 
stochastically. This trend has been 
documented in a number of recent books 
including those by Dagan and Neuman 
(1997) and Zhang (2001). 
 
The most common method of stochastic 
analysis is high-resolution computational 
Monte Carlo simulation that produces a 
large number of equally likely results. These 
nonunique results are summarized in terms 
of statistically averaged quantities, their 
variance-covariance, and perhaps higher 
moments of the corresponding sample 
probability distributions. Results that honor 
measured values of medium properties are 
said to be conditioned on these data. Upon 
conditioning the simulations on measured 
values of parameters in space, one obtains 
(among others) conditional mean flow and 
transport variables that constitute optimum 
unbiased predictors of these unknown 
random quantities. One also obtains 
conditional second moments (variance-
covariance) that provide a measure of the 
associated prediction errors. To condition 

the predictions on system monitoring data, 
one must either discard random simulations 
that do not reproduce the observations, or 
employ an inverse procedure of the kind 
developed for this purpose by Sahuiquillo et 
al. (1992), G\mez-Hern<ndez et al. (1997; 
2000) and Capilla et al. (1997). 
 
Monte Carlo analysis requires knowing the 
multivariate probability distribution of 
relevant hydrogeologic properties, which is 
difficult to infer from commonly available 
data. To achieve a high space-time 
resolution of relevant stochastic phenomena, 
it requires the use of large space-time grids 
with very small discretization intervals. To 
yield sample statistics that converge to their 
theoretical (ensemble) counterparts requires 
numerous repetitions (realizations). The net 
result is a large amount of computational 
time and storage, which are considered 
uneconomical for many practical 
applications.  
 
This has given impetus to the development 
of alternative stochastic methods that allow 
one to compute the conditional mean, 
variance and covariance of groundwater 
flow and transport variables directly, 
without Monte Carlo simulation. This is 
done on the basis of conditional moment 
equations that may be nonlocal (integro-
differential) and contain parameters that 
depend on more than one point in space 
and/or time. Conditioning additionally 
renders the parameters of such equations 
dependent not only on medium properties 
but also on the information that one has 
about these properties (scale, location, 
quantity and quality of data). Hence the 
parameters of conditional moment equations 
are nonunique. Exact conditional moment 
equations have been developed for steady 
state (Neuman and Orr, 1993; Neuman et 
al., 1996) and transient (Tartakovsky and 
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Neuman, 1998, 1999) groundwater flow in 
saturated porous media, steady state flow in 
a certain class of unsaturated soils 
(Tartakovsky et al., 1999; Lu et al., 2002), 
and advective (Neuman, 1993) or advective-
dispersive (Zhang and Neuman, 1996) 
transport of a nonreactive solute. 
 
Though the underlying stochastic flow and 
transport regimes are taken to obey Darcy's 
law and Fick's analogy, these relations are 
generally not obeyed by the conditional 
mean flow and transport regimes except in 
special cases or as localized approximations. 
Such localized approximations yield 
familiar-looking differential equations 
which, however, acquire a non-traditional 
meaning in that their parameters (hydraulic 
conductivity, seepage velocity, dispersivity) 
and state variables (hydraulic head, 
concentration, fluid and solute fluxes) are 
information-dependent and thus nonunique 
(Guadagnini and Neuman, 1999a-b, 2001; 
Ye et al., 2002). Whereas nonlocal moment 
equations contain information about 
predictive uncertainty, localized 
(differential) equations generally do not. 
 
To render conditional moment equations 
workable, one must adopt some form of 
closure approximation, such as perturbation 
(Guadagnini and Neuman, 1999a-b, 2001; 
Ye et al., 2002; Lu et al., 2002) or an 
assumption of Gaussianity (Neuman et al., 
1999; Amir and Neuman, 2001; Wang et al., 
2002). Though perturbative closure 
approximations are not guaranteed to work 
for strongly heterogeneous media, they have 
proven to work remarkably well in two-
dimensional finite element analyses of 
superimposed mean uniform and convergent 
steady state (Guadagnini and Neuman, 
1999a-b) and transient (Ye et al., 2002) 
flows in saturated porous media and steady-
state flow in unsaturated media (Lu et al., 2002). 

In the aforementioned moment analyses, 
conditioning was limited to prior 
measurements of parameters (mainly 
permeability) at discrete points in space. To 
condition the predictions on state variables 
such as hydraulic head and concentration, it 
is necessary to develop corresponding 
inverse algorithms of the kind recently 
described by Hernandez et al. (2002). 
 
1.3  Outline of Proposed Strategy 
 
1.3.1  Comprehensive Approach to 

Modeling and Uncertainty Analysis 
 
This report describes a strategy that 
embodies a systematic and comprehensive 
approach to hydrogeologic 
conceptualization, model development and 
predictive uncertainty analysis. The strategy 
is comprehensive in that considers all stages 
of model building and accounts jointly for 
uncertainties that arise at each of them. The 
stages include regional and site 
characterization, hydrogeologic 
conceptualization, development of 
conceptual-mathematical model structure, 
parameter estimation on the basis of 
monitored system behavior, and assessment 
of predictive uncertainty. In addition to 
parameter uncertainty, the strategy concerns 
itself with uncertainties arising from 
incomplete definitions of (a) the conceptual 
framework that determines model structure, 
(b) spatial and temporal variations in 
hydrologic variables that are either not fully 
captured by the available data or not fully 
resolved by the model, and (c) the scaling 
behavior of hydrogeologic variables. 
 
The strategy addresses these issues within a 
unified and coherent theoretical framework. 
It does so by relying on both traditional and 
nontraditional ideas and techniques. Some 
nontraditional ideas and techniques are 
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taken from the recent literature and some are 
entirely new. Most are amenable to 
immediate implementation with the aid of 
existing software. Though there is at present 
no publicly available software for the 
solution of stochastic flow and transport 
problems by means of the moment equation 
method (which is part of the strategy), such 
software is expected to become available 
within a few years. In the meantime, such 
problems can be tackled effectively with 
existing software by means of the Monte 
Carlo option provided in the strategy. 
 
1.3.2  NRC Licensing Context 
  
The strategy is generic but designed to be of 
practical use to NRC staff in their review of 
decommissioning plans, and performance 
assessment of high-level and low-level 
radioactive waste disposal sites as well as 
uranium recovery facilities. For this 
purpose, the strategy is cast in the context of 
a framework that is useful to NRC staff 
review and performance evaluation needs. 
The regulatory context is defined in terms of 
corresponding performance measures (as 
identified by the NRC staff in Appendix A), 
hydrogeologic analyses that are needed to 
assess them, the desired reliability of such 
assessments, and the expenditure (in time, 
effort and money) that is allowed to achieve 
it. Examples from various case studies are 
included to help illustrate some aspects of 
these analyses. 
 
An important component of the strategy is a 
systematic sequence of logical questions, 
guidelines and criteria with analytical 
methods that may be useful to the NRC staff 
in their review and performance evaluation. 
Though the contract does not call for the 
development or demonstration of practical 
data processing and modeling tools or 
software, such tools and software are 

identified where possible. To the extent 
feasible, the strategy is supported by field 
experimental data that cover a range of 
technical problems facing the NRC staff. 
 
1.3.3  Hydrogeologic Conceptualization 

and Data 
 
The strategy encourages exploration of 
varied conceptual frameworks and 
assumptions at all stages of hydrogeologic 
model development through a 
comprehensive evaluation of a broad range 
of regional and site data, their translation 
into coherent and internally consistent 
conceptual-mathematical models, and 
computation and visualization based on 
these data and models. Included among 
these frameworks and assumptions are 
various model simplification and abstraction 
schemes. The strategy recognizes that site 
characterization and monitoring data are 
expensive and difficult to collect, leading to 
a ubiquitous scarcity of hard site 
information. It is therefore critically 
important to assess the role that such data 
play in rendering the hydrogeologic 
performance analysis credible. The strategy 
stresses the role of characterization and 
monitoring data in helping one identify and 
test alternative conceptual models, make 
rational choices among them, gauge and 
reduce model bias and uncertainty through 
proper model selection and calibration, 
render and assess the reliability of model 
predictions, and confirm the assessment 
through independent peer review as well as 
at least some degree of direct verification. 
 
1.3.4  Iterative Approach 
 
The strategy encourages an iterative 
approach to modeling, whereby a 
preliminary conceptual-mathematical model 
is gradually altered and refined until one or 



 

15 
 
 

more likely alternatives have been identified 
and analyzed. The idea is to start with a 
conceptual-mathematical model that is as 
simple as may appear warranted by the 
context of the problem and the available 
data. This model is then tested for 
qualitative consistency with the available 
data, made quantitatively compatible with 
the data through calibration, and subjected 
to an assessment of its predictive reliability 
(in terms of potential bias and uncertainty). 
Next, the model structure is altered and/or 
refined (by modifying its hydrogeologic 
makeup or features; dimensionality; scale of 
resolution in space-time; type of driving 
forces or events including sources, initial 
and boundary conditions; and governing 
equations or processes), the model is 
retested and compared with the former. 
The iterative procedure is repeated till there 
is good reason to conclude that any 
additional alterations or refinements of the 
models would lead at best to minor 
improvements in their predictive capability. 
Models whose predictive capability is 
deemed low in comparison to other are 
discarded and the rest retained for further 
analysis. The retained models are used to 
render a joint prediction. The corresponding 
prediction error is quantified by means of a 
joint variance. If the joint prediction and 
associated error variance are deemed 
acceptable for the stated purpose of the 
analysis, the iterative process is halted and 
the models declared reliable and credible 
within a clearly stated conditional (on the 
available information and selected set of 
models) margin of error. The conditional 
nature of this error estimate is taken to imply 
that it constitutes a lower bound, and that the 
actual predictive error may (and most 
probably is) larger to an unknown degree. 
 

If the models are deemed unacceptable, a 
sensitivity analysis is performed to help 
identify the type and quantity of additional 
site data that might materially enhance their 
reliability and credibility. A decision is then 
made, based on the potential benefit (in 
terms of bias and uncertainty reduction) and 
cost (in terms of time, effort and money) of 
such data, whether or not to collect them and 
how. If and when new data of significant 
weight are obtained, the iterative process is 
repeated till its cost-benefit ratio reaches a 
value that is not considered worth 
exceeding. 
 
1.3.5  When to Stop Collecting Data and 

Refining the Model? 
 
It is worth repeating that the questions (1) 
what degree of model refinement is enough 
for a given regulatory purpose, and (2) how 
much and what kind of data are enough for 
the task, are recast here in terms of 
economic and policy questions, which are 
the responsibility of managers and decision-
makers to answer. The strategy is designed 
to help the analyst address the questions by 
how much would further model refinements, 
and/or additional site characterization and 
monitoring, improve the prediction of 
performance measures derived from the 
hydrogeologic analysis. In other words, the 
strategy addresses the worth of model 
refinement and data collection in terms of 
their contributions to the potential 
enhancement of model reliability and 
credibility, not in terms of their marginal 
cost-benefit. Its aim is to allow managers 
and decision-makers to make informed 
decisions about the time, manpower and 
budget that they deem worth allocating to 
these activities in light of such enhancement 
under existing administrative, budgetary and 
policy constraints. 
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1.3.6  Assimilating Regional and Site 
Characterization Data 

 
The strategy recognizes that it is often 
possible to postulate hydrogeologic 
conceptual models or hypotheses for a site 
on the basis of publicly available geologic 
and geographic information about its 
surroundings. Additional conceptualization 
can be done on the basis of generic data 
about similar regions and the properties of 
similar materials elsewhere. Several such 
regional and generic sources of information 
are identified and discussed in this report. 
Yet each site is unique and so virtually 
guaranteed to reveal additional features, 
properties and behaviors when characterized 
in some detail locally. Hence the strategy 
considers local characterization essential for 
the postulation of acceptably robust 
conceptual hydrogeologic models for a site. 
 
Regional and site characterization data tend 
to represent a wide range of measurement 
scales, not all of which are compatible with 
the intended scale of hydrogeologic model 
resolution. The strategy promotes 
recognition of this important issue and an 
effort to render the scale of measurement 
compatible with the scale of model 
resolution. This can be done by either 
rescaling the data to fit the scale of model 
resolution (which often entails averaging or 
upscaling over computational grid cells) or 
adapting model resolution to fit the scale of 
measurement (which often entails adapting 
the size of grid cells to the size of the data 
support). Recent advances in scaling theory 
and practice are briefly reviewed to promote 
awareness of fundamental issues associated 
with the scaling of hydrogeologic variables. 
 
The strategy encourages the analyst to 
associate model parameters, derived from 
regional and site characterization data, with 

statistical measures of their uncertainty. 
Such prior statistics provide the only way to 
assess model predictive uncertainty when 
suitable monitoring data are not available. 
Methods are discussed and an example 
given to derive such statistics from generic 
data sources on the basis of similarity in soil 
or rock textural features; to update these 
statistics on the basis of site-specific data 
using a Bayesian approach; and to 
interpolate, extrapolate and/or average 
parameters across the site geostatistically on 
the basis of measured values at discrete 
points in space. 
 
1.3.7  Testing and Calibration against 

Monitoring Data 
 
While hydrogeologic characterization of a 
site and its surroundings makes 
conceptualization possible, it does not 
provide the means to test conceptual models 
or compare them with other alternatives. For 
this, it is necessary to have monitoring data 
that constitute observations of actual 
hydrologic behavior at and around the site. 
Only with such data can one evaluate the 
ability of models to mimic real system 
behavior (qualitatively at the conceptual 
level, quantitatively at the conceptual-
mathematical level), improve their ability to 
do so through calibration against the 
monitoring data, determine their optimum 
degree of refinement or complexity, and 
compare them with each other (qualitatively 
and quantitatively). The proposed strategy 
introduces ways to accomplish these tasks in 
the context of traditional deterministic 
groundwater flow and transport models. 
 
The strategy encourages the analyst to 
employ statistical measures of model 
performance (or fit between simulated and 
observed hydrologic behaviors) where 
possible; to determine feasible tradeoffs 
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between model fit and complexity by relying 
on multiobjective approaches; and to rank 
models based on (a) statistical indicators of 
the quality of fit they produce (as obtained 
from an analysis of residuals), and (b) 
likelihood-based model discrimination 
criteria (which penalize models for using an 
excessive number of free parameters to 
achieve a given quality of fit). Models that 
show relatively poor fits and rank low on the 
list can be subjectively eliminated from 
further consideration at this stage. 
 
An important byproduct of model 
calibration is information about parameter 
uncertainty. When reliable and relevant (in 
terms of type and scale) prior statistics about 
the parameters are available from site 
characterization, the strategy encourages 
their use as input into the calibration 
process. Regardless of whether or not 
suitable prior statistics are available and 
employed for model calibration, the latter 
should produce posterior statistics for the 
optimum parameter estimates. The strategy 
considers the posterior parameter estimates, 
and their error statistics, more suitable for 
the analysis of model predictive uncertainty 
than the prior estimates and their statistics. 
This is so because calibration generally 
improves the ability of the model to 
reproduce simulated hydrologic behavior, 
and a calibrated model is therefore deemed 
more reliable and credible as a predictive 
tool than an uncalibrated model. The same 
holds true for the associated parameter 
estimation statistics. 
 
1.3.8  Predictive Uncertainty of 

Deterministic Models 
 
The strategy considers two alternative 
methods to assess the predictive uncertainty 
of a deterministic groundwater model under 
assumed future scenarios. The first method 

relies on Monte Carlo simulation of these 
scenarios using prior or posterior parameter 
estimates and statistics. The second method 
establishes approximate error bounds, or 
confidence limits, for such scenarios by 
linearization, using the same parameter 
estimates and statistics. The first approach is 
more accurate but costly in terms of 
computer time and effort. In both cases, the 
strategy favors the use of posterior estimates 
over that of priors on the understanding that 
the former are less biased and uncertain than 
the latter. 
 
To render a joint prediction and assess the 
corresponding joint uncertainty based on all 
calibrated models that have been retained as 
constituting potentially viable alternatives, 
the strategy introduces a new approach. The 
approach is based on the idea of Maximum 
Likelihood Bayesian Model Averaging 
(MLBMA) recently proposed by Neuman 
(2002). MLBMA relies on probabilistic 
maximum likelihood (ML) concepts to (a) 
calibrate each model against observed 
space-time variations in system states 
(pressure, water content, concentration), 
considering prior information about relevant 
soil properties; (b) eliminate models that 
cannot be so calibrated with acceptable 
fidelity; (c) predict future system behavior 
or performance measures (travel times, 
concentrations, mass rates), and assess 
corresponding predictive uncertainty, using 
each model; and (d) average the results 
using posterior model probabilities as 
weights. MLBMA supports the principle of 
parsimony in that among models having 
similar predictive capabilities, it favors those 
having fewer parameters and are thus 
simpler. It renders an earlier Bayesian 
Model Averaging (BMA) approach (Hoeting 
et al., 1999) computationally feasible by 
basing it on a maximum likelihood 
approximation due to Kashyap (1982) and 
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the maximum likelihood parameter 
estimation method of Carrera and Neuman 
(1986a). Its final outcome is a conditional 
assessment of predictive uncertainty that 
accounts jointly for uncertainties in the 
conceptual-mathematical model structure 
and its parameters. 
 
MLBA differs in important ways from 
earlier approaches. It differs fundamentally 
from the GLUE approach of Beven and 
Binley (1992; see also Beven, 2000, and 
Beven and Freer, 2001), as well as from the 
Bayesian approach of Gaganis and Smith 
(2001), in that it (a) relies on posterior (post-
calibration) rather than prior statistics, (b) 
avoids the need for time-consuming Monte 
Carlo simulations, and (c) obviates the need 
for subjective model acceptance thresholds 
or criteria. MLBA differs from the approach 
of James and Oldenburg (1997) and Samper 
and Molinero (2000) in that it does not 
generally treat calibrated models as being 
equally likely. 
 
It  is important to reemphasize that the set of 
predictions one produces with any given 
choice of alternative structural models and 
parameter sets, by whatever method, is 
conditional on the choice of models and the 
data used to support them. As such, these 
predictions do not represent all possibilities 
but only a limited range of such possibilities, 
associated with these models and data. Any 
change in the latter would generally lead to a 
different assessment of predictive model 
uncertainty. There thus appears to be no way 
to assess the uncertainty of hydrologic 
predictions in an absolute sense, only in a 
conditional or relative sense. 
 
If suitable monitoring data are not available, 
then there is neither an objective nor a 
quantitative basis for the comparison of 
potentially viable conceptual-mathematical 

models. Likewise, there are no posterior but 
only prior parameter estimates and statistics 
to deal with. To quantify the predictive 
uncertainty of each such model, one again 
has the option of relying on Monte Carlo or 
a linearized analysis based on the available 
prior statistics. To aggregate these results, 
one can either weigh all models equally or 
associate them with subjective weights 
based on the professional judgment of the 
analyst or a group of experts. 
 
1.3.9  Assessing the Need for More Data 
 
To help evaluate what if any additional data 
might be worth collecting so as to materially 
reduce model uncertainty (by further 
constraining the range of alternative 
structures and parameters), the strategy 
suggests conducting a sensitivity analysis to 
indicate what system behavior appears to be 
most sensitive to which parameters at what 
locations. The next step is to consider 
performing additional site characterization 
where existing parameter estimates are least 
certain and the model is relatively 
insensitive to their values, and monitoring 
system behavior where it is most sensitive to 
model parameters while prediction errors 
appear to be relatively large and 
consequential. 
 
1.3.10  Accounting for Unresolved 

Variations in Space-Time 
 
Calibration of a deterministic groundwater 
model yields effective parameter estimates, 
which compensate to some degree for lack 
of knowledge about variability on space-
time scales that are not resolved by the data 
or the model. This is less true for transport 
than for flow, because transport processes 
due to unresolved variations in permeability 
and porosity cannot be validly represented 
by traditional effective parameters (such as a 
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constant dispersivity) except in special cases 
or as a crude approximation. The reliance on 
effective parameters is also less valid for 
strongly heterogeneous media with 
preferential flow paths such as some 
fractured rocks and soils that contain 
relatively large and elongated openings 
created by burrowing animals or plant roots. 
When the deterministic effective parameter 
approach fails, the most common and 
powerful alternative is to employ stochastic 
concepts and models. 
 
A stochastic approach to groundwater 
modeling requires that the spatial variability 
of input parameters, such as permeability 
and unsaturated soil properties, be 
characterized with the aid of geostatistical 
methods. A key component of geostatistical 
characterization is the assessment of spatial 
covariance structure (in terms of a 
covariance or variogram function). The 
strategy promotes this approach and the 
report illustrates it by examples. In the 
absence of site characterization data that are 
amenable to geostatistical analysis, one can 
treat the structural parameters (of the 
covariance or variogram function) as free 
parameters to be estimated by model 
calibration. This too is illustrated by 
example in the report. 
 
1.3.11  Stochastic Modeling 
 
The strategy supports two general 
approaches to predict stochastic 
groundwater flow and transport on the basis 
of geostatistical input: High-resolution 
numerical Monte Carlo simulation and 
direct (deterministic) prediction of mean 

behavior. The latter approach relies on 
stochastically derived deterministic 
ensemble mean flow and transport equations 
in which the dependent variables represent 
not actual system states (such as head, 
concentration or flux) but rather their 
(ensemble) mean values or statistical 
expectations. These mean or expected values 
represent optimum unbiased predictors of 
the unknown, actual system states. Similar 
values are obtained upon averaging the 
results of numerous Monte Carlo 
simulations. Both the Monte Carlo and the 
mean equation approaches allow the 
reduction of predictive uncertainty by 
conditioning the predictions on actual 
measurements of the input parameters at 
discrete locations in space. 
The variance-covariance of high-resolution 
(conditional) Monte Carlo simulations 
serves to quantify predictive uncertainty. An 
alternative is to compute this variance-
covariance directly (deterministically) by 
means of corresponding moment equations. 
Both options are supported by the strategy. 
 
Conditioning the stochastic flow and 
transport equations not only on measured 
input variables (derived from site 
characterization) but also on monitored 
system behavior tends to improve their 
reliability. This is accomplished through 
novel inverse procedures, which form part 
of the proposed strategy. 
 
In virtually all other respects, the strategy is 
similar in principle (though not in all details) 
for stochastic and deterministic models of 
groundwater flow and transport.
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2 NATURE OF HYDROGEOLOGIC SITE MODELS 
 

Prior to developing a model, one must 
define what one means by the term. 
 
2.1 Site-Specific Nature of 

Hydrogeologic Models 
 
Hydrogeologic models are by nature site-
specific. Though there is an established (and 
evolving) set of general hydrogeologic 
principles that apply to many sites on many 
scales, they are insufficient to either 
describe (conceptualize) or quantify (model) 
the hydrogeology of a particular site over a 
given range of scales. Because each site is 
unique, general principles must always be 
supplemented by regional and site-specific 
data to be useful for conceptualizing and 
modeling subsurface flow and transport at a 
site, regardless of purpose. 
 
General hydrogeologic principles may serve 
to develop generic methods and tools of 
hydrogeologic analysis that are applicable, 
in principle, to many sites on varied scales. 
Among numerous examples one may cite 
software tools for reconstruction and 
visualization of site hydrostratigraphy and 
structure, statistical and geostatistical 
analysis of site data, interpretation of 
pumping tests and simulation of flow and 
transport processes. Whereas numerical 
simulation codes are often referred to as 
"models," we avoid such usage of the term 
on the understanding that they are tools 
rather than models. To transform simulation 
codes into models, one must apply them to 
particular hydrogeologic circumstances that 
represent either a hypothetical or a real 
setting. Hydrogeologic models of 
hypothetical settings are research and 
demonstration tools that may be useful for 
the exploration and exposition of generic 
principles and hypotheses. They have also 

been incorporated in multi-media codes 
sometimes used for dose and risk 
assessment. Though they may serve a useful 
purpose, hydrogeologic models of 
hypothetical settings must not be mistaken 
for valid models of particular sites. To 
render them such, one must ground these 
models in real data which represent specific 
geographic locations, hydrogeologic 
conditions and natural or anthropogenic 
forcing that prevails at these locations. 
 
The strategy described in this report deals 
with site-specific rather than hypothetical 
models of subsurface flow and transport 
within a regulatory context that is relevant to 
NRC review and performance evaluation 
needs. 
 
2.2 What is a Hydrogeologic Model? 
 
For purposes of the strategy developed in 
this report, a hydrogeologic model is a 
conceptual and mathematical construct that 
serves to analyze, qualitatively and 
quantitatively, subsurface flow and transport 
at a site in a way that is useful for NRC 
review and performance evaluation. It 
consists of a description of the site and 
circumstances being modeled, a set of 
regional and site data to support this 
description, a mathematical framework that 
incorporates both the description and the 
data, and a mathematical (analytical or 
numerical) evaluation of system behavior 
and performance. The evaluation typically 
consists of simulating (reconstructing or 
predicting) and analyzing space-time 
variations in quantities such as hydraulic 
head or pressure, solute concentration, fluid 
and solute flux and velocity, solute travel 
time and associated performance measures. 
A hydrogeologic model thus consists of a 
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conceptual and a mathematical component. 
 
Whereas much has been written about the 
mathematical component of hydrogeologic 
models, relatively little attention has been 
devoted to the conceptual component. In 
most mathematical models of subsurface 
flow and transport, the conceptual 
framework is tacitly assumed to be given, 
accurate and unique. All three premises are 
challenged by the strategy in this report, 
which focuses in a major way on issues 
associated not only with mathematical but 
also with conceptual aspects of 
hydrogeologic model building and 
evaluation. For this, we need to define what 
is meant by conceptual and mathematical 
modeling, and how do the two interrelate? 
This is done next. 
 
2.3  What is a Conceptual Model of Site 

Hydrogeology? 
 
We stated that a hydrogeologic model 
consists of a description of the site and 
circumstances being modeled, a set of 
regional and site data to support this 
description, a mathematical framework that 
incorporates both the description and the 
data, and a mathematical (analytical or 
numerical) evaluation of system behavior 
and performance. A conceptual model 
embodies the descriptive component of the 
model, which may be both qualitative and 
quantitative. 
 
According to an exchange of letters between 
Paul Roman, Alfred A. Brooks, and Lorenzo 
de la Torre in Physics Today (1998), 
physical (and hydrogeologic) reality exists 
objectively but is not fully or directly 
accessible to us. Instead, it reveals itself to 
us via sensory impressions and experiences 
(through observations and experiments) in 
signatures or bits. To assimilate these 

separate pieces of information we describe, 
contemplate, correlate, connect, systematize, 
interpret and integrate them into a body of 
knowledge. On the basis of this knowledge 
we form mental constructs, or contextual 
structures, which we call conceptual models 
of reality. 
 
Conceptual descriptions of hydrogeologic 
systems may take many forms. According to 
Lein (1997, p. 85), conceptual models take 
the forms of charts, pictures and diagrams 
depicting system arrangements and flows.  
Examples relevant to NRC staff 
performance assessment use include a 
conceptual diagram and a flow chart of 
exposure pathways considered in the 
RESRAD (Yu, 1993) dose assessment 
model (Figure 2-1), a similar flow chart 
(Figure 2-2) from a technical guide to 
groundwater model selection issued jointly 
by three agencies (EPA, DOE, NRC, 1994); 
a flow chart of input data and processes 
considered in the performance assessment of 
geosphere transport (Figure 2-3) by 
Gautschi (1995), and a flow chart of 
processes that may impact the performance 
of an engineered barriers system at a 
potential HLW repository in Nevada (Figure 
2-4). 
 
A definition more directly relevant to 
hydrogeologic modeling has been given by 
Anderson and Woessner (1992). According 
to them (ibid, p. 28), a conceptual model is a 
pictorial representation of the groundwater 
flow system, frequently in the form of a 
block diagram or a cross section (Figure 2-
5). Its development includes (ibid, p. 6) 
identification of hydrostratigraphic units and 
system boundaries; assembly of field data 
including information on the water balance 
and data needed to assign values to aquifer 
parameters and hydrologic stresses; and a 
field visit to help keep the modeler tied into 
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reality and exert a positive influence on his 
subjective modeling decisions. The purpose 
of a conceptual model is (ibid, p. 28) to 
simplify the field problem and organize the 
associated field data so that the system can 

be analyzed more readily by means of a 
numerical model; in their view, the nature of 
the conceptual model determines the 
dimensions of this model and the design of 
the grid. 

 
 

 

 
 

Figure 2-1. Conceptual diagram and flow chart of exposure pathways in RESRAD  
(after Yu, 1993). 



 

24 
 
 

 
 

Figure 2-2.  Conceptual model  
as depicted by EPA, DOE and NRC (1994) guide to model selection. 

 

 
 

Figure 2-3.  Input data and processes considered in performance assessment of geosphere transport 
by Gautschi (1995). With permission, NAGRA. 
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Figure 2-4.  Processes affecting performance of an engineered barriers system  
(from USGS presentation to Expert Elicitation Panel, 1997). 

 
 

 
 

Figure 2-5.  Translation of geologic information into conceptual model for numerical modeling: 
(a) Floridan aquifer system, W to E cross section for central Florida  

(after Anderson and Woessner, 1992). With permission, Academic Press. 
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Figure 2-5 (Continued).  Translation of geologic information into conceptual model for 
numerical modeling: (b) Snake River Plain aquifer system, southwest to northeast cross section; 

(after Anderson and Woessner, 1992). With permission, Academic Press. 
 
 
 
 
 



 

27 
 
 

 
 
 

 
 

Figure 2-5 (Continued).  Translation of geologic information into conceptual model for 
numerical modeling: (c ) Sand and gravel aquifer in Pensacola, Florida;  

(d) Glacial-drift river-valley aquifer in Rhode Island  
(after Anderson and Woessner, 1992). With permission, Academic Press. 
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Figure 2-6. Theoretical flow pattern and flow systems according to Tóth (1963).  
With permission, AGU. 

 
One of the earliest and best known pictorial 
hydrogeologic concept representations is the 
classic depiction, in Figure 2-6, of 
streamlines defining hydrogeologic systems 
and subsystems due to Tóth (1963). Other 
examples of pictorial concept 
representations include a hydrogeologic 
block diagram of arid zone hydrogeology in 
the southwestern United States (Figure 2-7), 
a map of groundwater flow and basin 
divides in the Death Valley area (Figure 2-
8), and a conceptual model of crystalline 
basement with features relevant to flow, and 
its exploration, in Switzerland (Figure 2-9). 
 
Meyer and Gee (1999) consider a conceptual 
model to be a hypothesis that describes the 

main features of site geology, hydrology, 
geochemistry, and relationships between 
geologic structure and fluid flow and 
contaminant transport. In their view, 
mathematical modeling is a process of 
testing this hypothesis. A conceptual model 
is a pictorial, qualitative description of the 
groundwater system in terms of 
hydrogeologic units, system boundaries 
including time-varying inputs and outputs, 
and hydraulic as well as transport properties 
including their spatial variability. A 
mathematical model constitutes a 
quantitative representation of such a 
conceptual model.
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Figure 2-7. Hydrogeologic block diagram of arid zone hydrogeology (after Eakin et al., 1976). 
 

 
 

Figure 2-8. Map of groundwater flow and basin divides in the Death Valley area 
(after D'Agnese et al., 1996). 
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Figure 2-9.  Conceptual model of crystalline basement in Switzerland with features relevant to flow, 
and corresponding concept of its characterization (after Gautschi, 1995). With permission, NAGRA.
  
Kolm and van der Heijde (1996) describe an 
integrated, stepwise method for the 
qualitative conceptualization and 
quantitative characterization of natural and 
anthropogenic subsurface envirochemical 
systems. They define the latter as 
hydrogeologic and hydrochemical systems 
that contain chemical species of concern to 
environmental management. According to 
the authors, a conceptual model of an 
envirochemical system includes a qualitative 
assessment of how chemicals enter, move 
through or are retained in and leave the 
system. It also includes a qualitative 
description of the source, transport, fate and 

distribution of each targeted chemical or, in 
the case of unknown sources, a hypothesis 
concerning source locations and strengths 
based on conceptualized transport and fate 
processes and known distribution of 
chemicals. The conceptual model is 
described and visualized using cross-
sections and plan view illustrations. The 
authors do not present examples of 
conceptual models but instead illustrate, by 
means of flow charts (Figure 2-10), how 
their suggested procedure for the joint 
conceptualization and characterization of 
envirochemical and groundwater systems 
would operate.
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Figure 2-10.  Procedure for joint conceptualization and characterization of envirochemical 
and groundwater systems according to Kolm and van der Heijde (1996).  

With permission, IAHS press. 
 
It is of interest to note that conceptual 
models do not appear in the otherwise 
extensive index of a book by the National 
Research Council (1990) devoted to 
scientific and regulatory applications of 
groundwater models. However, they are the 
focus of a more recent study by a National 
Academy panel (NRC, 2001) of conceptual 
flow and transport models in the fractured 
vadose zone. The panel defines a conceptual 
model as an evolving hypothesis identifying 
the important features, processes and events 
controlling fluid flow and contaminant 
transport of consequence at a specific field 
site in the context of a recognized problem. 

A conceptual model is qualitative and 
expressed by ideas, words and figures. It is a 
hypothesis because it must be tested for 
internal consistency and for its ability to 
represent the real system in a meaningful 
way. The hypothesis evolves (is revised and 
refined) during testing and as new 
information is gathered.  Another study by a 
National Academy panel (NRC, 2000) 
considers conceptual modeling to include 
the representation of hydrogeologic 
heterogeneity and scale on the basis of field 
experimental data. 
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2.4 What is a Conceptual-Mathematical 
Model of Site Hydrogeology? 

 
We stated that a hydrogeologic model 
consists of a description of the site and 
circumstances being modeled, a set of 
regional and site data to support this 
description, a mathematical framework that 
incorporates both the description and the 
data, and a mathematical (analytical or 
numerical) evaluation of system behavior 
and performance. A conceptual-
mathematical model embodies the 
descriptive component of the model, cast in 
the form of mathematical equations suitable 
for system evaluation. The equations 
represent the symbolic framework, or 
structure, of the conceptual-mathematical 
model. Ideally, they provide a mathematical 
description of all physico-chemical (and 
other) processes that are considered relevant 
to flow and transport at the site on a given 
range of space-time scales subject to well-
defined forcing. Defining the scales of the 
system includes specifying its spatial and 
temporal dimensions. Forcing includes 
sources, initial and boundary conditions. 
Suitability for system evaluation means that 
the symbolic conceptual-mathematical 
framework, or structure, is cast in a form 
that lends itself to computation and 
subsequent presentation (numerical, 
graphical) and analysis (deterministic, 
statistical) of the results. 
 
Mathematical hydrogeologic models are 
described succinctly in Figure 2-11. Their 
essence is the formulation of conceptual 
models of site hydrogeology and 
flow/transport dynamics in mathematical 
language. This includes mathematical 
definition and description of relevant space-
time frames, dimensions and scales, system 
topology and geometry, interactions (called 
processes) between kinematic (flux, 

velocity) and dynamic (force, stress, energy) 
quantities, forcing terms (initial and 
boundary conditions, sources), state 
equations (functional relationships between 
state variables), and corresponding 
parameters (their functional representations). 
It leads to a system of mathematical 
statements, relationships and equations 
(algebraic, differential, integro-differential, 
Boolean, deterministic, statistical, 
stochastic) that ultimately allow one to 
interpret and explain existing observations, 
and predict future conditions, events and 
observations related to site hydrogeology 
and corresponding flow/transport dynamics. 
These statements, relationships and 
equations constitute a mathematical 
conceptualization of the system, not merely 
a calculational tool. They complement the 
qualitative conceptual picture and, together 
with it, form a conceptual-mathematical 
framework or model for the hydrogeologic 
system. Whether such a model is analytical 
or numerical (written in the language of 
calculus or algebra) is merely a technical, 
not a fundamental, distinction. 
 
For us this implies that one cannot 
legitimately disassociate hydrogeologic 
interpretations, or conceptual models, from 
corresponding mathematical and 
computational models for purposes of 
quantitative environmental impact and 
performance assessments of a given nuclear 
facility or site; these models are intimately 
linked and define a single conceptual-
mathematical framework for quantitative 
site analyses. An example of how a given 
qualitative conceptual model may be 
associated with different conceptual-
mathematical models, depending on scale, is 
given by Figure 2-12 for the crystalline 
basement of Northern Switzerland. 
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Figure 2-11. Mathematical formulation of hypotheses. 
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Figure 2-12.  Different conceptual-mathematical models associated with a given qualitative 
conceptual model of crystalline basement in Northern Switzerland, depending on scale  

(after Gautschi, 1995). With permission, NAGRA. 
 
We mentioned that a groundwater code is a 
tool and not a model. However, selecting a 
particular code implies identifying specific 
processes that may govern flow and 
transport at a site, their symbolic 
mathematical representation, and their 
numerical approximation. Selecting the 
space-time dimensions and size of a 
computational grid determines the 
dimensions and scale of the system being 
modeled. Choosing the sizes of space-time 
discretization intervals defines the scales at 
which flow and transport processes are 
resolved. Specifying the location and type of 
sources, initial and boundary conditions 
identifies the forcing. Both material 
properties and forcing terms are associated 
with parameters that must eventually be 
assigned numerical values. Choosing the 
modes of their representation 
(parameterization) defines the resolution 
scales of these parameters (and thus of 
material properties and forcing terms) 

in space-time. Once this has been 
accomplished in a way that is supported by 
all relevant regional and site data, the code 
has been transformed from a mere tool to a 
bona fide conceptual-mathematical model of 
site hydrogeology. 
 
2.5 What is a Hydrogeologic Model? 
 
A conceptual-mathematical model describes 
subsurface flow and transport in symbolic 
mathematical and algorithmic language. As 
such, it constitutes the mathematical 
framework, or structure, of a hydrogeologic 
model for a site. The framework contains 
input parameters that represent material 
properties and forcing terms (sources, initial 
and boundary conditions). Assigning 
numerical values to these parameters 
transforms the symbolic framework into a 
working mathematical model of the 
hydrogeologic system. This hydrogeologic 
model can then be run to simulate 
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(reconstruct or predict) and analyze space-
time variations in quantities such as 
hydraulic head or pressure, solute 
concentration, fluid and solute flux and 
velocity, solute travel time and associated 
performance measures. 
 
A hydrogeologic model thus consists of a 
conceptual-mathematical structure (which 
embodies a qualitative mathematical 
description of the system) and a set of 
parameter values (which render the model 
quantitative). 
 
2.6 Non-Uniqueness of Hydrogeologic 

Models 
 
As pointed out by Roman, Brooks and de la 
Torre (Physics Today, 1998), physical 
reality exists objectively but is not fully or 
directly accessible to us. Instead, it reveals 
itself to us via sensory impressions and 
experiences (through observations and 
experiments) in signatures or bits. To 
assimilate these separate pieces of 
information we describe, contemplate, 
correlate, connect, systematize, interpret and 
integrate them into a body of knowledge. On 
the basis of this knowledge we form mental 
constructs, or contextual structures, which 
we call conceptual models of reality.  It has 
been recognized by Einstein that such 
constructs, or structures, cannot be extracted 
from experience but must be freely invented. 
It therefore follows that observed reality 
may lend itself not just to one but to 
multiple conceptualizations. 
 
The same applies to hydrogeologic systems. 
The formulation of a conceptual model is 
inherently subjective in that it relies on 
limited available site observations and data, 
as well as experience and insights developed 
through work on similar sites and/or related 
problems; hydrogeologic conceptualization 

is susceptible to biases arising from the 
disciplinary background and experience of 
the analyst, and/or by different perceptions 
of the problem as influenced by external 
social and political factors (NRC, 2001). 
 
Contrary to engineering systems which are 
generally closed, relatively simple and well-
defined, hydrogeologic systems are open, 
complex and only partially defined. The 
open nature of hydrogeologic systems 
means that they are not amenable to fully 
controlled experimentation; as they are 
additionally complex, their description must 
remain forever incomplete and imprecise.  
Corresponding conceptual-mathematical 
models are therefore fallible scientific 
constructs, not credible engineering tools; 
they undergo a never ending process of 
modification, rejection and/or replacement 
as new scientific evidence and/or reasoning 
emerge. In other words, the conceptual-
mathematical structure of a hydrogeologic 
site model is nonunique. 
 
The latter has not been considered as a 
problem in the past (Beven, 2000). The 
attitude has been that if the modeling 
concepts were sufficiently accurate then it 
would be possible to represent the site 
uniquely by specific values of model 
parameters. In principle this might be 
possible; in practice it proves to be 
untenable because of the impossibility of 
fully describing the system, and particularly 
the heterogeneity of its subsurface 
characteristics.  
 
Experience with models in a wide variety of 
hydrologic settings and contexts indicates 
that, regardless of the amount and quality of 
regional and site data available at a given 
site, it is generally neither possible nor 
justifiable to describe all relevant aspects of 
site behavior and performance by a unique 
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model. Instead, there is generally a wide 
range of model structures and parameter 
values that appear to "work" for a given site 
and purpose. In other words, neither the 
structure nor the parameter values of a 
hydrologic site model are unique. This 
"equifinality" problem (Beven, 1993, 2000) 
is generic and not simply one of identifying 
a system's "true" model structure or 
parameter values. In fact, a "true" model for 
a hydrologic system does not exist. It is 
therefore best (NRC, 2001) to consider a 
broad range of reasonable alternative 
hypotheses and base the model on a variety 
of different types of data. 
 
2.7 Accounting for Hydrogeologic 

Complexity 
 
2.7.1 Effects of Heterogeneity and Scale 
 
Hydrologic systems are inherently 
heterogeneous on a multiplicity of scales 
(Entekhabi, 2000). The nonuniqueness of 
hydrologic models, applied to unique sites, 
arises from the limitations of current model 
structures in representing heterogeneous 
surface and subsurface flow systems, from 
limitations of measurement techniques and 
scales in defining system characteristics and 
the initial and boundary conditions for a 
model, and from the uniqueness of 
individual sites (Beven, 2000). 
 
In recent years there has been a move 
towards more and more detailed studies of 
flow in rivers, soils and aquifers, using more 
and more sophisticated instrumentation 
(Beven, 2000). The result has generally been 
to demonstrate complexity of flow 
pathways, due to heterogeneity on different 
scales and interactions between the 
geometry of the flow domain and the 
prevailing hydraulic gradients and flow 
pathways (including both "dead zones" and 

"preferential" flows). It has proven difficult 
to use such information in applications of 
predictive models, which are generally 
required to be used at scales larger than the 
detailed measurements. 
 
The problem is not so much that the 
complexity of the measurements is not 
accessible to adequate interpretation or even, 
in some cases, to being adequately modeled 
(Beven, 2000). The problem is that detailed 
characterization of a site is technically 
impractical and unfeasibly expensive. Even 
if this was practical and feasible, it would 
not necessarily lead to an improved 
representation of the system on larger scales. 
This is so because the effective behavior of a 
hydrologic system on larger scales is not 
completely determined by the scale-up of 
local processes; interactions among smaller-
scale features and processes often lead to 
effects that are not completely captured by 
effective parameters in larger-scale models 
(Entekhabi, 2000).  
 
There are processes and conditions when the 
effective parameter approach to scaling may 
be feasible. In the remaining circumstances, 
the macro-scale and micro-scale predictive 
relations for hydrologic processes may have 
different functional forms and dependencies 
(Entekhabi, 2000).  
 
2.7.2 "Simple" Models of Complex Systems 
 
The unique heterogeneous and scale-
dependent characteristics of a site are 
inherently unknowable and not given to 
accurate or unique representation by a 
model. All one can do is to represent system 
complexities in simplified form and 
constrain the model so it provides an 
acceptably realistic representation of the 
system, as manifested by its consistency 
with available site data. 
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Demonstrating consistency with site data is 
important because a model is a valid 
reflection of reality only in the sense, and to 
the extent, that it yields qualitative and 
quantitative explanations and predictions of 
real experiences (Physics Today, 1998). 
Only if a hydrogeologic model is 
comparable with site characterization and 
monitoring data would it reflect actual and 
anticipated conditions at a site. Models may 
legitimately consider conditions and/or data 
that lie outside the observed range, but they 
must nevertheless remain compatible with 
available site data when applied within their 
range. Models which cannot be so applied 
may constitute appealing logical constructs 
which are however speculative and not 
subject to verification, confirmation or 
validation. 
 
The level of hydrogeologic complexity that 
one incorporates in a model should be 
commensurate with its purpose (NRC, 
2001). Some flow and transport phenomena 
may not be modeled with desired fidelity 
without accounting for system complexities 
that control them. Yet the details of these 
complexities may be deemed less relevant to 
the problem than their effect on flow and 
transport, and to characterize and model 
them may be considered too difficult and 
costly. One should then seek a model that 
captures the effects of these complexities 
implicitly, without reproducing them in 
detail explicitly. 
 
A widely practiced approach has been to 
simplify complex hydrogeologic system for 
modeling purposes in an ad hoc and 
subjective manner (as illustrated for a 
popular dose assessment code in Figure 2-
13). It is generally not clear that this 

approach captures adequately all aspects of 
site complexity that have a significant 
impact on the problem being tackled. It is 
also not clear that such models have the 
space-time resolution, which may be 
required to render them comparable and 
compatible with site data. Without this, the 
models remain interesting logical constructs 
which, however, may not be valid 
representations of actual site conditions and 
may thus yield unreliable predictions. 
 
To insure that relevant aspects of 
hydrogeologic complexity are reflected in 
modeled system behavior and performance, 
and that the model is compatible with site 
data, it is important that the process of 
simplification be done systematically and 
objectively. This can be done by filtering out 
undesirable details through formal averaging 
of the governing equations in space-time or 
in probability space, in a way which retains 
and renders their influence on the model 
implicit. 
 
Averaging three- or two-dimensional 
equations across one spatial dimension 
renders them two- or one-dimensional, 
respectively. Averaging transient equations 
over time may (but need not) render them 
representative of a steady state. Averaging 
can also be done over subdomains of the site 
being modeled, and over multiple time 
intervals. In each case, the averaging results 
in governing flow and transport equations 
that contain upscaled quantities. If the 
space-time scales of these quantities differ 
from those of the available site data, then 
either the model or the data must be rescaled 
to render them compatible and comparable 
with each other. 
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Figure 2-13.  Simplified water pathways and well contamination processes in the RESRAD model 
(after Yu, 1993). 

 
It has been traditional to assume that 
spatially and temporally averaged 
hydrologic quantities are less prone to 
predictive uncertainty than quantities that 
are localized in space-time. While this may 
be true for systems that are statistically 
homogeneous and stationary, such systems 
are the exception rather than the rule. Spatial 
and temporal averages are not necessarily 
more predictable as traditionally believed if 
the averaging covers a scale that contains a 

strong transition or change in behavior 
(Entekhabi, 2000). 
 
This and other scale-related problems are 
generally avoided if the averaging is done in 
probability space. Such "ensemble" 
averaging leads to stochastic equations that 
contain statistical moments of hydrogeologic 
variables (considered random), most 
commonly the mean and variance-
covariance. The mean is a predictor of 
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system behavior or performance, and the 
variance-covariance is a measure of  
predictive error. Both are smoother (vary 
more slowly in space-time) than their 
random counterparts and, in this sense, 
render the model relatively "simple." 
Despite their smoothness, both moments are 
defined on the same space-time scales as are 
the random hydrogeologic variables on 
which they are based. Stochastic models 
thus achieve smoothness and simplicity 
without any need to average or upscale in 
space-time. As they are typically 

conditioned on site measurements (i.e., they 
honor the data), stochastic models are 
compatible with these measurements both in 
scale and magnitude. Yet another advantage 
of the stochastic method over space-time 
averaging is that it yields measures of 
predictive uncertainty. Stochastic 
approaches are increasingly recognized as 
offering a way to deal with complex, scale-
dependent heterogeneous systems by means 
of relatively simple models (Hunt and 
Zheng, 1999).
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3 CONTEXTUAL FRAMEWORK 
 

The first step in model development is to 
define its context and purpose. 
 
3.1 Purpose of Hydrogeologic Models 

Within NRC Regulatory Context 
 
Within a NRC regulatory context, the 
purpose of hydrogeologic site models is to 
help one analyze, qualitatively and 
quantitatively, subsurface flow and transport 
at a site in a way that is useful for NRC staff 
review of decommissioning plans and 
performance of high-level and low-level 
radioactive waste disposal sites and uranium 
recovery facilities. For this purpose, the 
strategy developed in this report is cast in 
the context of a framework that is useful to 
NRC staff review and performance 
evaluation needs. The framework is defined 
in terms of performance measures identified 
by the NRC licensing staff (see Appendix A). 
 
3.2 Questions that Hydrogeologic 

Models Must Address 
 
The contextual framework defines key 
questions to which groundwater flow and 
transport models are expected to provide 
answers; it helps narrow down the problem 
as well as the range and type of potential 
model applications. The questions are stated 
in Figure 3-1 in the following order: 
 

For what purposes will the model be 
used? The answer includes defining the 
nature and magnitude of an existing 
and/or potential problem, location of the 
problem area, its causes, potential short- 
and long-term solutions and/or remedies, 
their anticipated consequences and 
costs-benefits, issues needing resolution, 
and criteria by which a solution and/or 
remedy will be selected. 

To what hydrogeologic system will the 
models be applied? The answer includes 
defining the hydrogeologic environment 
that is or may potentially be affected by 
the problem and/or its solution or 
remedy, the corresponding site and 
surrounding environs of (potential) 
concern, and the regional hydrogeologic 
setting. 
Under what circumstances and 
scenarios will the modeled 
hydrogeologic system operate? This 
requires defining predevelopment, 
current and potential undisturbed and 
disturbed site and regional conditions, 
and corresponding natural as well as 
anthropogenic influences, under which 
flow and transport would be modeled. 
What measures will be adopted to assess  
performance of the hydrogeologic 
system? This requires specifying 
measures and/or criteria related to site 
and regional hydrogeology that would be 
used to identify issues, potential 
solutions and/or remedies, their 
cost-efficiency and ability to meet 
regulatory requirements. 
What aspects of site and regional 
hydrogeology and flow/transport 
dynamics are expected to impact these 
performance measures, and how? The 
answer involves defining key elements 
of the hydrogeologic system, key flow 
and transport mechanisms, key natural 
and anthropogenic influences, and 
space-time scales that may potentially 
impact these measures, as well as the 
manners in which such impacts might 
occur. 
With what reliability, certainty and 
accuracy does one need to predict 
performance measures? How important 
a role will such measures play in the 
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decision process? What is the worth 
(in time/effort/resources) of assessing 
performance measures for the site at 
specified levels of reliability, certainty, 
and accuracy?  These are the most 
basic questions that must be addressed 
before any site investigations and 
modeling efforts are initiated, as the 
answer would have a major impact on 
the time, effort and resources that could 
validly be expended in pursuit of 
performance assessment for the site. 

 
3.3 Performance Measures 
 
The strategy in this report focuses on 
groundwater flow and transport primarily in 
the sense, and to the extent, that they impact 
performance measures. Such measures are 
typically articulated within the broader 
context of a system in which groundwater is 
only one among several components. 
However, our strategy focuses solely on 
groundwater aspects of these broader 
criteria. These have been identified by the 
NRC staff in Appendix A as a “Note on 
Performance Measures and Hydrology 
Issues Pertaining to Groundwater Flow and 
Transport Models of Licensed Nuclear 
Sites.”  Appendix A provides information 
about performance measures based on 
regulatory standards, pertinent hydrology 
and groundwater issues that are related to 
performance, and uncertainty commonly 
encountered in groundwater flow and 
transport modeling. The NRC staff note 
focuses on low-level waste, 
decommissioning, high-level waste and 
uranium recovery sites. It emphasizes that 
the end point of the analysis is the 
performance measure for the licensed 
facility obtained through a performance 
assessment.  As outlined in Appendix A, the 
hydrologic measures and issues need only be 

explored and dealt with to the extent 
required by performance assessment, taking 
into account the significant uncertainties and 
the hazard involved, and that some 
uncertainties may be satisfactorily addressed 
through bounding analyses. 
 
Our interpretation of Appendix A is that the 
following groundwater-related performance 
measures need to be assessed by means of 
hydrogeologic flow and transport models. 
 
Performance Measures for Low-Level 
Waste Disposal Sites: 
 
• Concentrations of radioactive materials 

at receptor locations contributing to 
annual dose to an average member of a 
critical group. 

• Concentrations in well water at site 
boundary resulting in the highest 
composite dose. 

• Cumulative releases to the environment 
to be As Low As Reasonably Achievable 
(ALARA). 

 
Performance Measures for 
Decommissioning Sites: 
 
• Residual radioactivity resulting in Total 

Effective Dose Equivalent (TEDE) to an 
average member of a critical group at 
receptor locations, or human access 
points, including drinking water. 

• Radionuclide concentrations that 
contribute toward the dose received by 
an individual who uses well water on 
site, or by an individual off-site who 
uses water from a well at the site 
boundary. 

• Cumulative releases to the environment 
ALARA.
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Figure 3-1. Contextual framework of modeling. 
 
Performance Measure for High-Level 
Disposal at Yucca Mountain: 
 
• Radionuclide concentrations that 

contribute to the expected dose or TEDE 
received by an average member of a 
critical group 20 km down gradient of 
the proposed repository. 

 
Performance Measures for Uranium 
Recovery and Tailing Sites: 
 
• Concentrations of specified chemicals 

and radionuclides. 
 
At DOE mill tailing sites under Title I 
 
• The model is to provide a technical basis 

for selecting a restoration strategy and 
for determining risk to humans and the 
environment. 

 

At non-DOE mill tailing sites under Title II 
 
• Maximum concentrations of selected 

constituents and chemical parameters. 
• The model is aid in guiding and 

supporting 
 Detailed groundwater 

characterization, 
 Specific criteria for monitoring and 

restoration. 
 
At In-Situ Leach (ISL) uranium extraction 
sites 
 
• Monitoring to assure restoration of ore 

zone and affected aquifers, based on 
background levels and EPA standards. 

• Restoration goals for each constituent on 
a well-by-well or well-field average 
basis. 
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• Primary restoration goal of returning the 
ore zone and aquifers to their 
preoperational (baseline) levels, which 
could rely on statistical measures such as 
average parameters, range of baseline 
concentrations, and 99% confidence 
intervals. 

• Secondary restoration standards of 
returning the ore zone and aquifers to 
a pre-ISL class of use such as drinking 
water, livestock, agricultural or limited use. 

• If a parameter cannot be restored to a 
secondary standard, demonstrate that it 
would not 

 threaten public health and safety or 
the environment, 

 significantly degrade water use. 
 
3.4 Hydrogeologic Context of NRC 

Performance Measures 
 
3.4.1 Hydrogeologic Aspects of 

Performance Criteria 
 
The above performance criteria establish the 
contextual framework within which the 
strategy in this report is developed. 
 
From a hydrogeologic point of view, the 
main differences between the various 
performance measures relate to the spatial 
and temporal scales of the problem; the type 
of environment (whether saturated or 
unsaturated, confined or unconfined, porous 
or fractured); the driving mechanisms 
(whether infiltration or pumping, recharge or 
discharge); the space-time resolution needed 
to accurately assess performance measures; 
the practicality and cost of attaining such a 
resolution; the potential effect of a mismatch 
between required and attained resolution on 
the accuracy of the computed performance 
measures; and the level of inaccuracy and 
uncertainty that performance assessment can 
tolerate. 

Common to all the above performance 
measures is that they involve complex, 
three-dimensional, heterogeneous 
hydrogeologic environments; three-
dimensional, generally transient 
groundwater flow regimes; open flow 
systems with indeterminate driving (forcing) 
terms (initial conditions, recharge and 
discharge, other source terms and boundary 
conditions); severely limited access to, and 
possibility to explore, the interior of the 
groundwater flow system; the uncertain 
nature and distribution of contaminants and 
their sources both at and below the soil 
surface, on site and off site; the lack of 
adequate science and technology to render 
reliable long-term predictions of pollutant 
migration and dilution with groundwater; 
and the difficulty in verifying such 
predictions by direct measurement. 
 
3.4.2 Implications vis-à-vis 

Hydrogeologic Conceptualization 
and Modeling 

 
The commonalties just identified among the 
various performance criteria imply that all of 
them require developing a good 
understanding, and reliable models, of 
subsurface flow and transport. One cannot 
do so without recognizing and considering 
the full complexity of a site before 
attempting to represent it by means of a 
simplified conceptual-mathematical model. 
This is true regardless of the specific 
performance criteria one needs to address. 
 
The process of model simplification or 
abstraction must be based on a prior 
decision by the hydrogeologist and 
performance assessment analyst on the 
degree of reliability, certainty and accuracy 
with which given performance measures 
need to be predicted, their importance in the 
decision process, and the amount of time, 
effort and resources that assessing them at 
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the specified levels of reliability, certainty 
and accuracy would justify in each specific 
case. These questions are of a regulatory 
nature and cannot be addresses by 
hydrologists without a case-by-case dialogue 
with regulators. As such, they are not 
addressed by the strategy in this report. 
Instead, the strategy stipulates that these 
fundamental questions must be addressed 
and resolved by the NRC licensing staff 
before any site investigation and modeling 
are initiated. This is so because the answers 
impact in a major way the degree to which 
one justifies the use of a simplified 
conceptual-mathematical model for what is 
ubiquitously a complex hydrogeologic 
system with three-dimensional, transient 
groundwater flow and contaminant 
transport. 
 
Therefore, it is very important that the 
hydrogeologist first articulated these 
processes in their naturally complex setting 
as best understood in light of available site 
data and the state of prevailing 

hydrogeologic knowledge prior to 
postulating groundwater flow and transport 
models for performance assessment of a 
given site. Even if performance assessment 
is ultimately conducted with the aid of 
highly simplified conceptual-mathematical 
models of groundwater flow and transport, 
the strategy deems it essential for the 
credibility of the assessment that these 
models derive objectively (and if possible 
formally) from a more complete description 
of site hydrogeology, based on clearly 
reasoned and properly defended arguments. 
 
Rather than taking the attitude that a limited 
performance assessment goal justifies a 
limited view of hydrogeology, the strategy 
adopts the attitude that a comprehensive 
description of hydrogeology is required to 
properly adapt a hydrogeologic model to 
such a limited goal. This manifests itself as a 
key criterion and guiding principle for the 
construction of conceptual-mathematical 
models in the strategy.
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4 ASSEMBLY AND ORGANIZATION OF HYDROGEOLOGIC KNOWLEDGE BASE 
 
Having determined the context and purpose 
of a model, one must next assemble and 
organize a corresponding knowledge base. 
 
4.1 What Constitutes a Hydrogeologic 

Knowledge Base? 
 
As illustrated diagrammatically in Figure 4-
1, a hydrogeologic knowledge base includes 
all relevant (to the contextual framework) 
qualitative and quantitative data, 
observations, concepts, theories and models 
which pertain to past, current and 
anticipated groundwater flow and transport 
conditions and system behavior at and 
around a site, of both a generic and a site-
specific nature. It includes information 
concerning the accessibility and reliability 
of data and knowledge. Key data categories 
include site and regional physiography, 
topography, climate, meteorology, soils, 
vegetation, land use, geomorphology, 
geology, geophysics, surface and subsurface 
hydrology, inorganic and organic 
hydrochemistry, radiochemistry, natural and 
anthropogenic isotopes, remotely sensed 
data, etc. Of special relevance to 
hydrogeologic model development are 
regional and site data that allow one to 
define the distribution of hydrostratigraphic 
units on a variety of scales; their geologic 
structure; rock and soil types; their textural, 
physical, flow and transport properties; fluid 
types; their state of saturation, pressure, 
temperature and density; chemical 
constituents and isotopes; major 
contaminants in soil, rock and groundwater; 
and their sources. 
 
Key knowledge categories include available 
concepts, methods and tools to integrate, 
manage, access, visualize, analyze, interpret 
and process such data in a manner suitable 

for flow and transport analyses under 
uncertainty, to perform such analyses, and to 
assess the corresponding ambiguities and 
uncertainties at various levels of 
hydrogeologic, conceptual and mathematical 
complexity in various contextually relevant 
hydrogeologic environments.  
 
4.2 Why Does One Need Site 

Characterization and Monitoring 
Data? 

 
Hydrogeologic modeling must not take 
place in a vacuum. All sites are unique and 
so cannot be validly represented by a 
generic model. Instead, hydrogeologic 
models must be solidly grounded in a broad 
array of regional and site data to validly 
represent particular locales. 
 
Site characterization data form the 
foundation on which one postulates one or 
more conceptual-mathematical models for 
an area and assigns initial values to their 
input parameters (i.e., material properties 
and forcing terms such as sources, initial and 
boundary conditions). To test and compare 
these models among themselves 
qualitatively and/or quantitatively, one also 
needs monitoring data that constitute 
observations of actual hydrologic behavior 
at and around the site. Only with such data 
can one evaluate the ability of models to 
mimic real system behavior (qualitatively at 
the conceptual level, quantitatively at the 
conceptual-mathematical level), improve 
their ability to do so through calibration 
against the monitoring data, determine their 
optimum degree of refinement or 
complexity, rank them and assess their 
cumulative impact on predictive uncertainty, 
and compare them with each other.
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Figure 4-1. Content of knowledge base. 
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The strategy in this report recognizes that 
site characterization and monitoring data are 
expensive and difficult to collect, leading to 
a ubiquitous scarcity of hard site 
information. It is therefore critically 
important to assess the role that such data 
play in rendering the hydrogeologic 
performance analysis credible. The strategy 
stresses the role of characterization and 
monitoring data in helping one identify and 
test alternative conceptual models, make 
rational choices among them, gauge and 
reduce model bias and uncertainty through 
proper model selection and calibration, 
assess the reliability of model predictions, 
and confirm the assessment through 
independent peer review as well as at least 
some degree of direct verification. 
 
4.3  Sources of Hydrogeologic 

Information 
 
Sources of site-specific information include 
technical reports, maps, charts and data files 
from local, state and federal agencies and 
institutions, including universities and their 
research arms; corresponding sites on the 
Internet; and visits to the site and its 
surroundings. Sources of generic 
information include textbooks, monographs, 
reference books and compendia on 
hydrogeology; soil physics; the dynamics of 
flow and transport in porous and fractured 
media; testing, sampling and monitoring of 
soils and aquifers; groundwater modeling; 
isotope hydrology; and hydrogeochemistry. 
Additional sources of generic information 
include research and review papers and 
reports pertaining to specific aspects of the 
above topics. 
 
4.3.1 Example: The Arizona Water 

Information Directory 
 
An excellent example of how one can 
identify sources of information relevant to 

hydrogeologic analysis and modeling is 
provided by the Arizona Water Information 
Directory (Tellman, 2001). This guide to 
locating agencies, organizations, and 
university specialists with information about 
water in Arizona is based in part on a 1998 
publication titled "Where to Get Free (or 
Almost Free) Information About Water in 
Arizona" by Tellman. It documents an 
extensive and broad range of available 
resources for water information in Arizona, 
many of which (primarily federal agencies) 
may also serve as sources of information for 
other parts of the United States. The 
publication is free upon request from the 
University of Arizona Water Resources 
Research Center, whose web site 
(www.ag.arizona.edu/azwater/) also 
supports complex search queries and is 
updated periodically as new information 
becomes available. 
 
Examples of data sources related to geology 
include U.S. Geological Survey (USGS) 
(www.usgs.gov), Arizona Geological 
Survey (www.azgs.state.az.us) and 
University of Arizona Institute for the Study 
of Planet Earth (www.ispe.arizona.edu). 
Data concerning aquifers can be obtained 
from the USGS, Arizona Department of 
Water Resources (www.water.az.gov), U.S. 
Environmental Protection Agency (U.S. 
EPA) (www.epa.gov), and U.S. Water 
Conservation Laboratory 
(www.uswcl.ars.ag.gov). Well data are 
available from the Arizona Department of 
Water Resources, Arizona Small Utilities 
Association (www.asua.org), and Salt River 
Project (www.srpnet.com). Information 
about soils is available from the Arizona 
Department of Agriculture 
(www.agriculture.state.az.us) and 
Cooperative Extension 
(www.ag.arizona.edu/extension).
Data related to climate and weather can be 
obtained from the U.S. Natural Resources 
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Conservation Service 
(www.az.nrcs.usda.gov), U.S. Water 
Conservation Laboratory, Southwest 
Watershed Research Center 
(www.tucson.arg.ag.gov), Arizona State 
University Office of Climatology 
(www.geography.asu.edu/climatolog), and 
University of Arizona Institute for the Study 
of Planet Earth. Evaporation and 
evapotranspiration data are obtainable from 
the Arizona Meteorological Network 
(AZMET) (www.ag.arizona.edu/azmet) and 
Southwest Watershed Research Center. 
Streamflow data are available from the 
USGS, U.S. Forest Service (www.fs.fed.us) 
and Salt River Project. Numerous additional 
sources of information are listed by various 
categories. 
 
4.3.2  Example: Maricopa Agricultural 

Center 
 
In the process of developing this strategy, 
we have investigated experimentally 
groundwater flow and transport in 
unsaturated and saturated soils at the 
Maricopa Agricultural Center near Phoenix, 
Arizona. To support this investigation, we 
relied on several publicly available sources 
of information. These included reference 
maps downloaded from the University of 
Arizona library 
(www.srnr.arizona.edu/nbs/gap/nbiidata. 
html), meteorological data from the AZMET 
Network, distribution of soils and irrigated 
land from the Arizona Land Resource 
Information System (ALRIS) 
(www.land.state.az.us/alris/htmls/ 
data2.html), as well as irrigation rates, 
distribution of wells, well logs, well 
construction data, pumping rates, and 
groundwater levels from archived records of 
the Arizona Department of Water Resources 
and/or the U.S. Geological Survey. 
 
 

4.3.3 Example: EDR Environmental 
Data Resources, Inc. 

 
EDR Environmental Data Resources, Inc. 
(www.edrnet.com), is a good commercial 
source of environmental information. EDR 
offers current and historical environmental 
risk management information, industry 
publications and market research, 
newsletters, a daily business news service, 
training workshops, and state-of-the-art 
online services including interactive 
mapping.  
 
The service allows one to search a variety of 
government records for information about 
specified target areas within a given radius. 
Examples include topographic maps and 
gradients from the U.S. Geological Survey; 
flood zone data from the Federal Emergency 
Management Agency; information about 
wetlands from the U.S. Fish and Wildlife 
Service; groundwater flow direction, 
velocity and depth to water table from 
published sources; geologic age and rock 
stratigraphic units from the USGS; soil maps 
and soil survey data from the U.S. 
Department of Agriculture Soil 
Conservation Service; locations of water 
wells and springs from the USGS, U.S. EPA 
and state agencies; as well as other 
environmental data. 
 

4.4  Data Management and Expert 
Software Systems 

 
Ideally, the knowledge base would be 
contained in an integrated, interactive, 
flexible, robust and user-friendly data 
management and expert software system 
which allows easy access to each member of 
a multidisciplinary team to simultaneously 
view, edit, and interpret available and/or 
hypothetical site data and results through all 
phases of a project; with applications 
organized by discipline, each with a variety 
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of modules, which work together and share a 
common data base; and with seamless 
access to data as well as to flow and 
transport analytic and interpretive tools of 
varied types and levels of complexity. 
 
4.4.1 Example: GMS 
 
The Groundwater Modeling System (GMS) 
(www.scisoft-gms.com) is a sophisticated 
package for groundwater modeling, 
marketed by the Scientific Software Group 
(www.scisoftware.com) and other 
commercial entities. It provides tools for 
various phases of the modeling process 
including site characterization, model 
development, post-processing, calibration, 
and visualization. GMS supports 
triangulated irregular networks (TINs), 
solids, borehole data, two- and three-
dimensional geostatistics, and both finite 
element and finite difference models in two 
and three spatial dimensions. Currently 
supported groundwater flow and transport 
codes include MODFLOW, MODPATH, 
MT3D, RT3D, FEMWATER, SEEP2D, 
SEAM3D, PEST, UCODE and UTCHEM. 
Due to its modular nature, GMS can be 
customized to include selected modules and 
interfaces. 
 
GMS comes in identical PC and UNIX 
versions. It allows one to directly import 
data from, or export data to, ARC/INFO, 
ArcCAD, and ArcView. GMS makes it 
relatively easy for the user to quickly 
develop a conceptual model and a 
corresponding numerical model for the area 
being studied. For example, a TIFF or JPEG 
image of an aerial photo/scanned-in map, or 
an AutoCAD or MicroStation DXF drawing 
of the site can be displayed as background 
images allowing the user to define points, 
polylines, and polygons to represent 
spatially associated modeling data. 
Boundary conditions and parameter values 

can be directly assigned to these graphical 
entities. Points can define well pumping data 
or point sources for contaminants; polylines 
can define rivers, drains, or model 
boundaries; and polygons can define areal 
data such as lakes, differing recharge zones 
or hydraulic conductivities. Once the 
conceptual model has been defined, GMS 
will construct a grid, automatically refined 
around wells with the cells outside the 
model boundary already deactivated. The 
defined modeling data is then superimposed 
onto the grid with the appropriate 
parameters. For example, conductances 
assigned to polylines such as drains and 
rivers are automatically computed according 
to the length of the polyline segment within 
each cell. At this stage, the model is 
completely defined and no cell editing is 
required. If the user decides to change the 
conceptual model (move a boundary, add 
additional wells, etc.), these changes can be 
made quickly. Drawing tools are also 
provided, which allow the user to draw text, 
lines, polylines, arrows, rectangles, etc., in 
order to add annotation to the graphical 
representation of the model. 
 
GMS allows the user to construct TINs and 
solid models, and display borehole data. 
TINs are formed by connecting a set of x-y-
z points (either scattered, gridded, or from 
boreholes) with edges to form a network of 
triangles. TINs can be used to represent the 
surface of a geologic stratum and can be 
displayed in oblique view with hidden 
surfaces removed. Three-dimensional 
models of stratigraphy can be constructed 
using solids and cut to create cross sections 
anywhere on the grid. The solid model can 
be shaded to generate realistic images. 
 
GMS allows one to manage borehole data 
for site characterization. A borehole can 
contain either stratigraphy data or sample 
data or both. Stratigraphy data are used to 
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represent soil layers that are encountered in 
a soil boring. The soil layers are represented 
using contacts and segments. A segment 
represents a soil layer, and a contact is the 
interface between two segments. Contacts 
and segments can be used to construct TINs, 
solids and 3D finite-element meshes. 
Sample data represent data obtained by 
continuous sampling along the length of the 
hole. Cone penetrometer data and down-hole 
geophysical data are examples of sample 
data. Sample data are stored in data sets that 
can be manipulated as other data sets in 
GMS. For example, sample data from a cone 
penetrometer test may include data sets for 
tip resistance, sleeve resistance, and friction 
ratio. Sample data can be converted to 
scatter points, which can be interpolated to a 
three-dimensional grid, or mesh from which 
isosurfaces and color-shaded contours can 
be generated. Sample data can also be used 
to infer soil stratigraphy. 
 
With GMS, one can interpolate from groups 
of scattered data in two or three dimensions 
to other objects (meshes, grids, TINs). Two-
dimensional interpolation is used (for 
example) to generate transmissivities for a 
layer of a three-dimensional grid. Three-
dimensional interpolation is used (for 
example) to assign initial conditions (head 
and/or concentrations) to each node in a 
three-dimensional grid. Interpolation 
schemes supported by GMS include linear 
(2D), inverse distance weighting (2-3D), 
Clough-Tocher piece-wise cubic patch based 
on finite-elements (2D), natural neighbor 
based on Thiessen polygons (2D) or 
polyhedrals (3D), ordinary and universal 
kriging using the GSLIB software package 
with graphical (anisotropic) variogram 
editing, and log interpolation. One can also 
interpolate from groups of 3D scatter points 
to any of the other data types (meshes, grids, 
TINs). 
 

The GMS user interface is divided into ten 
separate modules. A module is provided for 
each of the basic data types supported by the 
system. These include a Triangulated 
Irregular Network (TIN) Module, Borehole 
Module, Solid Module, 2D Mesh Module, 
2D Grid Module, 2D Scatter Point Module, 
3D Mesh Module, 3D Grid Module, 3D 
Scatter Point Module, and Map Module. 
Switching from one module to another can 
be done instantaneously to facilitate the 
simultaneous use of several data types when 
necessary. To provide a consistent interface 
for all the modules, GMS associates generic 
scalar or vector data set values with any 
object. Each data set can be either steady 
state or transient. TINs, meshes, grids, and 
scatter point sets all have an associated list 
of scalar data sets and a list of vector data 
sets. Boreholes have a list of scalar data sets. 
Each set has a single vector or scalar value 
for each node, cell, borehole sample point, 
or scatter point. Data sets can be used to 
represent various quantities such as total 
heads computed by a groundwater model or 
starting heads used as initial conditions for 
input to a transient groundwater model. Data 
sets can be imported from a file or created 
by interpolation from a group of scattered 
points. The data can be altered through 
various mathematical operations and 
contoured or displayed as isosurfaces.  
 
A variety of tools are available in GMS for 
panning, zooming, and rotating 3D objects. 
Editing and model interaction can take place 
in any view. Visualization options range 
from 2D contour plots to 3D isosurfaces. A 
groundwater model can be displayed in plan 
view or 3D oblique view and rotated 
interactively. Cross sections and fence 
diagrams may be cut arbitrarily anywhere in 
the model. Hidden surface removal and 
color and light source shading can be used to 
generate high-quality images. Contours and 
color fringes can be used to display the 



 

52 
 
 

variation of input data or computed results. 
Cross sections and isosurfaces can be 
interactively generated from 3D meshes, 
grids and solids, allowing the user to quickly 
visualize the 3D model. Both steady state 
and transient solutions can be displayed in 
animation using vector, isosurface, color 
fringe or contour animation. For example, 
animation of a transient solution allows the 
user to observe how head, drawdown, 
velocity and contaminant concentration vary 
with time. In addition, GMS can also sweep 
an isosurface through the 3D model. The 
minimum and maximum isosurface values 
are determined from the model and the 
program will then linearly interpolate and 
display multiple isosurfaces in rapid 
succession. This allows the user to quickly 
understand the spatial variation of a 
contaminant plume. Film loops are saved in 
Microsoft Video for Windows (*.avi) format 
and can be played back outside of GMS 
using almost any multimedia player or 
presentation package such as Microsoft 
PowerPoint. 
 
4.4.2 Example: FRAMES 
 
A Framework for Risk Analysis in 
Multimedia Environmental Systems 
(FRAMES) is being developed by Pacific 
Northwest National Laboratory 
(www.pnl.gov/hightechcomm/license/ 
programs/frames.pdf). FRAMES is an open-
architecture, object-oriented system that 
provides an environmental database. It aids 
decision-makers and environmental users in 
constructing a Conceptual Site Model that is 
real-world based. FRAMES provides a 
platform to link the users' preferred codes 
with others that are required to perform 
environmental assessment, analyze the 
results and display them graphically. 
 
FRAMES contains sockets for a collection 
of computer models that simulate elements 

of a source, fate and transport, exposure, and 
risk-assessment system. Currently available 
sockets include 
 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 

Contaminant Source and Release to 
Environment 
Overland 
Vadose Zone 
Saturated Zone 
Atmospheric 
Surface Water 
Exposure 
Dose 
Human Health Impacts 
Sensitivity/Uncertainty 

 
Future planned sockets will include 
 

Ecological Impacts 
GIS 
Remediation Technology 
Cost Analysis 
Data Quality Objective 
Life-Cycle Management 
Conceptual Site Module 

 
FRAMES provides file specifications that 
describe how all site information is stored 
within the framework and passed between 
modules. These file specifications are not 
associated with the model-specific 
information, only with the transfer of 
information to the outer framework or 
another modules. 
 
With a Windows-based plug-and-play user 
interface, the user builds a Conceptual Site 
Model using media icons to represent the 
flow of contamination through the 
environment. Then, the user selects the 
simulation models to be used for the 
analysis. FRAMES allows the user to 
produce multiple unique analyses with one 
software tool. 
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FRAMES’ modularization produces several 
types of time varying outputs including 
 
• Contaminant mass remaining at the source 
• Contaminant fluxes from the source 
• Atmospheric concentrations and soil 

deposition 
• Intake or dose 
• Hazard quotient or risk 
 
The platform allows one to 
 
• Evaluate protectiveness for hazardous 

waste sites (U.S. EPA) 
• Support D&D license termination rule 

(U.S. NRC) 
• Link models related to both human health 

and ecological impacts from past and 
current practices at government 
installations (U.S. Department of Defense) 

• Provide flexible environmental modeling 
tools for assessing human health and 
environmental compounds for a waste site, 
program, installation, and complex wide 
scale (U.S. DOE and its contractors) 

• Assess environmental issues and set policy 
(international companies and government 
agencies) 

For further information contact: 

4.4.3 Example: SEDSS 
 
The U.S. DOE, Office of Science and 
Technology, through the Mixed Waste 
Landfill Integrated Demonstration program, 
has funded the development of the Sandia 
Environmental Decision Support System 
(SEDSS) (www.sandia.gov/Subsurface/ 
factshts/ert/sedss.pdf). The latter is a 
decision support strategy and automated 
decision support tool for aiding 
environmental decision support makers in 
selecting appropriate characterization and 
remediation schemes. It is a concise, widely 
applicable process or framework for 
formulating, addressing and solving 

environmental problems. SEDSS is designed 
to extend the application of risk-based 
performance assessment methodologies to 
environmental restoration activities. It 
explicitly accommodates uncertainty while 
integrating risk analysis with data collection. 
 
SEDSS provides access to site data through 
a GIS; a set of analysis tools necessary to 
qualitatively and quantitatively evaluate a 
site based on available information; and a 
platform for graphically displaying and 
documenting the results of these analyses. 
To address uncertainty, SEDSS uses 
probabilistic methods such as Monte Carlo 
simulation and geostatistical analysis. 
SEDSS includes a Conceptual Model 
Manager (CMM) that assists users in 
defining and documenting the environmental 
problem. A series of interactive windows 
allows the user to step through the problem 
to identify assumptions about the site 
environment as well as sources of 
contamination, transport pathways, and 
human and environmental exposure routes. 
The user's response to the CMM queries 
provides the framework for the quantitative 
evaluation of risk.  
 
Some examples of decisions that SEDSS 
may help answer are the following: How 
should resources (cost and time) be 
prioritized based on estimates of risk? Is a 
site safe? If the site is unsafe, what remedial 
action or containment is necessary and 
optimal? When is remediation complete and 
how can it be defended as adequate? Is a 
potential new waste-facility-design safe (i.e., 
can a permit application be defended)? Is a 
monitoring network adequate? Eventually, a 
user of SEDSS will be: 
 
• Guided in establishing performance 

objectives for a given site; 
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• 

• 

• 

• 

• 

Provided with immediate access to both 
data stored in numerical or graphical 
forms; 
Guided in the development of a 
conceptual model of site conditions, 
including the types and condition of the 
waste, the pathways through which the 
waste migrates, the mechanisms by 
which human receptors can be exposed 
to the waste, and the human health risks 
associated with that exposure; 
Assisted in setting up and executing 
numerical analysis to evaluate the user's 
concept of contaminant movement, 
exposure, and risks that accommodate 
the users existing uncertainty in site 
characteristics; 
Provided with the ability to determine 
which additional data would be 
important in altering or substantiating a 
current decision on risk or remediation 
approach, and tools to evaluate the 
cost/benefit of acquiring that data; and 
Guided in on-site, real-time collection of 
additional data. 

 
A prototype of SEDSS exists for a Sun 
workstation or server running the Unix 
operating system. Its capabilities include the 
first four of the above steps, providing the 
ability to determine risk from radioactive or 
hazardous contaminants moving via the 
ground-water pathway. The prototype 
software will optimize the location of a 
monitoring well network for detection of 
hazardous contaminants under U.S. EPA 
RCRA regulations, and perform risk 
analysis for the groundwater pathway. 
 
4.4.4 Example: FIELDS 
 
U.S. EPA Region 5 is developing a Fully 
Integrated Environmental Location Decision 
Support (FIELDS) System (www.epa.gov/ 
region5fields/static/pages/mission.htm) to 

help identify, assess, communicate and solve 
priority environmental problems in specific 
geographic areas. FIELDS began as an 
effort to more effectively solve 
contaminated sediment problems in and 
around the Great Lakes. The FIELDS team 
now supports and has applied their 
technology tools to numerous sediment, soil 
and groundwater sites in U.S. EPA Region 5 
and beyond. The system can be applied to 
environmental problem on various scales 
involving soils, surface water, ground water, 
air and the ecology at diverse site facilities, 
watersheds and urban areas. FIELDS 
employs Geographic Information Systems 
(GIS), Global Positioning System (GPS), 
database, analysis and imaging software 
combined in a modular fashion. It supports 
the EQuIS database by Earthsoft 
(www.earthsoft.com) which holds chemistry 
data from wells, bore holes, groundwater, 
surface water and soil samples. It also has a 
geology database, which can contain 
information on well development. 
 
4.4.5 Example: SADA 
 
The University of Tennessee at Knoxville is 
collaborating with Oak Ridge National 
Laboratory in the development of a Spatial 
Analysis and Decision Assistance (SADA) 
System (www.sis.utk.edu/cis/sada/) under 
funding by the U.S. EPA and Department of 
Energy (U.S. DOE). SADA is an evolving 
freeware system that incorporates tools from 
environmental assessment fields into a 
unified problem solving environment. The 
tools include integrated modules for 
visualization, geo-spatial analysis, statistical 
analysis, human health risk assessment, 
cost-benefit analysis, sampling design, and 
decision analysis. The capabilities of SADA 
can be used independently or collectively to 
address site specific concerns when 
characterizing a contaminated site, assessing 
risk, determining the location of future 
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samples, and designing remedial action. The 
U.S. EPA FIELDS team has funded the 
development of an ecological risk module 
for SADA. 
 
SADA provides a number of methods for 
the exploration of environmental data that is 
categorized by depth during remedial 
investigations (generally soil and 
groundwater). Data exploration tools include 
two- and three- dimensional data 
visualization options. Three-dimensional 
information is presented as multiple slices 
(layers) or by volume. The volume approach 
allows visualization of all depths at once. 
SADA accepts map layers from GIS and 
allows one to select a sub-region of the site 
for geo-spatial and risk analyses. Geo-spatial 
analysis tools include methods for assessing 
spatial correlation among data, modeling 
spatial correlation, and producing 
concentration, risk, probability, variance, 
and cleanup maps. Spatial data can be 
interpolated via ordinary kriging, indicator 
kriging, inverse distance or nearest neighbor 
methods. 
 
SADA can produce site-specific cost-benefit 
curves that demonstrate the specific 
relationship between a given remedial 
cleanup goal and the corresponding cost. 
This cleanup goal can be a concentration 
value or a particular human health risk 
scenario. It also provides different strategies 
to determine future sample locations, 
depending on the choice of geo-spatial 
interpolator. The estimate rank approach 
identifies unsampled locations that are 
modeled to have high concentration levels 
relative to the existing data. It can be useful 
for verifying the extent of hotspot regions 
and is available for any of the interpolation 
schemes. It does not account, however, for 
data variability. Consequently, it may place 
sampling points at locations that are high in 
concentration values but are relatively well 

characterized. The variance rank approach 
fills new samples into unsampled locations 
that have high estimation variances. Since it 
gives no weight to the magnitude of 
concentrations, samples may appear where 
data are sparse but where corresponding 
concentrations are very low relative to the 
decision rule. This approach is available 
only with ordinary kriging. The percentile 
rank approach considers both the magnitude 
and variance so as to avoid sampling well-
characterized hot spots or sparse areas with 
very low detected or non-detected values. 
The uncertainty rank approach places new 
samples in areas where there is the greatest 
uncertainty about exceeding a cleanup goal. 
It helps delineate the boundaries of an area 
of concern. Finally, the secondary constraint 
approach allows the user to specify a 
minimum distance between any new sample 
locations and any previously sampled data. 
  
4.4.6 Example: LANL EES Integrated GIS 

and Model-Based Data Management 
System 

 
The Earth and Environmental Sciences 
(EES) Division at Los Alamos National 
Laboratory (LANL) is integrating numerical 
vadose zone modeling results with GIS into 
a single platform to store, retrieve, query 
and display data (EES Division, 2001). The 
GIS system is comprised of a Raid Storage 
device, an Oracle database, a SDE (Spatial 
Data Engine) for querying, and Arc/View 
GIS to view the data. Traditional GIS data 
such as contours, historical building 
footprints, and known source locations are 
stored as points, lines and polygons with 
attributes. Vadose zone flow and transport 
modeling results obtained with the three-
dimensional FEHM code are stored as points 
with attributes, such as temperature or 
pressure at a given node. The system is able 
to store, query, visualize and compare both 
numerical model results and geographic data 
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in an efficient manner. This has proven to be 
helpful in creating both conceptual and 
numerical models of subsurface flow and 
transport at the site. 
 
4.4.7 Example: LANL EES Geologic 

Model of LANL Site and EspaZola 
Basin 

 
The EES Division at LANL is developing 
(personal communication, 2001) geologic 
models for the Environmental Restoration 
Project and Groundwater Protection 
Program on two scales: Laboratory (138 
square miles) and EspaZola Basin (2500 
square miles). The models, assembled from 
geologic maps, borehole data, high-
resolution total station mapping, and 
interpretative cross-sections, are managed 
using Oracle. GIS Arc/Info is used to 
assemble the various data sources and to 
generate gridded surfaces representing 

geologic unit boundaries. These surfaces are 
assembled into three-dimensional geologic 
models using Stratamodel. 
 
At present, the models are built into 30 
geologic units, from approximately 50,000 
data records. The geology ranges from 
Precambrian basement to recent ash-flow 
tuffs to localized basalt flows. The models 
embed all of the spatial relations of the 
actual geology and can be used to generate 
geologic maps, cross-sections, etc. They will 
be the framework for numerical models of 
hydrologic and contaminant transport 
processes in the area. The Laboratory scale 
model will serve as a framework for detailed 
studies of the fate of contaminants such as in 
the Los Alamos Canyon region. At the 
EspaZola Basin scale, the model will help 
interpret transport pathways through the 
regional groundwater system.
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5 QUALITATIVE CONCEPTUALIZATION AND SCREENING OF HYPOTHESES 
 

Having assembled and organized a 
hydrogeologic knowledge base for a site, 
one should be ready to describe in 
qualitative terms the hydrogeologic makeup 
of the site, the prevailing flow and transport 
regimes, and the way in which these regimes 
are expected to evolve under future 
scenarios of interest. As each site is defined 

by a geographic area and a depth dimension, 
its qualitative hydrogeologic description 
should capture all three of these spatial 
dimensions. Several alternative descriptions 
should be considered, examined in light of 
the available information and eliminated if 
in conflict with key data.

 
 

Figure 5-1. Qualitative conceptual-mathematical modeling. 
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5.1 What is a Qualitative Conceptual 
Model of Site Hydrogeology? 

 
The qualitative aspect of conceptual 
hydrogeologic modeling is encapsulated in 
Figure 5-1. A conceptual hydrogeologic 
model is a mental construct or hypothesis 
accompanied by verbal, pictorial, 
diagrammatic and/or tabular interpretations 
and representations of site hydrogeologic 
conditions as well as corresponding 
flow/transport dynamics. It is customarily 
presented in the form of written text 
accompanied by pictures, charts and 
diagrams (including maps, block-diagrams, 
cross-sections, panel diagrams, 
vertical/horizontal profiles) of system 
components, arrangements and relationships 
(flows) known collectively as structure. A 
conceptual model identifies relevant 
hydrogeologic units (soils, aquifers, 
aquitards, aquicludes, bedrock) and features 
(faults, intrusions, fractures), their makeup 
(mineralogy, petrography, texture, 
cementation, porosity, permeability, related 
petrophysical and geophysical properties), 
geometry (horizontal and vertical 
dimensions, boundary and internal 
configurations), system states under 
undisturbed and disturbed conditions (types 
of fluids that permeate the soils and rocks, 
their pressure, saturation, density and 
temperature, dissolved solutes and their 
concentrations), flow and transport 
dynamics and kinematics (active flow and 
transport processes; their driving 
mechanisms; fluid and solute fluxes and 
velocities; fluid, solute and energy 
balances), hydrochemistry and isotopes. 
 
5.2 Why Interpret Site Hydrogeology in 

Three Dimensions? 
 
A hydrogeologic knowledge base typically 
includes information obtained from 
boreholes, soil and geologic outcrops, 

underground openings and geophysical 
surveys. This adds a depth dimension to 
geographic information about the site and its 
surroundings which is largely two-
dimensional. A hydrogeologic knowledge 
base is thus inherently three-dimensional, 
and should allow one to describe the system 
in three-dimensions. This is important 
because hydrogeology is inherently 
three-dimensional, complex, and manifests 
itself on a multiplicity of scales. As such, it 
cannot be meaningfully captured in a single 
two-dimensional map or cross-section, nor 
can it be described adequately by a 
one-dimensional profile such as a 
stratigraphic column or a lithologic log, that 
show only selected details on a given scale. 
Instead, hydrogeologic data must be 
interpreted in three-dimensions and in some 
detail on a range of scales (from regional 
down to thin sections). There virtually 
always is at least some regional and site 
information that should allow one to do so; 
seldom can lack of data be validly quoted as 
a reason for doing less. This is true 
regardless of how complex or simple a set of 
models one ultimately employs for the 
assessment of site performance and the 
analysis of corresponding uncertainty. 
 
Not only the hydrogeologic makeup of a site 
but also the corresponding flow and 
transport regimes can and must be explored 
and described qualitatively in three-
dimensions on a range of scales. Seldom can 
an inability or lack of need to do so be 
validly quoted as justification for doing less. 
This is true regardless of how narrow is the 
contextual framework, how limited is the 
available knowledge (data) base, or how 
restricted are the available (financial, 
technological, computational) resources. 
Doing otherwise may result in 
mischaracterization of the system and 
misrepresentation of flow and transport in 
the mathematical model. 
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5.3 How to Formulate Hydrogeologic 
Hypotheses? 

 
A systematic approach to the qualitative 
conceptualization and screening of 
hydrogeologic hypotheses is depicted in 
Figure 5-2. It requires as a prerequisite the 
availability or acquisition of expertise in the 
qualitative and quantitative interpretation of 
hydrogeologic field data. With such 
expertise, and a healthy dose of 
hydrogeologic insight, one may proceed to 
conceptualize hydrogeologic units and 
features on the regional, site and subsite 
scales in terms of their hydrostratigraphy, 
lithology, vertical and horizontal boundaries, 
structural features such as  folds, faults, 
offsets and intrusions, textural features such 
as grain size, cementation, microstructure 
and fracturing, flow and transport properties 
such as porosity, permeability, dispersivity 
and sorption coefficients, related 
pedological and petrophysical properties 
(spatial, directional and textural) as well as 
distributions and variations (heterogeneity 
and anisotropy) on a range of scales, both 
between and within hydrogeologic units and 
relevant structural and textural features. 
 
One must assemble or develop descriptions 
of geologic outcrops, well logs, air and 
satellite images, maps and cross-sections, 
panel diagrams, quantitative records of 
measured variables, and qualitative 
descriptions of observed phenomena. It is 
useful, but not necessary, to embed these in 
tools for computer management of 
comprehensive hydrogeologic data of the 
kind discussed in Chapter 4. 
 
The next step is to describe the space-time 
distributions of fluid types (water, air, 
nonaqueous phase liquids) and 
corresponding states such as saturation, 
pressure, temperature and density, followed 
by significant solutes and their 

concentrations, as well as the delineation of 
saturated, vadose and perched zones, all on a 
range of scales between and within 
hydrogeologic, structural and textural units 
and features.  This in turn allows one to 
describe active and anticipated flow and 
transport phenomena such as advection (of 
solutes or particulates), convection (of heat), 
diffusion, dispersion and sorption, their 
modes (discrete features; single, dual or 
multiple continua) and scales of 
manifestation (regional, site, subsite, long-
term, short-term) boundary and internal 
mechanisms, forces and sources that drive 
them (infiltration, evapotranspiration, 
recharge, discharge, pumping), as well as 
their relative intensities and significance. 
 
The next step is to delineate in a qualitative 
but internally consistent and coherent 
manner contours of equal hydraulic potential 
(head), pressure, saturation, density, 
temperature and solute concentration 
together with corresponding flowlines 
(streamlines, pathlines, streaklines), vectors 
of fluid and solute flux and velocity, and 
isochrones (of groundwater residence time 
and solute travel time). The potential for the 
development of fast flow paths, on scales 
smaller than is represented by these contours 
and vectors (focused and episodic 
infiltration, preferential wetting, high-
permeability channels, instability of fluid 
fronts, fingering), must be articulated at this 
stage. One should also assess the overall 
balance of fluids, solutes and energy within 
the system.  The task can be facilitated by 
means of descriptions, maps, cross-sections 
and panel diagrams concerning site geology 
and hydrogeology; records of precipitation, 
irrigation, evapotranspiration, runoff, river 
stage and discharge, wetlands; well and 
spring hydrographs; hand-drawn horizontal 
and vertical flow nets; simple water balance 
formulae; and published case studies of 
hydrologically similar sites. 
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Figure 5-2. Qualitative conceptualization and screening of hypotheses.
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To conceptualize contaminant transport on 
regional, site and subsite scales, one must 
describe the space-time distribution of major 
contaminants in the soil, vadose zone and 
groundwater on these scales. The description 
must include the space-time distributions of 
contaminant sources; mechanisms and rates 
of source contaminant mobilization and 
leaching; active transport phenomena such 
as average and fast advection, diffusion, 
dispersion, radioactive or biochemical 
decay, sorption, colloid transport; space-
time distribution of migration, spreading, 
and dilution patterns; and overall mass and 
ionic balance for key contaminants. 
 
Among tools that may be suitable for this 
task we list records, maps, cross-sections 
and panel diagrams of existing 
contamination, sources and groundwater 
flow patterns; published discussions and 
case studies of mechanisms that cause 
contaminant release, migration, spreading, 
and dilution along average and fast flow 
paths; simple formulae to assess 
corresponding rates and parameters; hand-
drawn horizontal and vertical average and 
fast migration pathlines, velocity arrows, 
and isochrones of travel time; and simple 
formulae of mass and ionic balance. 
 
A hydrogeologic conceptualization is not 
complete without a description of 
hydrogeochemistry and isotope hydrology 
on regional, site and subsite scales in three-
dimensions. This includes the space-time 
distributions of major hydrochemical 
constituents, environmental isotopes and 
their sources above and below the water 
table; space-time distribution of 
groundwater ages; implications concerning 
flow between and within hydrogeologic, 
structural and textural units and features 
(including infiltration, evapotranspiration, 
recharge, discharge, directions and rates); 
and implications concerning transport 

(directions and velocities, possible 
compartmentalization, isolation and mixing 
of groundwater bodies, chemical reactions, 
and water-rock interactions).  
 
Possible tools include maps, cross-sections, 
panel and compositional diagrams of 
constituents, isotopes and groundwater flow 
patterns; published discussions and case 
studies of mechanisms causing spatial-
temporal variations in water chemistry, 
isotopes and ages; simple formulae to assess 
corresponding rates and parameters; hand-
drawn horizontal and vertical, average and 
fast migration pathlines, velocity arrows and 
isochrones; and simple mixing and chemical 
balance formulae. 
 
It often helps to conceptualize temperature 
and heat flow on regional, site and subsite 
scales in three-dimensions. This may include 
the space-time distributions of temperature 
and heat flow above and below the water 
table, and their implications concerning flow 
between and within hydrogeologic, 
structural and textural units and features 
(including infiltration, evapotranspiration, 
recharge, discharge, directions and rates). 
 
Among tools that may facilitate such 
conceptualization are maps and cross-
sections that include measured values and 
contours of temperature and heat flow; 
published heat conductivity and capacity 
values for soils, rocks and moisture 
conditions similar to those found at the site; 
published discussions and case studies of 
mechanisms causing spatial and temporal 
variations in water temperature and heat 
flow; and simple formulae that associate 
heat flow with fluid convection. 
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5.4 Why Formulate Multiple 
Conceptual Site Models? 

 
Hydrogeologic systems are open and 
complex and the corresponding knowledge 
base is invariably incomplete and imprecise. 
Therefore, such systems almost always lend 
themselves to multiple conceptualizations 
and the postulation of several alternative 
hypotheses. It is therefore important to 
explore varied conceptual frameworks and 
assumptions through a comprehensive 
evaluation of a broad range of regional and 
site data, their translation into coherent and 
internally consistent conceptual models or 
hypotheses, and an in-depth examination of 
these hypotheses in light of the available 
knowledge base. The more experts with a 
wider range of earth and environmental 
specialties are given access to the 
knowledge base, the larger and more varied 
are the alternative site descriptions they may 
identify. 
 
The conceptualization is not complete 
without a clear articulation of ambiguities 
and uncertainties associated with each 
alternative description and interpretation 
(conceptual model or hypothesis) of site 
hydrogeology. 
 
5.5 How to Formulate Alternative 

Conceptual Models? 
 
To develop alternative conceptual models 
for a site, one should consider (among 
others) alternative representations of space-
time scales; number and type of 
hydrogeologic units such as layers and 
structures such as faults; flow and transport 
properties (their values and statistics, spatial 
distribution and geostatistics, internal 
heterogeneity, anisotropy); location and type 
of system boundaries; space-time 
distribution of fluids and their states 
(pressure, density, saturation, temperature); 

space-time distribution of saturated, vadose 
and perched zones; space-time distribution 
of driving forces (infiltration, recharge, 
discharge, initial system states, boundary 
conditions); space-time distribution of flow 
patterns; existence and nature of fast flow 
paths; overall water balance; space-time 
distribution of contaminants; space-time 
distribution of contaminant sources; 
mechanisms and rates of source contaminant 
mobilization and leaching; controlling 
transport phenomena; migration, spreading 
and dilution patterns of contaminants; 
contaminant mass balance; space-time 
distribution of groundwater ages; space-time 
relationships between major chemical 
constituents, isotopes, temperatures and heat 
flows; and their implications regarding flow 
and transport on regional, site and subsite 
scales in three dimensions and time. 
 
The alternative conceptualizations should be 
firmly grounded in the available knowledge 
base. Each alternative conceptualization 
should be supported by key data. 
Conceptualizations that are contradicted by 
key data should be avoided. A major attempt 
should be made to articulate conceptual 
models that contain a minimum number of 
inconsistencies, anomalies and ambiguities 
with the lowest possible amount of 
remaining uncertainty about the site and the 
corresponding flow and transport regimes. 
 
5.6 How to Assess and Rank Alternative 

Conceptual Models? 
 
Once a number of alternative hydrogeologic 
conceptualizations have been articulated, 
they must be systematically examined, 
compared, screened and ranked according to 
acceptance criteria that include logical 
consistency and coherence, and the extent to 
which they are supported or contradicted by 
available observations and data. Among 
otherwise equal conceptual models, we 
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favor the least complex based on the 
principle of parsimony. Models that do not 
meet reasonable acceptance criteria of 
internal consistency, coherence and 
correspondence with the available data 
should be eliminated from further 
consideration at this stage of the analysis. 
 
5.6.1  Example: Proposed High-Level 

Nuclear Waste Site 
 
As an example of how one may qualitatively 
formulate alternative conceptual 

hydrogeologic models, assess them, select 
the best among them, and confirm or refute 
some of them through additional site 
exploration we consider the case of a large 
apparent hydraulic gradient (LAHG) 
identified on the basis of water level 
measurements in boreholes on the north side 
of Yucca Mountain, Nevada. The site is 
being considered as a potential repository of 
high-level nuclear waste (Figure 5-3). 
The material that follows is taken from 
Neuman (1997b) and represents his personal 
view.

 

 
 

Figure 5-3.  Local and regional water levels in the area (after Fridrich et al., 1994). 
 
The LAHG is defined by only two boreholes 
on its north (G-2, WT-6) and three boreholes 
on its south (G-1, H-1, WT-16). There are 
no data to confirm that water level highs 
recorded in G-2 and WT-6 persist further to 

the north, northwest or northeast.  The 
LAHG is on the order of (200 m - 280 
m)/2,000 m = 0.01 - 0.14 in contrast to a 
moderate gradient of 0.02 - 0.04 across the 
Solitario Canyon Fault, and small gradient 
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of 0.0001 - 0.0004 south and east of the 
former. Regionally, steep hydraulic 
gradients tend to be associated with known 
geologic or topographic features such as 
edges of thick confining units, faults with 
major offsets, caldera boundaries and 
mountain range fronts. A large gradient on 
the west side of Yucca Flat coincides with 
the edge of the Eleana Formation (Figure 5-
3). The LAHG under consideration is unique 
in that it does not correspond to any obvious 
geologic or topographic feature. 
 
Several conceptual models have been 
proposed for the LAHG. They attribute the 
LAHG to: 
 
1.  A perched system such that water levels 

in boreholes G-2 and WT-6 on the north 
side of the LAHG reflect the upper 
volcanic aquifer, those on the south 
reflect the lower volcanic aquifer, and 
downward vertical leakage takes place 
from the former to the latter through the 
intervening Calico Hills aquitard; 

2. A semiperched system which is similar 
but considers the Calico Hills aquitard to 
be saturated; 

3. Topographic control on the regional and 
local water table; 

4. A drain model according to which the 
LAHG coincides with the effective 
northern limit of the deep carbonate 
aquifer and a fault buried under the 
Calico Hills Formation, marking the 
northern boundary of a buried graben; 
water drains through the fault downward 
from the volcanic system into the 
underlying carbonate aquifer, then 
returns in part by upwelling along the 
Solitario Canyon, Bow Ridge and 
Paintbrush Faults; 

5. A spillway model in which a buried fault 
delineates the effective northern 
boundary of the lower volcanic aquifer, 

causing water to spill from the upper 
into the lower volcanic aquifer; 

6. A model according to which a buried 
fault acts as a barrier to flow from north 
to south due to the juxtaposition of low- 
and high-permeability layers and/or the 
presence of low-permeability gouge 
material within the fault; 

7. A reduction in permeability due to 
increased rock alteration and decreased 
fracturing to the north; 

8. Presence of the Eleana formation which 
causes the thinning of overlying 
volcanics and acts to reduce flow rates 
from north to south; 

9. Neotectonic phenomena such as 
rotational extension and/or increased 
stress to the north causing elevated water 
levels in this region. 

 
For purposes of performance assessment, it 
is important to adopt an appropriate 
interpretive model for the LAHG so as to 
demonstrate an understanding of site 
hydrogeology and reduce uncertainty in both 
the qualitative (conceptual) and quantitative 
(computational) representations of flow and 
transport in the area. A reliable conceptual 
framework for the LAHG is especially 
important to correctly define inflow 
boundary conditions for the site 
groundwater flow model and to answer 
questions such as: Is inflow into the area 
from the north significant and, if so, where 
does it occur and at what rates? Is flow from 
the north diverted into Crater Flat or along 
Fortymile Wash? If so, how and to what 
extent? 
 
In selecting among alternative conceptual 
models for the LAHG, Neuman favored 
those which are supported by the largest, 
most reliable and relevant set of 
observations and experimental data.  Among 
all alternative models that conform to a 
given set of observations and experimental 
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data, he favors the least complex (this is 
known as the principle of parsimony). 
 
Based on these principles, Neuman 
tentatively favored the perched system 
model because it is conceptually straight 
forward and, as shown below, is supported 
by numerous direct and indirect 
observations and/or data while contradicting 
none. The same is not true about any other 
model with the possible exception of the 
semiperched concept which is easy to 
accommodate jointly with the perched 
interpretation (more on this later). A single 
additional borehole, drilled strategically into 
the LAHG area and logged as well as 
sampled appropriately, should in his view 
suffice to confirm or deny that the LAHG is 
an artifact of perched conditions, as Neuman 
proposed. In the absence of new data from 
such a borehole (at the time of Neuman's 
writing), he tentatively associated a 
probability of 0.95 with the perched system 
model, 0.4 with the semiperched model, and 
0.1 with all remaining conceptual models for 
the LAHG. 
 
The following illustrates how observations 
and data (Figures 5-4 – 5-6, Table 5-1) 
support, more-or-less in the order listed, a 
perched interpretation of the LAHG: (1) 
Recorded water levels in G-2 and WT-6 are 
near the contact between the Topopah 
Spring basal vitrophyre and the underlying 
Calico Hills Formation; perched conditions 
are known to exist near this contact in other 
wells (UZ-14, NRG-7A, SD-7, SD9); (2) 
recorded water levels in G-2 and WT-6 
(1,020 - 1,030 m) are not anomalous when 
compared to perched levels (from north to 
south) in UZ-14 (960 m), NRG-7A (860 m), 
SD-9 (890 m) and SD-7 (860 m); (3) the 
upper volcanic confining unit is much 
thicker in G-2 (326 m) and WT-6 than in G-
1 (156 m), H-1 (135 m) and WT-16; these 
wells define the LAHG; (4) geophysical logs 

suggest that rock saturation along G-2 is at 
and/or slightly below unity at altitudes 
above 730 m which coincide with the Calico 
Hills aquitard, but at unity in the underlying 
lower volcanic aquifer; water levels in G-1 
(750 m ), H-1 (731 m) and G-4 (731 m) 
further south are just below the aquifer-
aquitard contact (27 m, 5 m and 2 m, 
respectively); thus, the top of the saturated 
zone in G-2 is not anomalous when 
compared to G-1, H-1 and G-4; (5) water 
levels in G-2 declined by 12 m between 
1981 and 1994, while those in WT-6 rose by 
4 m; (6) thermal gradients in G-2 decreased 
gradually with time; (7) pumping in April 
1996 resulted in an asymptotic residual 
drawdown of about 0.5 m in G-2 by 
December 17, 1996; (8) wet walls and 
dripping was observed in the air-filled part 
of this borehole above the Topopah Spring 
basal vitrophyre; and (9) pulsed-heat flow 
meter logs have indicated downward flow in 
the water-filled part of the borehole, 
suggesting leakage into the lower volcanic 
aquifer.  It is important to point out that 
other observations employed to support 
alternative models neither support nor 
contradict the perched system concept. In 
particular, since the perched system is 
relatively shallow, it should not be expected 
to explain phenomena and/or geophysical 
anomalies which are associated with deeper 
parts of the Yucca Mountain geologic 
environment. 
 
Since the Calico Hills aquitard appears to be 
either at or just below full saturation in the 
area of the LAHG, a minute addition of 
water to it would render this unit fully 
saturated. It is therefore very likely that 
conditions in the LAHG area vary 
temporally, and spatially, between perched 
and semiperched. If full saturation occurs 
only intermittently within this unit (as 
current data suggest), then one can expect 
flow within it to take place vertically 
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downward under a near-unit hydraulic 
gradient and the hydraulic conductivity of 
the aquitard to be near its maximum 
saturated value. If, on the other hand, 
semiperched conditions were allowed to 
persist, flow within the aquitard would 

develop horizontal components and the 
LAHG would dissipate to form a milder 
lateral hydraulic gradient. Since the 
observed lateral gradient is not mild but 
steep, the semiperched model does not offer 
a viable standalone interpretation for LAHG.

 

   
Figure 5-4.  Details of conditions in borehole G-2  

(presented to Expert Elicitation Panel by Czarnecki, 1997). 
 
None of the remaining conceptual models 
for the LAHG are consistent with key 
observations and data used earlier to support 
the perched system concept. In particular, 
these models are inconsistent with the G-2 
geophysical log which suggests partial 
saturation within the Calico Hills Formation; 
with the strong correspondence between 
recorded water levels in G-2, and confirmed 
perched conditions along the contact 
between the Calico Hills Formation and the 
Topopah Spring basal vitrophyre in other 
wells; and with the striking correspondence 
between the geophysically indicated top of 

the saturated zone in G-2 and water table 
elevations recorded in other wells. The idea 
that topography controls the LAHG is 
additionally contradicted by the lack of any 
correlation between recorded water levels 
and topographic elevations of wells across 
the LAHG (Figure 5-7); topographic control 
appears to be evident only on a much larger, 
regional scale and may help explain the 
general increase in water levels from their 
approximate values of 730 - 780 m in much 
of the Mountain area to about 1,200 m in the 
upper Fortymile Wash and 1,400 m at 
Pahute Mesa.
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Figure 5-5. Isopach map of Calico Hills (after Fridrich et al., 1994)  
and flow conditions in borehole G-2 (presented to Expert Elicitation Panel by Czarnecki, 1997). 

 
 

   
 

Figure 5-6.  Temperature profiles and water level recovery in borehole G-2  
(presented to Expert Elicitation Panel by Czarnecki, 1997). 
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Table 5-1. Altitudes (and thicknesses) of hydrogeologic units in deep boreholes at the mountain 
(after Luckey et al., 1996; modified by Neuman, 1997b). 

 

 
 

 
 
 

 
 

Figure 5-7.  Water levels versus topographic elevations (Neuman, 1997b). 
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Figure 5-8.  Drain (A) and spillway (B) models with section showing postulated buried graben 

(after Fridrich et al., 1994). 
 
The drain model (Figure 5-8A) relies on a 
conjectured fault and graben (Figure 5-8) for 
which there is no direct evidence, although it 
is consistent with a measured gravity 
anomaly (Figure 5-9) and the thickening of 
the Crater Flat Group between G-2 and G-1. 
It also postulates a complex and improbable 
flow system which requires that the drain 
(fault), and the entire volcanic system north 
of its inlet, be hydraulically isolated from 
the same system south of the inlet; what else 
would prevent water in the volcanic system 
from bypassing the inlet of the drain and 
thereby causing the LAHG to dissipate? The 
model further attributes the low heat flow 

"anomaly" in the unsaturated zone (Figure 
5-9) to cooling of the deep carbonate aquifer 
by water draining into it from above, which 
does not explain the observed strong 
negative correlation between heat flow in 
the unsaturated zone and the thickness of 
this zone (Figure 5-10), suggesting that the 
proposed mechanism may not be the cause 
of the anomaly. Finally, the model attributes 
relatively high water table temperatures 
along the Solitario Canyon, Bow Ridge, and 
Paintbrush Faults (Figure 5-10) to upwelling 
of relatively warm water from the carbonate 
aquifer through these faults, which however 
does not require postulating a drain.
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Figure 5-9.  Residual gravity contours and heat flow distribution in unsaturated zone 
(after Fridrich et al., 1994; modified by Neuman, 1997b). 

 
The spillway model (Figure 5-8B) likewise 
relies on a conjectured fault and graben for 
which there is no direct evidence but which 
is consistent with a measured gravity 
anomaly and the thickening of the Crater 
Flat Group between G-2 and G-1. It further 
proposes an effective termination of the 
Crater Flat Group as an aquifer north of the 
LAHG without offering any direct evidence 
in support of such a termination. There also 
is no direct evidence for the conjectured 
reduction in permeability from south to 
north due to enhanced alteration and reduced 

fracturing, or for the proposed presence of 
the Eleana Formation north of the mountain; 
though such presence is consistent with an 
aeromagnetic high (Figure 5-11) attributed 
to magnetite-bearing argillites, it is 
consistent neither with the above mentioned 
gravity anomaly nor with the stratigraphy 
observed in G-2; the Eleana Formation is 
not present in UE-25p1. The proposed 
neotectonic models require postulating 
complex and unproven tectonophysical 
effects on hydrogeologic conditions and 
flow.
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Figure 5-10.  Heat flow variation with thickness of unsaturated zone (after Sass et al., 1988)  
and distribution of isotherms at water table (after Fridrich et al., 1994). 

 

 
Figure 5-11. Aeromagnetic survey map (after Fridrich et al., 1994).
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Members of the Expert Elicitation Panel 
were not unanimous about whether the large 
hydraulic gradient is important to 
understanding the amount of inflow to 
Yucca Mountain from the north, and 
whether it is associated with a perched 
system or is connected to the regional 
saturated system. They, however, all agreed 
that if the hydraulic high is caused by a 
perched zone, then the underlying 
unsaturated zone is near saturation. They 
also agreed that a carefully drilled well 
should go a long way toward resolving the 
issue. 
 
In 1998, a new well (USW WT-24) was 
completed just southeast of well G-2. 
During drilling, a water-bearing fracture was 
encountered at about 760 m below land 
surface in the lower part of the Calico Hills 
unit, and water rose in the borehole to an 
altitude of about 840 m above sea level 
(Tucci, 2001). According to Tucci, “drilling 
continued for another 104 m below the 

water-bearing fracture without any 
significant change in the water level ... 
Because the potentiometric level persisted as 
the borehole was considerably deepened, 
and because the water level remained 
relatively stable after completion of the well, 
the 840 m level is assumed to represent the 
regional potentiometric level and not a 
perched level." 
 
We note that there appears to be nothing in 
the new information from well WT-24 to 
indicate that the Calico Hills unit is 
saturated between elevations 840 m (the 
water level recorded within the underlying 
upper volcanic aquifer in WT-24) and 1,020 
- 1,030 m (the water levels recorded in the 
nearby wells G-2 and WT-6). It therefore 
remains very likely that conditions in the 
LAHG area vary temporally, and spatially, 
between perched and semi-perched as 
proposed by Neuman (1997b). 
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6 MATHEMATICAL CONCEPTUALIZATION AND QUANTITATIVE 
EXPLORATION OF HYPOTHESES 

 
Once alternative qualitative descriptions of 
site hydrogeology have been articulated and 
examined, the next step is to formulate 
corresponding conceptual-mathematical 
models of flow and transport at the site 
under existing and anticipated conditions. 
These models can then be used to explore 
and screen quantitatively alternative 
hypotheses regarding the hydrogeologic 
makeup and behavior of the site. 
 
6.1 What is a Conceptual-Mathematical 

Model of Site Hydrogeology? 
 
As stated earlier, a conceptual-mathematical 
model is obtained upon formulating a 
qualitative conceptual model in 
mathematical language. Its purpose is to 
help define and describe the hydrogeologic 
system in terms of space-time dimensions; 
topology; geometry; interactions (called 
processes) between kinematic (mass, 
concentration, flux, velocity) and dynamic 
(energy, force, stress) quantities; parameters 
and forcing terms (sources, initial and 
boundary conditions). Whether such a model 
is analytical or numerical (written in the 
language of calculus or algebra) is merely a 
technical, not a fundamental, distinction. 
The model ultimately allows one to explain 
and interpret existing observations, and to 
predict new observations, quantitatively. 
 
A conceptual-mathematical model embodies 
the descriptive component of a 
hydrogeologic model, cast in the form of 
mathematical equations suitable for system 
evaluation. The equations represent the 
symbolic framework, or structure, of the 
conceptual-mathematical model. Ideally, 
they provide a mathematical description of 
all physico-chemical (and other) processes 
that are considered relevant to flow and 

transport at the site on a given range of 
space-time scales subject to well-defined 
forcing. Defining the scales of the system 
includes specifying its spatial and temporal 
dimensions. Forcing includes sources, initial 
and boundary conditions. Suitability for 
system evaluation means that the symbolic 
conceptual-mathematical framework, or 
structure, is cast in a form that lends itself to 
computation and subsequent presentation 
(numerical, graphical) and analysis 
(deterministic, statistical) of the results. 
 
One cannot legitimately disassociate 
hydrogeologic interpretations, or conceptual 
models, from corresponding mathematical 
and computational models for purposes of 
quantitative environmental impact and 
performance assessments of a given nuclear 
facility or site; these models are intimately 
linked and define a single conceptual-
mathematical framework for quantitative 
site analyses. 
 
Conceptual-mathematical modeling may, 
but need not, be accompanied by the 
selection of a corresponding computational 
code (or several codes). We mentioned 
earlier that a code is a tool rather than a 
model. However, selecting a particular code 
implies identifying specific processes that 
may govern flow and transport at a site, their 
symbolic mathematical representation, and 
their numerical approximation. Selecting the 
space-time dimensions and size of a 
computational grid determines the 
dimensions and scale of the system being 
modeled. Choosing the sizes of space-time 
discretization intervals defines the scales at 
which flow and transport processes are 
resolved. Specifying the location and type of 
sources, initial and boundary conditions 
identifies the forcings. Both material 
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properties and forcing terms are associated 
with parameters that must eventually be 
assigned numerical values. Choosing the 
modes of their representation 
(parameterization) defines the resolution 
scales of these parameters (and thus of 
material properties and forcing terms) in 

space-time. Once this has been 
accomplished in a way that is supported by 
all relevant regional and site data, the code 
has been transformed from a mere tool to a 
bona fide conceptual-mathematical model of 
site hydrogeology.

 

 
 

Figure 6-1. Mathematical conceptualization. 
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6.2 How to Formulate a Conceptual-
Mathematical Model for a Site? 

 
6.2.1 What to Specify? 
 
Mathematical conceptualization and the 
quantitative exploration and screening of 
hypotheses are encapsulated in Figure 6-1. 
A prerequisite is the availability, or 
acquisition, of expertise in the theoretical 
and mathematical interpretation and analysis 
of hydrogeologic field data. For each 
alternative conceptual model identified 
during the qualitative stage of the process, 
one needs to define the hydrogeologic units 
and features (such as folds, faults, offsets 
and intrusions) that are to be explicitly 
modeled; their three-dimensional topology 
and geometry in terms of location, shape, 
size and relationship to other units and 
features (extent of external and internal 
boundaries and structural elements); 
equations that govern flow and transport 
phenomena included in the model; 
corresponding equations of state, in the form 
of functional relationships between 
parameters and state variables in the model; 
spatial variability of parameters that enter 
into the governing and state equations, 
within each hydrogeologic unit and feature; 
spatial variability of initial states in each 
unit and feature; boundary equations for 
flow and transport; and the space-time 
distribution of boundary and source 
parameters and values. 
 
The quantification of system states includes 
functional and quantitative representations 
of fluid saturation, pressure, temperature, 
density, solute mass and concentration and 
regional as well as perched water tables on a 
range of scales (between and within 
hydrogeologic, structural and textural units 
and features). Governing and boundary 
equations include mathematical definitions 
and descriptions of active and anticipated 

flow and transport phenomena such as 
advection, convection, diffusion, dispersion 
and sorption for selected modes (discrete 
features; single, dual or multiple continua) 
and scales of manifestation, in the interior of 
units and features as well as on their 
boundaries and interfaces, including source 
terms, parameters, functional relationships 
between these quantities, and their space-
time distributions. Examples of this process 
are given in Figures 6-2 – 6-3. 
 
6.2.2 How to Determine a Suitable Level 

of Model Complexity? 
 
The purpose of conceptual-mathematical 
models is to help quantify alternative 
hypotheses regarding the hydrogeologic 
makeup and behavior of a site. Since such 
hypotheses are always cast in three spatial 
dimensions, ideally so should be the 
corresponding conceptual-mathematical 
models. Both model types must allow for the 
hydrogeologic regime to evolve in time. 
 
In reality, it is much more difficult and time 
consuming to set up and run mathematical 
models in three than in two spatial 
dimensions. Working in two spatial 
dimensions is often feasible because 
eliminating the third dimension usually 
entails a far lesser phenomenological change 
than reducing the dimensionality of the 
problem from two to one. Modeling and 
visualization of complex flow and transport 
phenomena is much easier in two than in 
three dimensions, but not much harder than 
in one dimension. Hence the strategy in this 
report supports two-dimensional flow and 
transport analyses (whether mathematical-
analytical or computational-numerical) for 
exploratory purposes. Such simulations and 
analyses are illustrated in Figures 6-4 – 6-7. 
The strategy supports a similar approach for 
performance assessment purposes in cases 
where the effect of the third dimension is 
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demonstrably minor. However, the strategy 
discourages one-dimensional analyses 
unless a very strong and convincing 
hydrogeologic argument is made in their 
favor. This is so because flow and transport 

behaviors predicted by one- and multi-
dimensional models often differ from each 
other in fundamental ways. 
 

 

 
Figure 6-2. Example of hydrogeologic schematization for purposes of mathematical modeling 

(after NRC, 1990). With permission, National Academies Press. 
 

 
 

Figure 6-3. Example of hydrogeologic schematization for purposes of mathematical modeling 
(after Anderson and Woessner, 1992). With permission, Academic Press. 



 

78 
 
 

 
 

 

 
 

Figure 6-4. Geology (a), regional flow conceptualization (b) and simulation (c)  
(after Domenico and Schwartz, 1990). 
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Figure 6-5. Regional groundwater flow conceptualization  
(after NRC, 1990). With permission, National Academies Press. 

 

 
 

 
 

Figure 6-6. Vertical flow nets (after Freeze, 1969). With permission, AGU. 
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Figure 6-7. Horizontal flow net (after Bennet and Meyer, 1952). 
 

The spatial and temporal scales at which 
flow and transport phenomena are modeled 
depend in part on the contextual framework 
(area, depth and time-frame of concern; 
space-time scales on which performance 
measures are defined). These phenomena are 
affected to a large extent, but not 
exclusively, by hydrogeologic complexities, 
heterogeneities and driving-mechanisms that 
manifest themselves on similar scales. It is 

therefore important that conceptual-
mathematical modeling start by identifying 
these "site-scale" features, factors and/or 
phenomena and by incorporating them 
directly as explicit elements in the model. 
Models that do not incorporate such 
elements explicitly, but account for them 
implicitly, are considered here to be 
simplified or abstracted; methods to develop 
them are discussed in the next section. 
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Models that fail to account for site scales 
complexities, either explicitly or implicitly, 
are oversimplified or would generally be too 
crude to provide a reliable description of site 
hydrogeology for most purposes. 
 
Site-scale hydrogeologic complexities, 
heterogeneities and driving-mechanisms 
may be influenced and/or controlled by 
larger- or regional-scale features and factors 
such as regional recharge, discharge, and 
flow mechanisms and patterns on various 
time scales. A model must account for these 
large-scale influences and controls, as well 
as for associated uncertainties, through the 
appropriate assignment of initial conditions, 
boundary conditions, and source terms such 
as those that describe infiltration, recharge, 
discharge and leakage across aquitards. 
 
Site-scale hydrogeologic complexities, 
heterogeneities and driving mechanisms 
may be significantly influenced by smaller- 

or subsite-scale features and factors such as 
space-time irregularities and fluctuations in 
external and internal boundary and source 
shapes or conditions; internal 
heterogeneities within site-scale 
hydrogeologic units, faults, dikes or other 
features; as well as smaller-scale units, 
faults, dikes, fractures or preferential flow 
channels. Determining what is the nature 
and extent of these influences is an integral 
part of developing a conceptual-
mathematical model for a site. If features 
and factors that manifest themselves on 
subsite scales are deemed important for the 
modeling of site-scale phenomena (as in the 
case of dispersion in Figure 6-8), one must 
account for them directly (explicitly, by 
embedding such features and factors 
discretely in the site model) or indirectly 
(implicitly, by formally integrating these 
features and factors into the site model 
equations and parameters, such as 
dispersivity) in the model. 

 

 
 

Figure 6-8. Dispersion affected by heterogeneities on various scales  
(after Domenico and Schwartz, 1990). 
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Embedding discrete small-scale features and 
factors in a model renders it relatively 
complex. Integrating small-scale features 
and factors into the model equations and 
parameters renders it less complex than 
embedding. However, to compensate for 
loss of information, the equations change 
form and phenomenology (from Stokes to 
Darcy, isotropic to anisotropic, juxtaposed 
to overlapping dual or multiple continua, 
differential local to integro-differential 
nonlocal) and acquire new 
phenomenological parameters (permeability, 
dispersivity, integral kernels) that differ in 
nature and magnitude (from scalar to tensor, 
local to nonlocal, well-defined to scale-
dependent) from the original parameters. 
Only in special cases can the original form 
and phenomenology be recovered, and even 
then the parameters usually change (due to 
upscaling). It is not presently clear which of 
these two approaches is better suited for 
their intended task. The strategy in this 
report considers both options. Methods of 
embedding are discussed in the next section. 
 
Ignoring the influence of regional- or 
subsite-scale features or factors on site-scale 
flow or transport without due justification, 
or failing to insure that the treatment of all 
scales is self-consistent without 
demonstrating that some of them are not 
relevant to the problem at hand, constitute 
oversimplifications which may cast doubt on 
the reliability of the model.  A large number 
of both steady-state and transient two- and 
three-dimensional analytical solutions and 
computational as well as visualization codes 
are available and easily accessible to general 
users. Many of them are well suited for the 
development, exploration, screening and 
selection of alternative conceptual-
mathematical models of site hydrogeology. 
Among these are the Groundwater Modeling 
System (GMS) mentioned in Chapter 4, 
which includes the forward and inverse 

groundwater flow and transport codes 
MODFLOW, MODPATH, MT3D, RT3D, 
FEMWATER, SEEP2D, SEAM3D, PEST, 
UCODE and UTCHEM; FEFLOW, an 
interactive graphics-based finite element 
simulation system for groundwater flow, 
contaminant and heat transport in two- and 
three-dimensions; etc. 
 
6.2.3 How to Simplify Models? 
 
Narrowly defined contextual or regulatory 
criteria, limited data or resources, and a 
quest for simplicity or transparency may 
motivate the adoption of hydrogeologic flow 
and transport models that are less than 
three-dimensional, ignore time, and include 
few details on limited scales. While such 
motivation for simplification and abstraction 
of hydrogeology and flow or transport 
dynamics may sometimes be justified on 
practical grounds, it does not in itself turn 
simplified and/or abstracted models into 
scientifically valid tools of performance 
assessment. Only a formal demonstration 
that such models capture the essential 
features and capabilities of their more 
complex and complete counterparts, and that 
they thereby provide comparable 
performance assessments or conservative 
bounds thereof, might justify their use for 
regulatory purposes.  As already stated, 
to ensure that relevant aspects of 
hydrogeologic complexity are reflected in 
modeled system behavior and performance, 
and that the model can be rendered 
compatible with site data, it is important that 
the process of simplification be done 
systematically and objectively. This can be 
done by filtering out undesirable details 
through formal averaging of the governing 
equations in space-time or in probability 
space, in a way which retains and renders 
their influence on the model implicit. This 
was called embedding in the previous 
section. 
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Averaging three- or two-dimensional 
equations across one spatial dimension 
renders them two- or one-dimensional, 
respectively. An example of this procedure 
is presented in Appendix B. Averaging 
transient equations over time may (but need 
not) render them representative of a steady 
state. Averaging can also be done over 
subdomains of the site being modeled, and 
over multiple time intervals. In each case, 

the averaging results in governing flow and 
transport equations that contain upscaled 
quantities (such as the relative permeability 
curves in Figure 6-9). If the space-time 
scales of these quantities differ from those 
of the available site data, then either the 
model or the data must be rescaled to render 
them compatible and comparable with each 
other. 

 

 
 

Figure 6-9. Alternative conceptual models and their relative permeability characteristics  
(after Altman et al., 1996). 
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It has been traditional to assume that 
spatially and temporally averaged 
hydrologic quantities are less prone to 
predictive uncertainty than quantities that 
are localized in space-time. While this may 
be true for systems that are statistically 
homogeneous and stationary, such systems 
are the exception rather than the rule. Spatial 
and temporal averages are not necessarily 
more predictable as traditionally believed if 
the averaging covers a scale that contains a 
strong transition or change in behavior 
(Entekhabi, 2000). 
 
This and other scale-related problems are 
generally avoided if the averaging is done in 
probability space. Mathematical illustrations 
of averaging in probability space are 
provided in Appendices C and D. Such 
"ensemble" averaging leads to stochastic 
equations that contain statistical moments of 
hydrogeologic variables (considered 
random), most commonly the mean and 
variance-covariance. The mean is a predictor 
of system behavior or performance, and the 
variance-covariance is a measure of 
predictive error. Both are smoother (vary 
more slowly in space-time) than their 
random counterparts and, in this sense, 
render the model relatively "simple." 
Despite their smoothness, both moments are 
defined on the same space-time scales as are 
the random hydrogeologic variables on 
which they are based. Stochastic models 
thus achieve smoothness and simplicity 
without any need to average or upscale in 
space-time. As they are typically 
conditioned on site measurements (i.e., they 
honor the data), stochastic models are 
compatible with these measurements both in 
scale and magnitude. Yet another advantage 
of the stochastic method over space-time 
averaging is that it yields measures of 
predictive uncertainty. Stochastic 
approaches are increasingly recognized as 
offering a way to deal with complex, scale-

dependent heterogeneous systems by means 
of relatively simple models (Hunt and 
Zheng, 1999). 
 
Whenever possible, simplified and/or 
abstracted models should be deduced 
systematically and objectively from, be 
comparable with, and be judged and 
validated against their more comprehensive 
(complex and complete) 
conceptual-mathematical counterparts. The 
strategy strongly suggests postulating and 
evaluating the latter (at least on paper, not 
necessarily implementing them on the 
computer) before attempting to develop and 
validate the former. 
 
6.2.4  How to Factor Uncertainty Into a 

Conceptual-Mathematical Model? 
 
Information about site- and regional-scale 
hydrogeology is typically sparse and 
uncertain. To account for this uncertainty, it 
is necessary to treat hydrogeologic 
quantities probabilistically (as random 
variables) or stochastically (as correlated 
random fields or processes). 
 
The traditional approach to hydrologic 
model uncertainty analysis has been to 
postulate a deterministic conceptual-
mathematical model structure and treat its 
parameters as being imperfectly known. The 
present strategy considers this approach as 
one of two options. 
 
The other option is to postulate a stochastic 
rather than a deterministic conceptual-
mathematical model structure. It considers 
that hydrogeologic environments consist of 
natural soils and rocks, which exhibit both 
systematic and random spatial variations in 
hydraulic and transport properties on a 
multiplicity of scales. Groundwater flow and 
solute transport take place under the action 
of forces whose exact nature, magnitude and 
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space-time distribution is generally 
uncertain. Traditional deterministic methods 
of analyses capture at best the larger-scale, 
systematic components of these variations 
and distributions. They however fail to 
resolve smaller scale variations or account 
for their uncertain nature. Yet capturing 
hydrologic complexity on a wide range of 
scales, and quantifying the associated 
uncertainty, is proving to be of paramount 
importance for a wide array of applications 
such as the characterization and remediation 
of contaminated sites, risk analysis and 
monitoring design for sites subject to 
potential future contamination, and 
performance assessment of nuclear facilities 
and sites. 
 
Under the stochastic option, one describes 
the spatial variability and scaling of 
hydrogeologic medium properties 
geostatistically, and analyzes subsurface 
fluid flow and solute transport 
stochastically. A key component of 
geostatistical characterization is the 
assessment of spatial covariance structure 
(in terms of a covariance or variogram 
function). In the absence of site 
characterization data that are amenable to 
geostatistical analysis, one can treat the 
structural parameters (of the covariance or 
variogram function) as free parameters to be 
estimated by model calibration. 
 
The strategy supports two general 
approaches to predict stochastic 
groundwater flow and transport on the basis 
of geostatistical input: High-resolution 
numerical Monte Carlo simulation and 
direct (deterministic) prediction of mean 
behavior. In the more widely known Monte 
Carlo approach, one generates a large 
number of equally likely parameter input 
fields, feeds them into a standard 
deterministic flow and transport simulator 
that however uses a very fine computational 

grid, and produces a large number of model 
outputs representing equally likely system 
behaviors. These nonunique outputs are 
summarized in terms of statistically 
averaged quantities, their variance-
covariance, and perhaps higher moments of 
the corresponding sample probability 
distributions. Results that honor measured 
values of medium properties are said to be 
conditioned on these data. Upon 
conditioning the simulations on measured 
values of parameters in space, one obtains 
(among others) conditional mean flow and 
transport variables that constitute optimum 
unbiased predictors of these unknown 
random quantities. One also obtains 
conditional second moments (variance-
covariance) that provide a measure of the 
associated prediction errors. To condition 
the predictions not only on measured input 
variables (derived from site characterization) 
but also on monitored system behavior tends 
to improve their reliability. This is 
accomplished by either discarding random 
simulations that do not reproduce the 
observations, or employing a suitable 
inverse procedure. 
 
The more novel and less widely known 
direct approach relies on stochastically 
derived deterministic ensemble mean flow 
and transport equations in which the 
dependent variables represent not actual 
system states (such as head, concentration or 
flux) but rather their (ensemble) mean 
values or statistical expectations. These 
mean or expected values represent optimum 
unbiased predictors of the unknown, actual 
system states (similar to those obtained upon 
averaging the results of numerous Monte 
Carlo simulations). To condition the 
predictions on system monitoring data, one 
must employ a special inverse procedure. 
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The variance-covariance of high-resolution 
(conditional) Monte Carlo simulations 
serves to quantify predictive uncertainty. 
Another option is to compute this variance-
covariance directly (deterministically) by 
means of corresponding moment equations. 
 
Various software packages are available to 
help one implement the geostatistical and 
Monte Carlo options in two and three spatial 
dimensions. For up-to-date information 
about software and literature concerning the 
statistics and geostatistics of spatial data the 
reader is referred to AI-GEOSTATS 
(www.ai-geostats.org), a central server for 
GIS and spatial statistics run by the 
University of Lausanne in Switzerland. A 
number of publicly or commercially 
available software packages are listed 
below.  
 
GMS:  This system was described in 

Chapter 4. 
 
UNCERT: UNCERT is a public domain 

uncertainty analysis and geostatistical 
software package for groundwater flow 
and contaminant transport modeling, 
available from the Department of 
Geology and Geological Engineering at 
the Colorado School of Mines 
(uncert.mines.edu). It includes a number 
of software modules that allow one to 1) 
input raw field data or data from a pre-
existing database, 2) analyze the data 
using classical statistics, 3) evaluate 
trends, 4) evaluate the data using 
geostatistical techniques such as 
semivariogram analysis, various kriging 
techniques (simple, ordinary, indicator, 
and Bayesian), and stochastic 
simulation. When the data are analyzed, 
or prepared from other sources, 
graphical tools are available to view the 
results in two-, two-and-a-half-, and 

three-dimensions. Once the spatial 
variation of materials has been 
determined, tools are available to 
automatically generate finite-difference 
grids for groundwater flow and 
contaminant transport codes such as 
MODFLOW andMT3D, 5) run these 
models, and 6) evaluate the results of 
individual runs, as well as the composite 
results of multiple model simulations. 
MODFLOW and MT3D are widely used 
by hydrogeologists to simulate 
groundwater flow and solute transport, 
respectively, in three-dimensional 
saturated porous media. 

UNCERT is written primarily in C 
language and is compatible with Unix 
and Linux computational platforms. 
Code options include logarithmic 
transformation of data; generation of 
histograms, probability plots, 
variograms, cross-variograms, 
covariance functions, indicator 
variograms and covariance functions; 
jackknifing; manual or automatic 
modeling of standard spatial correlation 
functions; estimation via trend surface 
analysis as well as ordinary, simple and 
indicator kriging; mathematical 
manipulation of numerical series 
associated with two-dimensional and 
three-dimensional grids; and Monte 
Carlo simulation of random fields 
conditioned on both hard and soft data. 
In addition to a manual interface, 
UNCERT connects with GIS packages 
such as Arc/Info and Grass, and offers a 
graphical interface for MODFLOW and 
MT3D. 

The philosophy behind UNCERT is that 
there are a multitude of possible 
interpretations of the subsurface which 
honor any given set of data. To evaluate 
the alternatives manually would take 
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considerable time and still only a small 
portion of the possibilities could be 
evaluated. This is true even when the 
subsurface configuration is relatively 
simple. In order to evaluate this inherent 
uncertainty, computers can be used to 
create multiple alternative realizations of 
the subsurface. The process can be 
forced to honor hard data (well logs, 
etc.) by using indicator kriging 
techniques, and incorporate more 
uncertain data (soft data - data with a 
range of uncertainty, e.g., seismic 
information, geophysical well logs, 
expert opinion) through Bayesian 
kriging. By automating this process, 
much of the uncertainty can be 
characterized with comparatively little 
time invested by the hydrogeologist. 
Once multiple realizations are created, 
groundwater flow and contaminant 
transport models can be executed to 
compare modeled and field conditions. 
When a model response clearly doesn't 
match field observations, this possible 
subsurface configuration can be 
disregarded; of the remaining 
realizations (invalidating 90% of the 
realizations might not be unreasonable) 
that appear reasonable, the distribution 
of contaminants may be evaluated, for 
the time already modeled, or for future 
conditions. Based on the results of flow 
and transport modeling in these 
remaining configurations, the probable 
locations of contamination may be 
identified. Also, the probable 
effectiveness of remediation facilities 
designed to contain the contamination 
can be evaluated. A computer can 
evaluate only a limited number of 
realizations, but the number is so large, 
relative to that which can be 
accomplished manually, that a 
representative assessment of the 
reasonable alternatives will be realized. 

The modeler can start with hard and/or 
soft field data and be guided through 
statistical analysis of the data, generation 
of multiple realizations of each data 
property, development of model grids, 
kriging of data properties into model 
grids, generation of input files for flow 
and contaminant transport models, 
execution of models, and visualization of 
model results.  

Gstat: Gstat is a program for the modeling, 
prediction and simulation of 
geostatistical data in one, two or three 
dimensions. It is made available free of 
charge by the Department of Geography 
at Utrecht University in the Netherlands 
(www.gstat.org) and works on various 
platforms including Linus and win32. 

Geostatistical modelling comprises 
calculation of sample variograms and 
cross variograms (or covariograms) and 
fitting models to them. Sample (co-) 
variograms are calculated from ordinary, 
weighted or generalized least squares 
residuals. Nested models are fitted to 
sample (co-)variograms using weighted 
least squares, and during a fit each single 
parameter can be fixed. Restricted 
maximum likelihood estimation of 
partial sills and interactive variogram 
modeling are possible. 

Gstat provides estimation and prediction 
using a model that is the sum of a trend 
modeled as a linear function of 
polynomials of the coordinates or of 
user-defined base functions, and an 
independent or dependent, 
geostatistically modeled residual. This 
allows simple, ordinary and universal 
kriging; simple, ordinary and universal 
cokriging; standardized cokriging; 
kriging with external drift, block kriging 
and trend kriging; as well as 
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uncorrelated, ordinary or weighted least 
squares regression prediction. Gstat 
allows univariate or multivariate 
conditional or unconditional multi-
Gaussian sequential simulation of point 
values or block averages, or (multi-) 
indicator sequential simulation.  

 
Gslib: The Gslib code is included on CD 

with the book of Deutsch and Journel 
(1998). It is written in Fortran language 
for DOS and Unix operating systems. 
Code options include the generation of 
histograms, probability plots, two- and 
three-dimensional variograms and cross-
variograms; point or block estimation by 
ordinary, simple and universal kriging, 
kriging with an external drift, cokriging, 
nonlinear kriging, indicator principal 
component kriging, and soft kriging; 
cross-validation and jackknifing; and 
conditional Monte Carlo simulation by 
indicator principal components, LU-
decomposition, simulated annealing, 
sequential Gaussian simulation, 
sequential indicator simulation of a 
categorical or continuous variable, and 
the turning bands method. Output is in 
postscript format but can be displayed in 
a graphical raster format by means of the 
UPFILE and 3Plot codes that are 
available without charge. 

 
FSS: This set of tools for DOS, Unix and 

Linux platforms is available from FSS 
International Europe, a consulting firm 
based in Valencia, Spain 
(www.fssintl.com). It uses the Gslib data 
format to perform univariate and 
bivariate statistical analyses of data; to 
generate variograms, covariance and 
correlation functions, H-scattergram and 
variogram plots; to estimate random 
field values by ordinary and simple 
kriging with global or local mean, 

cokriging, collocated cokriging, 
universal kriging, indicator ordinary and 
simple kriging, and multi-Gaussian 
kriging; and to conduct Monte Carlo 
simulations by sequential Gaussian and 
indicator methods. 

 
The direct stochastic modeling option is 
supported by a menu of exact conditional 
moment equations developed for steady 
state (Neuman and Orr, 1993; Neuman et 
al., 1996) and transient (Tartakovsky and 
Neuman, 1998, 1999) groundwater flow in 
saturated porous media, steady state flow in 
a certain class of unsaturated soils 
(Tartakovsky et al., 1999; Lu et al., 2002), 
and advective (Neuman, 1993) or advective-
dispersive (Zhang and Neuman, 1996) 
transport of a nonreactive solute. 
 
Even though the underlying stochastic flow 
and transport regimes are taken to obey 
Darcy's law and Fick's analogy, these 
relations are generally not obeyed by the 
conditional mean flow and transport regimes 
except in special cases or as localized 
approximations. Such localized 
approximations yield familiar-looking 
differential equations which, however, 
acquire a non-traditional meaning in that 
their parameters (hydraulic conductivity, 
seepage velocity, dispersivity) and state 
variables (hydraulic head, concentration, 
fluid and solute fluxes) are information-
dependent and thus nonunique (Guadagnini 
and Neuman, 1999a-b, 2001; Ye et al., 
2002). Whereas nonlocal moment equations 
contain information about predictive 
uncertainty, localized (differential) 
equations generally do not. 
 
There are presently no publicly available 
computer codes to implement the 
conditional moment approach, though some 
prototype codes exist and other are being 
developed. To implement the approach, one 
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must start by adopting a suitable closure 
approximation such as perturbation 
(Guadagnini and Neuman, 1999a-b, 2001; 
Ye et al., 2002; Lu et al., 2002) or an 
assumption of Gaussianity (Neuman et al., 
1999; Amir and Neuman, 2001; Wang et al., 
2002). Though perturbative closure 
approximations are not guaranteed to work 
for strongly heterogeneous media, they have 
proven to work remarkably well in two-
dimensional finite element analyses of 
superimposed mean uniform and convergent 
steady state (Guadagnini and Neuman, 
1999a-b) and transient (Ye et al., 2002) 
flows in saturated porous media and for 
similar type steady state flow in unsaturated 
media (Lu et al., 2002). A different 
perturbative approach to conditional 
moment analysis and its various applications 
can be found in the recent book of Zhang 
(2001). 
 
6.2.5  How To Interpret Traditional 

Deterministic Models 
Stochastically? 

 
A comparison of stochastic moment 
equations of flow and transport with 
traditional deterministic equation shows that 
the latter can be interpreted stochastically. 
This is seen upon "localizing" conditional 
mean equations that are otherwise nonlocal 
(integro-differential) in a way which renders 
them approximately differential 
(Appendices C and D). Localized 
conditional mean flow and transport 
equations can be solved with the aid of 
standard flow and transport codes or 
modifications thereof. While this is an 
important advantage, a major disadvantage 
of localized equations is that they do not 
yield information about predictive 
uncertainty. 
 
The prevailing tradition has been to model 
flow and transport by means of standard 

(local) deterministic equations. In 
Appendices C and D we examine this 
tradition from a stochastic viewpoint and 
comment on its validity and meaning. More 
specifically, we ask what is the meaning of 
hydrogeologic variables that enter into 
traditional deterministic groundwater flow 
and transport models, when the latter are 
applied to randomly heterogeneous media? 
What is the significance of parameters 
obtained by calibrating a deterministic flow 
model against randomly varying data? What 
do corresponding parameter estimation 
errors imply about predictive uncertainty? 
 
We show, in a rigorous manner, that 
applying traditional deterministic flow and 
transport models to randomly heterogeneous 
media is valid at best as an approximation, 
due to localization. The following are some 
important implications of interpreting 
traditional deterministic flow and transport 
models stochastically: (1) their parameters 
are inherently nonunique, regardless of how 
well or poorly posed an associated inverse 
problem may be; (2) these parameters differ 
from their optimum (geostatistical) estimates 
as obtained on the basis of field 
measurements; and (3) uncertainties in these 
parameters reflect uncertainties in predicted 
(conditional) mean system behavior, not 
uncertainties associated with actual system 
behavior. 
 
It follows that analyzing the effect of 
parameter uncertainty on system behavior 
and performance by means of traditional 
deterministic models generally 
underestimates (often severely) behavior and 
performance uncertainty. Therefore, the 
strategy in this report supports the use of 
traditional deterministic models only to the 
extent that they are interpreted and 
implemented in their proper stochastic 
context, as illustrated in Appendices C 
and D. 
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6.3 How to Formulate and Explore 
Alternative Conceptual-
Mathematical Models? 

 
6.3.1 Where to Start? 
 
The qualitative stage of conceptualization 
should lead to several alternative hypotheses 
concerning the hydrogeologic makeup of a 
site, the prevailing flow and transport 
regimes, and the way in which these regimes 
are expected to evolve under future 
scenarios of interest. With each of these, one 
must associate at least one mathematical 
structure to form a corresponding 
conceptual-mathematical model. This 
structure should initially include a direct 
representation of site-scale hydrogeologic 
complexities, heterogeneities and 
driving-mechanisms in the form of explicit 
model elements. It should account directly 
for larger- or regional-scale features and 
factors through the appropriate assignment 
of initial conditions, boundary conditions, 
and source terms such as those that describe 
infiltration, recharge, discharge and leakage 
across aquitards. If features and factors that 
manifest themselves on subsite scales are 
deemed important for the modeling of site-
scale phenomena, one must account for 
them explicitly or implicitly at this initial 
stage of conceptual-mathematical model 
building. This may result either in a 
deterministic or a stochastic model structure. 
 
Ignoring the influence of regional-, site- or 
subsite-scale features or factors at this initial 
stage, without having demonstrated that they 
are not relevant to the problem at hand, 
constitutes an oversimplification which 
renders the model a priori suspect of being 
invalid and unreliable. This is true even if 
the model can be made to reproduce 
observed system behavior, because there is 
reason to suspect that it would be unable to 
predict reliably behaviors under future 

scenarios, which differ in significant ways 
from that under which the observations have 
been made. 
 
The initial conceptual-mathematical model 
should identify the sources and nature of 
uncertainties that may impact its predictive 
power. This includes uncertainties in the 
very structure of the model, as well as 
uncertainties in its input parameters 
(material properties and forcings). Both 
deterministic and stochastic models are 
expected to have uncertain structural 
elements and parameter values. 
 
Having associated a deterministic and/or 
stochastic mathematical structure with each 
hypothesis that had been postulated for a 
site, the next step is to explore them 
quantitatively and graphically. The aim of 
this initial exploration is qualitative: To 
identify the potential of each conceptual-
mathematical model to explain observed 
system behavior and predict it under future 
scenarios. For this, it is useful to run the 
model with a plausible range of input 
parameters and study its output in light of 
the available site information. This may 
reveal ambiguities and uncertainties that 
may prompt a reexamination of the data 
and/or a revision of the model (which may, 
but need not, render the model more 
complex). It may also reveal differences 
between the various conceptual-
mathematical models that may help 
eliminate some of them and rank the rest in 
the order of their apparent ability to explain 
and predict system behavior. 
 
The initial exploration of alternative 
conceptual-mathematical models can often 
be done in the two-dimensional horizontal 
and/or vertical planes. This is so because 
two-dimensional analyses differ from their 
three-dimensional counterparts to a much 
lesser extent than do one-dimensional 
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analyses, yet are much less demanding than 
three-dimensional analyses. Two-
dimensional scoping analyses should yield 
contour and/or color representations of 
hydrogeologic parameter distributions; 
system states (hydraulic head, pressure, 
saturation, density, temperature, solute 
concentration); flowlines (streamlines, 
pathlines, streaklines); and vectors of fluid 
and solute fluxes and velocities (Figures 6-2 
– 6-7). If the conceptual-mathematical 
model involves transients, the analyses 
should consider variations of hydrogeologic 
variables with time. Some three-dimensional 
exploratory analyses may also be possible at 
this stage, including the preliminary 
quantification of fluid, solute and energy 
balances. Three-dimensional analyses may 
also be required if the two-dimensional 
results are insufficient to provide insight into 
relevant processes or fail to resolve key 
ambiguities and uncertainties. 
 
6.3.2 How to Proceed? 
 
Once an initial set of conceptual-
mathematical models have been formulated 
and explored in a preliminary fashion, once 
has the option of postulating and exploring 
less complex alternatives to each. There is 
no reason to contemplate more complex 
alternatives at this stage of the modeling 
process.  Model simplification may entail a 
reduction in dimensionality (from three 
spatial dimensions to two or one; from 
transient to steady state), model size 
(smaller area and/or reduced depth); or 
details of various features, events and 
processes (fewer layers, faults or fracture 
zones; a less detailed representation of 
internal heterogeneity; single rather than 
dual continuum or discrete representation of 
a fractured rock; fewer discrete rainfall or 
infiltration events; a less detailed delineation 
of contaminant sources; constant rather than 
scale-dependent dispersion; equilibrium 

rather than kinetic sorption). Various types 
and levels of simplification can be 
entertained, leading to a number of 
simplified model structures for each initial 
(and more complex) conceptual-
mathematical model. 
 
As stated earlier, the strategy discourages 
the use of one-dimensional models unless a 
very strong and convincing hydrogeologic 
argument is made in their favor. This is so 
because system behavior and performance 
predicted by a one-dimensional model tend 
to be fundamentally different from those 
predicted by two- and three-dimensional 
models. 
 
Some of the details lost in the simplification 
process may have an important impact on 
the predictive capabilities of the model and 
some may have a lesser impact or none at 
all. This should be established by comparing 
each simplified model with its more 
complex initial version vis-a-vis their 
potentials to explain observed system 
behavior and predict it under anticipated 
future scenarios. For this, it is useful to run 
both models with a comparable range of 
plausible input parameters and compare 
their outputs in light of the available site 
information. To do so requires that any 
differences in scale between the input and 
output variables of the two models be 
resolved so as to render the models mutually 
compatible and comparable. Inability to do 
so in a scientifically defensible way should 
disqualify the simplified model.  Other 
factors that should disqualify a simplified 
model are a much reduced ability (in 
comparison to the initial model) to explain 
observed system behavior that is considered 
important for the problem at hand, or an 
inability to predict future system behavior 
and/or performance that are qualitatively 
and quantitatively similar to those predicted 
by the initial model. 
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To render a simplified model compatible 
and comparable with its more complex 
(initial) alternative, it helps to derive it 
formally and objectively from the latter. 
This can be done through averaging or 
filtering in space, time and/or probability 
space. Appendix B shows in detail how the 
three-dimensional equations that govern 
flow in a water-table (unconfined) aquifer 
are formally averaged over the vertical, 
based on the well-known Dupuit 
assumptions, so as to yield the 
corresponding Boussinesq equation of 
horizontal flow. This formal analysis reveals 
with clarity under what conditions is one 
justified simplifying unconfined flow by 
restricting it to the two-dimensional 
horizontal plane. Appendix C explains and 
illustrates how the steady state stochastic 
groundwater flow equation, and 
corresponding hydrogeologic variables, are 
formally averaged over an ensemble of 
random hydraulic conductivity, head and 
flux realizations. Appendix D does the same 
for transport.  
 
Yet another important example is provided 
by Domenico and Robbins (1984) who 
demonstrate formally that characterizing the 
two- or three-dimensional spread of a solute 
with a one-dimensional transport model 
requires an apparent dispersivity, which 
increases as a function of distance. This is so 

even when the dimensionally correct (two- 
or three-dimensional) transport model is 
associated with a constant dispersivity. It 
follows that replacing the latter model by a 
one-dimensional version with constant 
dispersivity is an error, which does not 
necessarily lead to conservative results. 
 
A fifth example is provided by the 
theoretical and field study of Neuman and 
Witherspoon (1972) on multiple (leaky) 
aquifer systems. A pumping test conducted 
by these authors near Oxnard, California, 
has shown that when drawdowns in the 
pumped Oxnard aquifer are interpreted by 
means of the well-known and widely-used 
Theis model, the aquifer transmissivities 
appear to increase systematically with 
distance from the pumping well. The authors 
demonstrate theoretically that this apparent 
aquifer heterogeneity is, at least in part, an 
artifact of having simplified a complex 
multiaquifer flow regime by means of a 
model, which disregards interactions 
between the Oxnard aquifer and surrounding 
hydrogeologic units. Other examples 
abound, which collectively demonstrate that 
simplifying hydrogeologic flow and 
transport models on the basis of intuition or 
convenience, rather than on the basis of a 
more comprehensive formal analysis, may 
lead to serious errors of omission and 
commission. 
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7 RENDERING A MODEL COMPATIBLE WITH DATA 
 
Once an acceptable set of conceptual-
mathematical models and corresponding 
simplifications have been identified, the next 
step is to render them compatible with 
available site characterization and 
monitoring data. Models that cannot be so 
rendered are unsuitable for quantitative 
representation of site hydrogeology and 
must be eliminated from further 
consideration. 
 
7.1 Why Worry About Compatibility 

With Data? 
 
A fundamental premise of this strategy is 
that a model must be operational, i.e., that it 
must be based on quantities which are either 
measurable, or can be derived from 
measurements, on well-defined space-time 
scales. The quantities we speak of include 
all parameters, initial and forcing terms 
(including sources and boundary 
conditions), and state variables that enter 
into the model (such as pressure and 
concentration). For example, if the flow 
model is based on Darcy's law, and this law 
is deemed relevant on a field length scale of 
1 m (equivalently, area scale of 1 m2 or 
volume scale of 1 m3), then the Darcy flux, 
permeability, and pressure or its gradient, 
must be amenable to direct or indirect 
measurement or evaluation on this same 
scale. The latter does not imply that it must 
be practical to perform such measurements 
within every cubic meter of the rock, only 
that it must be possible to do so in a 
sufficiently large sample of similar rock 
volumes to yield a statistically significant 
sample. Only then can a model be 
meaningfully tested against experiment 
and/or observations. 
 
A model that includes nonmeasurable 
quantities, or quantities that cannot be 

evaluated on the basis of measurements, can 
neither be applied directly to real data nor 
confirmed experimentally. Such a model is 
therefore non-operational and can neither be 
tested nor confirmed. 
 
7.2  How to Achieve Compatibility in 

Scale and Magnitude? 
 
To render a model compatible with site data, 
one starts by asking whether the scales of 
parameterization and resolution in the model 
are consistent with the support 
(measurement) scales of relevant data (site 
characterization data that define model 
structure and parameters, and site 
monitoring data that record observed state 
variables) and their statistics. If the answer 
is negative, one needs to either rescale the 
data and their statistics to fit the model, or to 
rescale the model to fit the available (as well 
as anticipated) data and their statistics. 
 
In many cases, the support scale of 
hydrogeologic data is smaller than the scale 
of parameterization and resolution of 
corresponding hydrogeologic models. In 
recent years, there has been a concerted 
effort on the part of many researchers to 
develop methods for the scaling up of 
hydrogeologic variables, most notably 
permeability. As explained by Neuman 
(1997a), the search has focused in large part 
on methods of upscaling that ascribe 
equivalent parameters to the grid blocks of 
numerical flow and transport models on the 
basis of smaller-scale random or nonrandom 
parameter values. One approach has been to 
postulate more-or-less ad hoc rules for 
upscaling based on numerically determined 
criteria of equivalence. Another approach 
has been to develop upscaling rules 
analytically through volume or stochastic 
averaging of smaller-scale values. Both sets 
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of rules are still evolving and it may be 
premature to recommend specific methods 
of upscaling for the purposes of this 
strategy. Instead, we mention two examples. 
 
Neuman and Depner (1988) have shown 
how one can upscale hydraulic conductivity 
data from single-hole hydraulic injection 
tests in fractured crystalline rocks at the 
Oracle site near Tucson, Arizona, as well as 
their spatial statistics. Their approach is 
based on a stochastically derived steady 
state formula due to Gelhar and Axness 
(1983) that applies to statistically 
homogeneous and infinite continua (a 
similar formula for finite three-dimensional 
blocks, under either steady state or transient 
conditions, has been developed by 
Tartakovsky and Neuman, 1998). The 
authors compare their upscaled values 
successfully with larger-scale hydraulic 
conductivities from cross-hole injection tests 
at the site. 
 
The above approach does not work at the 
Apache Leap Research Site (ALRS) in 
Arizona, where air permeability is not 
statistically homogeneous but exhibits the 
properties of a random fractal field (Chen et 
al., 2000). A method to rescale the 
permeability of such a field has recently 
been proposed by Di Federico et al. (1999) 
and used by Hyun et al. (2002) to interpret a 
pronounced permeability scale effect at the 
ALRS. 
 
A rule of thumb that often works reasonably 
well in practice is to upscale permeability by 
considering the geometric mean of smaller-
scale values. This is known to be exact 
(Neuman and Orr, 1993) for a statistically 
homogeneous Gaussian log permeability 
field in an infinite planar domain, but is less 
accurate for three-dimensional or finite 
domains (and entirely unsuitable for one-
dimensional domains, for which the 

harmonic mean is more appropriate). 
Despite this potential inaccuracy, the 
geometric mean is often used in conjunction 
with block kriging for the purpose of 
ascribing equivalent permeabilities to finite 
subdomains of a site on the basis of smaller 
scale measurements. 
 
Rubin et al. (1999) used a stochastic 
approach to develop analytical expressions 
for a grid-block effective dispersivity tensor 
due to subgrid-scale random variations in 
permeability. Their expressions can be 
conditioned on measurements of 
permeability. 
 
Efendiev et al. (2000) developed a strategy 
for incorporating subgrid effects in coarse-
scale numerical models of flow in 
heterogeneous media by upscaling a 
deterministic fine-grid permeability 
description and then solving the flow 
equation over the coarse grid to obtain 
coarse-scale velocities. A coarse-grid 
saturation equation is formed through a 
volume average of the fine-scale equations 
and includes terms involving both the 
average and fluctuating components of the 
velocity field. The terms involving the 
fluctuating components are subgrid effects 
that appear as length- and time-dependent 
dispersivities. A simplified model for the 
coarse-scale dispersivity, in terms of these 
subgrid velocity fluctuations, was proposed 
and a numerical scheme based on it was 
implemented in two dimensions. 
 
Some practitioners set the ratio between the 
longitudinal dispersivity assigned to a 
numerical grid block, and the length scale of 
this block, proportional to 10. This is based 
on a generalized scaling rule proposed by 
Neuman (1990) as a way of explaining an 
observed increase in apparent longitudinal 
dispersivity with the scale of observation in 
a large number of tracer studies, in diverse 
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hydrogeologic environments under varied 
circumstances, worldwide. It is not clear that 
the same scaling rule applies locally to 
specific sites under particular conditions of 
flow and transport. 
 
Numerical methods to upscale unsaturated 
soil hydraulic properties have been 
discussed by Bagtzoglou et al. (1994) and 
Desbarats (1995, 1999). Rockhold et al. 
(1999) use geostatistical indicator simulation 
techniques for spatial interpolation of field-
measured water contents and porosities, and 
a conditional simulation method based on 
similar media scaling for estimating 
hydraulic properties from a set of scale-
mean parameters and the initial water 
content and porosity distributions. They then 
apply an upscaling algorithm to determine 
effective grid-scale parameters in three-
dimensions. 
 
As pointed out by Neuman (1997a), one 
major difficulty with upscaling is that it 
postulates local relationships between 
upscaled driving forces and fluxes (Darcy's 
and Fick's laws) when in fact these 
relationships are generally nonlocal. 
Another conceptual difficulty with upscaling 
is that it requires the a priori definition of a 
numerical grid and resolution scale. We add 
that improper upscaling may rendered the 
prior parameter estimates biased and their 
uncertainty mischaracterized. 
 
Upscaling can often be avoided if one 
adopts a stochastic approach to groundwater 
modeling. One choice under the stochastic 
option is to use a high-resolution conditional 
Monte Carlo method. In this method, the 
grid is fine in comparison to the spatial 
correlation scale of the hydrogeologic input 
variables, most importantly the permeability. 
Ideally, one would want the length scale of 
each grid cell to be of the same order as that 
of the input variable support scale. In 

practice, it is usually enough to set the 
length scale of each grid cell equal to or less 
than one fifth the spatial correlation scale of 
the input variable. Experience has shown 
that with such a grid, one is often able to 
reproduce random spatial fluctuations in the 
input variable with high fidelity. As the 
correlation scales of output variables (such 
as head, concentration and flux) are 
generally larger, this also allows resolving 
the latter with equal or higher fidelity. 
 
Another choice under the stochastic option 
is to employ conditional moment equations. 
Here scale-related problems are generally 
avoided because the input as well as the 
output variables represent ensemble 
averages in probability space rather than 
volume and/or time averages in real space. 
Though they are smoother (vary more 
slowly in space-time) than their random 
counterparts, these variables are 
nevertheless defined on the same space-time 
scales. Hence stochastic moment equations 
achieve smoothness and simplicity without 
any need to average or upscale 
hydrogeologic variables in space-time. By 
being smoother than their random 
counterparts, ensemble moments can in 
principle be resolved on grids that are 
coarser than those required for high-
resolution Monte Carlo simulation. 
 
Stochastic Monte Carlo and moment 
equation models honor site characterization 
data by being conditioned upon them. They 
are thus a priori compatible with site data 
both in scale and magnitude. Their output 
can be made similarly compatible with site 
monitoring data by conditioning the models 
a posteriori on observed behavior through 
appropriate inverse procedures. By doing so, 
the models may still honor the site 
characterization data and so remain 
conditional on both data types. 
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Site characterization data may be used to 
derive prior input parameters for a 
deterministic model through appropriate 
upscaling and estimation procedures. In this 
limited sense, the deterministic model can 
be made to honor the site characterization 
data and so being conditional upon them as 
well as compatible with them a priori in 
both scale and magnitude. To render the 
same model compatible with (conditional 
on) site monitoring data, it is almost always 
necessary to calibrate them a posteriori 
against such data. This invariably modifies 
the model input parameters to generate 
posterior estimates, which often differ 
significantly from their prior counterparts. It 
is therefore generally not possible to render 
a deterministic model compatible in 
magnitude with both site characterization 
and monitoring data at the same time and to 
the same degree. The best one can do is to 
seek an optimum tradeoff between model fit 
(a measure of compatibility with the 
monitoring data) and parameter plausibility 
(a measure of compatibility with the 
characterization data) either by viewing the 
problem in a multiobjective context as 
proposed by Neuman (1973), or by 
incorporating the priors into a statistical 
statement of the inverse problem as 
proposed by Carrera and Neuman (1986a-b). 
Another (we think less desirable) possibility 
is to calibrate the model without considering 
prior parameter estimates (and, by 
implication, site characterization data on 
which such estimates are based) at all, as 
recommended by Hill (1998). More on these 
and other inverse modeling options later. 
 

7.3  How to Infer Prior Input 
Parameters and Statistics? 

 
7.3.1 What to Infer from Site 

Characterization Data and How? 
 
Since hydrogeologic medium properties and 
forcing functions are always uncertain, so 
are the model input variables. In other 
words, the input parameters of groundwater 
flow and transport models are inherently 
uncertain regardless of whether the model is 
deterministic or stochastic. The difference is 
that whereas in deterministic models the 
input parameters are viewed as imperfectly 
known deterministic quantities, in stochastic 
models they are viewed as correlated 
random fields or processes that may be 
perfectly or imperfectly known at discrete 
sampling locations in space-time. In both 
cases, imperfect knowledge is characterized 
by random errors that may, but often are not, 
considered to be mutually correlated. This 
renders the input parameters of deterministic 
models correlated or uncorrelated random 
variables, and those of stochastic models 
correlated random fields or processes 
conditional on either exact or random 
measurements, which may themselves be 
correlated or uncorrelated among 
themselves. Whereas the second moment of 
uncorrelated random variables is a diagonal 
matrix of their respective variances, that of 
correlated random variables is a full square 
symmetric and positive definite matrix of 
their respective covariances. 
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Estimating input parameters for a model 
(deterministic or stochastic) on the basis of 
incomplete and/or uncertain data is 
equivalent to inferring their mean values 
from these data. If the mean values are 
based on site characterization data, they 
represent prior parameter estimates. If they 
are based on site monitoring data, they 
represent posterior parameter estimates. In 
this section we consider only prior inference 
of model input parameters. 
 
If the inferred parameter estimates vary in 
space and/or time in a way which reflects 
similar variations in the underlying site 
characterization data, they are said to be 
conditional on these data. If the inferred 
mean values do not reflect such spatial 
and/or temporal variability, they are said to 
be unconditional. Unconditional inference 
may take place when the data are too few or 
too clustered to allow defining their 
variability in space-time. 
 
Assume that a set of site specific 
measurements are available, which represent 
the same hydrogeologic variable (say 
permeability or porosity) as a corresponding 
set of model input parameters. Such 
measurements are considered to be "hard." 
Ideally, the data would include probabilistic 
information about errors of measurement 
and test interpretation that suffer from a 
known amount (ideally zero) of statistical 
bias. If one has a statistically significant set 
of such data, one should be able to estimate 
a prior set of model input parameters on 
their basis. One should also be able to 
postulate a probabilistic model of prior 
parameter uncertainty based on statistics 
derived from these data. Such a probabilistic 
model is known to be of Type A. 
 
A key measure of parameter uncertainty is 
the second statistical moment, or variance-
covariance, of their estimation errors. Since 

input variables into both deterministic and 
stochastic computational models are 
specified in terms of a discrete set of input 
parameters, the corresponding variance-
covariance forms a matrix. In the 
conditional case, the off-diagonal covariance 
terms of the matrix may reflect spatial 
and/or temporal correlation between 
parameters of a given type (say permeability 
or porosity) as well as cross-correlations 
between parameters of different types (say 
permeability and porosity). In the 
unconditional case, there is no inferred 
space-time variability and the covariance 
terms represent at most cross-correlations 
between different types of parameters. 
 
Prior parameter estimates can be obtained 
from clustered data by means of common 
statistical methods, and from spatially 
distributed data by means of standard 
geostatistical techniques. This is true 
regardless of whether the parameters are 
intended for a deterministic or a stochastic 
model. The main difference is that in the 
deterministic case, there may be a need to 
upscale the parameters whereas in the 
stochastic case, this may not be necessary. 
The simplest and most practical form of 
geostatistical inference with upscaling is 
block kriging. While this may not always be 
the most accurate and sophisticated way to 
proceed, it is quite adequate for many 
purposes. This is especially true in situations 
where enough site monitoring data are 
available to later modify the parameter 
estimates through model calibration. 
 
To characterize prior estimation uncertainty 
one should, as a minimum, infer from the 
data a variance-covariance matrix of prior 
estimation errors. Only in rare circumstances 
would there be enough data to permit 
inferring from them higher statistical 
moments of these errors. 
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Standard geostatistical analysis consists of 
identifying the spatial autocovariance 
structure of each variable being analyzed (in 
terms of an autocovariance or variogram 
function) and providing a smooth (kriged) 
conditional estimate of this variable on a 
two- or three-dimensional grid, as well as 
the associated estimation (kriging) variance 
at each grid point. A more advanced analysis 
may also yield an autocovariance matrix for 
the estimate across the grid. Another level of 
sophistication may be achieved by 
identifying cross-covariance functions or 
cross-variograms for two or more variables, 
estimating them simultaneously by 
cokriging, and computing their co- and 
cross-covariances across the grid. Both 
kriging and cokriging may be used to 
estimate average values of the variables over 
finite blocks or subdomains of a two- or 
three-dimensional grid. 
 
7.3.2  How to Incorporate Soft Data? 
 
If there are insufficient hard data of a given 
hydrogeologic variable to conduct a 
meaningful statistical or geostatistical 
analysis, then the use of soft (qualitative) 
data coupled with indicator geostatistical 
analysis are recommended. This yields an 
uncertainty model for the prior parameters 
that is intermediate between Type A and 
Type B (defined in the next section). Soft or 
indirect information about the parameters 
may include (a) off-site measurements of the 
parameters proper (quite often on scales 
other than those corresponding to the 
intended scale of model resolution) and/or 
(b) surrogate measurements on site that are 
known to correlate with the parameters of 
interest (for example, porosities or 
geophysical signatures that correlate in 
known ways with permeabilities, water 
contents or fracture densities). Statistics 
derived from off-site data must be 
considered potentially biased (due to a lack 

of site-specific information about mean 
parameter values and incompatibility of 
geology and scale). The associated variance 
may be too small or too large, depending on 
the quantity and quality of such data. 
Statistics derived from surrogate data may 
suffer from poorly defined correlations and 
incompatibility of scale. 
 
Indicator geostatistics yields indicator 
variograms for various classes of the 
variable, a smooth (kriged) estimate of this 
variable on a two- or three-dimensional grid, 
and the probability that the variable is larger 
(or smaller) than specified at each grid point. 
Most geostatistical software packages 
include an indicator option and allow one to 
generate random realizations of the variable 
on a grid by means of indicator Monte Carlo 
simulation. 
 
An example of soft data use is that of 
pedotransfer functions, which allow one to 
estimate soil hydraulic characteristics on the 
basis of soil textural data. One such software 
package is Rosetta (www.ussl.ars.usda.gov), 
developed by Schaap at the U.S. Salinity 
Laboratory in Riverside, California. The 
Rosetta code predicts van Genuchten (1980) 
water retention parameters and saturated 
hydraulic conductivity on the basis of soil 
textural class, textural distribution, bulk 
density and one or two water retention data 
points. It follows a hierarchical approach 
that is based on five models, depending on 
the available data. The simplest model 
consists of a lookup table of average 
hydraulic parameters for each textural class 
such as sand, silty loam, clay loam, etc. The 
other models rely on neural network 
analyses (Schaap et al., 1999) of over 2,000 
soil samples for water retention, over 1,000 
samples for saturated hydraulic conductivity 
(Schaap and Leij, 1998), and over 200 
samples for unsaturated hydraulic 
conductivity (Schaap and Leij, 2000). 
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The samples represent a large number of 
agricultural and non-agricultural soils in 
temperate climate zones of the northern 
hemisphere, most from the U.S. and some 
from Europe. The authors warn the user that 
the application of Rosetta to other climate 
zones, in which pedogenic processes are 
different, could lead to inaccurate 
predictions. Included in the output are 
uncertainty estimates of the predicted 
hydraulic parameters, which can be used to 
assess the reliability of the predictions. 
 
We have used Rosetta in our analysis of data 
from the Maricopa Agricultural Center in 
Arizona as illustrated later in this report.  
Rossini et al. (1994) and Rovellini et al. 
(1998) utilize the concept of facies as the 
basis for petroleum reservoir 
characterization. They treat facies as the 
elementary units of the reservoir, determine 
them through a log-based cluster analysis, 
and associate them with petrophysical 
properties from cores.  In the case study of 
Rossini et al., the reservoir shows extreme 
variability, comprising all the transitional 
lithologies from sand to dolomite. Due to the 
limited continuity of its lithologic facies, 
their spatial distribution is difficult to 
identify. The authors started by identifying 
deterministically three hydraulically 
separated layers in a vertical cross-section, 
distinguished in part by their diverse original 
gas-oil and oil-water contacts. After 
developing a petrophysical criterion to 
distinguish between sandy and dolomitic 
facies, they established a frequency 
distribution of porosities, and a correlation 
between log permeabilities and porosities, 
for each facies on the basis of core data. 
Likewise, they developed horizontal and 
vertical indicator semivariograms of 
porosity for each facies. Next, the authors 
divided the three layers into 1,645,000 cells 
measuring 50 m horizontally and 0.5 m 
vertically. They then generated ten equally 

likely random images of the facies across 
this grid by conditional stochastic indicator 
simulation, and assigned random porosities 
and permeabilities to grid blocks within each 
facies. To simulate flow through each of the 
ten generated reservoirs, the authors 
superimposed a coarse grid over the original 
fine grid and assigned an upscaled porosity 
and permeability to each coarse grid block. 
Rovellini et al. (1998) also used a stochastic 
model to distribute facies and related 
petrophysical parameters (porosity, 
permeability and irreducible water 
saturation) within the volume of a reservoir. 
They then generated several equally 
probable realizations of the reservoir and ran 
it through a flow simulator. The realization 
providing the best history match was 
selected for production forecasts. 
 
7.3.3  How to Use Generic and 

Subjective Probabilities? 
 
If the available hard and soft data are not 
amenable to geostatistical analysis (due to 
insufficient information about their spatial 
location, an inappropriate spatial pattern, 
insufficient number and/or poor quality of 
data), an alternative is to rely on generic 
and/or subjective probabilities and statistics. 
Doing so is equivalent to postulating a Type 
B statistical model of prior parameter 
uncertainty. Such a model should always be 
suspected of suffering from an unknown 
amount of statistical and personal bias. 
Statistical bias is introduced due to lack of 
site-specific information about mean values 
of the parameters in question. A personal 
bias tends to manifest itself in the form of 
assigned uncertainty measures (most 
importantly bias and error variance) that are 
either too small or too large. The first is a 
manifestation of over-confidence in the 
model parameters, the second of unduly low 
confidence in their values. 
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Generic probabilities for unsaturated 
hydraulic properties associated with various 
soil textures are given by Carsel and Parish 
(1988) and Meyer et al. (1997). An example 
of generic probability distributions of soil 
hydraulic properties for sand by the latter 
authors is given in Figure 11-10. The same 
authors also describe a Bayesian procedure 
that makes it possible to update these 
probabilities, and reduce the corresponding 
uncertainty in hydraulic parameters, on the 
basis of site-specific data. 
 
We have used both sets of generic 
probabilities, and the Bayesian updating 
procedure of Meyer et al. (1997), in our 
analysis of data from the Maricopa 
Agricultural Center in Arizona as illustrated 
later in this report. 
 
7.4 How to Calibrate Traditional 

Deterministic Models? 
 
7.4.1 Where to Start for what Purpose? 
 
The traditional approach to hydrogeologic 
modeling has been to postulate a 
deterministic model structure and treat its 
parameters as being imperfectly known. One 
would then derive prior estimates of these 
parameters from site characterization data (if 
available) and modify them so as to achieve 
an acceptable fit between model outputs and 
available monitoring data (if such exist). 
The process is known as model calibration, 
parameter estimation, history matching or 
inverse modeling. The parameters that yield 
the best match between observed and 
recorded system behavior form posterior 
estimates. It is common to consider the latter 
to be more suitable for predictive purposes 
than prior parameter estimates. 
 
Although this is not always done, it is 
generally advisable to start the model 
calibration process by postulating a prior 

parameter uncertainty model. We saw how 
to do this and mentioned that it may lead to 
a Type A probability model when prior 
parameter uncertainty is characterized on the 
basis of a statistically significant set of site 
specific measurements that represent the 
parameter; a Type B model when the 
uncertainty is characterized by generic 
and/or subjective probabilities; and an 
intermediate type model when parameter 
uncertainty is inferred from indirect 
information about the parameters. We noted 
that a Type B model should always be 
suspected of an unknown amount of 
statistical and personal bias. A model that is 
intermediate between Type A and Type B 
must also be considered potentially biased, 
with variances that may be too small or too 
large, poorly defined correlations, and 
incompatibility of scale. 
 
We noted earlier that improper upscaling 
may render the prior parameter estimates 
biased and their uncertainty 
mischaracterized, regardless of what type 
probability model one adopts. It is generally 
believed that model calibration tends to 
reduce both the bias and the uncertainty in 
prior parameter estimates by insuring that it 
reproduces adequately observed system 
behavior. This should render a calibrated 
model more reliable as a predictor than an 
uncalibrated model.  Appendix C points out 
that calibrating a traditional deterministic 
flow model against measured values of head 
and flux is tantamount to conditioning it on 
such measurements. As the model hydraulic 
parameters are by nature conditional, the 
very act of adding measured heads and 
fluxes to the database alter their values. This 
inherent nonuniqueness persists regardless 
of whether the inverse problem is well- or 
ill-posed. It explains why model parameter 
estimates tend to change every time one 
redefines the underlying database. 
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7.4.2 How to Calibrate? 
 
The last thirty years have seen major 
advances in the development of theories and 
algorithms for the estimation of 
deterministic model parameters. Many 
(though not all) of these theories and 
algorithms are "statistical" in that they 
include analyses of parameter estimation 
uncertainty. Such analyses typically accept, 
but do not necessarily require, information 
about prior parameter statistics as input. The 
output includes posterior statistics of 
parameter estimation errors, which tend to 
be less biased and smaller than the prior 
estimation errors. A recent summary and 
comparison of various statistical inverse 
methods for groundwater flow models has 
been published by Zimmerman et al. (1998). 
A detailed set of guidelines for the effective 
calibration of deterministic groundwater 
flow models has been prepared by Hill 
(1998).  Among inverse codes that can be 
used to estimate the parameters of standard 
deterministic flow and transport models we 
mention the following: 
 
UCODE: This is a public domain universal 

inverse modeling tool developed by 
Poeter and Hill (1998) 
(www.mines.edu/igwmc/freeware/ucode/) 
at the Department of Geology and 
Geological Engineering of the Colorado 
School of Mines in Golden, and the U.S. 
Geological Survey in Lakewood, 
Colorado, respectively. The code is 
available for DOS, Windows and Unix 
operating systems. The code is universal 
in that it works with any model that has 
suitable numerical (ASCII or text only) 
input and output files. The code 
generates sensitivity coefficients and 
statistics for parameter estimates. It is 
included as an option in GMS (described 
earlier). 

 

PEST: This is a universal parameter 
estimation software developed by 
Doherty et al. (1994). The code is 
marketed by the International Ground-
Water Modeling Center 
(www.mines.edu/igwmc/) at the 
Colorado School of Mines in Golden, 
the Scientific Software Group 
(www.scisoftware.com) and other 
vendors. It uses text input-output files 
and provides estimation statistics 
including confidence intervals, 
covariance and correlation matrices 
between the parameters. A parallel 
version of the code can run 
simultaneously on several processors or 
on multiple machines across a PC 
network. PEST is an optional component 
of GMS. 

 
PEST has been used successfully by 
Vesselinov and Neuman (2001) and 
Vesselinov et al. (2001a-b) to interpret 
multi-rate single-hole and cross-hole 
pneumatic injection tests at the Apache 
Leap Research Site near Superior, 
Arizona. Our inverse interpretation of 
the cross-hole data yields tomographic 
images of air permeability and porosity 
variations in three-dimensional space. 
The latter represent geostatistical 
(kriged) parameter estimates based on 
pressure monitoring data collected 
during each cross-hole test. We coupled 
PEST with a three-dimensional finite 
volume flow simulator, FEHM 
(Zyvoloski et al., 1997), an automatic 
mesh generator, X3D (Trease et al., 
1996), and the geostatistical program 
GSTAT (Pebesma and Wesseling, 1998) 
mentioned earlier. Our computations 
were conducted in parallel on 32 
processors of the SGI Origin 2000 
supercomputer at The University of 
Arizona in Tucson. 
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ITOUGH2: ITOUGH2 (inverse TOUGH2) 
is an inverse code developed by Finsterle 
(1999a-c) specifically for the TOUGH2 
model, which simulates multiphase, 
multicomponent, non-isothermal flows 
in multidimensional fractured-porous 
media. The inverse code is available for 
a fee from the Earth Sciences Division 
of Lawrence Berkeley National 
Laboratory at esd.lbl.gov/ITOUGH2/. 
Any TOUGH2 input parameter can be 
estimated based on any observation for 
which a corresponding TOUGH2 output 
can be calculated. ITOUGH2 conducts 
sensitivity analyses and provides 
statistical information about estimation 
residuals, uncertainties, and the ability to 
discriminate among model alternatives. 
It also allows one to propagate parameter 
uncertainties so as to quantify prediction 
errors. Our group has used ITOUGH2 to 
help interpret infiltration and tracer 
experimental data from the Maricopa 
Agricultural Center, as discussed 
elsewhere in this report. 

 
HYDRUS-2D:  This is a Windows-based 

software package developed by Simunek 
et al. (1999) at the U.S. Salinity 
Laboratory in Riverside, California 
(www.ussl.ars.usda.gov). The program 
simulates water, heat and solute 
movement in variably saturated media in 
a vertical plane, a horizontal plane, or a 
three-dimensional region with a vertical 
axis of symmetry. The package includes 
a mesh generator, a graphic interface, 
and an automatic parameter estimation 
module for the estimation of selected 
soil hydraulic and/or solute transport 
parameters. It is available for a fee from 
the International Ground-Water 
Modeling Center at the Colorado School 
of Mines in Golden 
(www.mines.edu/igwmc/). 

 

7.4.3 How to Select Model Fit Criteria? 
 
Differences between values of model 
simulated system states (most commonly 
hydraulic head, pressure or concentration) at 
discrete points in space-time, and observed 
values of these same state variables, are 
termed "residuals" in model calibration 
parlance. The residuals are considered to 
represent errors that are distributed 
randomly about the simulated model output. 
An underlying (often tacit) assumption is 
that the conceptual-mathematical model is 
exact and associated with an unknown set of 
"true" parameters. If these parameters were 
known, the model (structure plus 
parameters) would be exact. To the extent 
that it would produce nonzero residuals, this 
would be entirely due to errors in the 
monitoring record. These data errors (or 
their logarithmic transform, as is usually 
done with permeability and transmissivity) 
are typically taken to have zero mean and be 
normally distributed. Hence ideally (in the 
theoretical event that the true parameters 
were known), the residuals would exhibit a 
multivariate Gaussian distribution with zero 
mean (i.e., they would be unbiased) and a 
variance-covariance identical to that of the 
monitoring data. 
 
Model calibration is seen as the process of 
estimating the model true parameters 
without bias and as closely as possible. This 
is accomplished by defining an appropriate 
calibration criterion (or objective function) 
in terms of the residuals, and "optimizing" 
the parameters in a way which comes closest 
to satisfying this criterion (achieving the 
objective). The extent to which the criterion 
is satisfied (the objective achieved) becomes 
a measure of model fit. Theoretically, the 
optimized parameters are associated with 
estimation errors that have zero mean and 
minimum variance.  
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The most commonly used measure of model 
fit is the weighted sum of squared residuals. 
This is meaningful in the above statistical 
sense provided the monitoring data errors 
are mutually uncorrelated and each weight is 
inversely proportional to the corresponding 
error variance. Model calibration then 
reduces to a weighted least squares fit of the 
model to the data (or regression of the 
parameters on the data). Since groundwater 
model parameters are usually related to state 
variables in a nonlinear fashion, the 
weighted least squares fit is nonlinear. This 
is why model calibration must usually be 
done iteratively. 
 
If all the weights (and variances) are equal, 
the model fit criterion can be normalized to 
form a simple sum of squared residuals. 
Model calibration then reduces to an 
ordinary nonlinear least squares fitting 
process (or nonlinear regression). 
 
A less common but still widely used 
measure of model fit is the generalized sum 
of squared residuals. Whereas in the 
previous cases the weights formed a 
diagonal matrix proportional to the inverse 
of a diagonal matrix of observational error 
variances, here the weights form a full 
matrix proportional to the inverse of a 
(usually full) variance-covariance matrix. 
This is statistically meaningful in the 
previous sense when the errors are mutually 
correlated. Calibration now becomes a 
generalized nonlinear least squares or 
regression process. 
 
If some of the statistical parameters that 
define the observational errors are unknown, 
they may sometimes be estimated jointly 
with the other model parameters by the 
maximum likelihood method. This entails a 
likelihood function, which is the likelihood 
of the parameters given a set of (conditional 
on) observational data. The latter is the 

probability density of the (error corrupted 
and so random) data given (conditional on) 
the parameters. The objective would be to 
maximize the likelihood function. 
 
Since the data (or their log transform) are 
assumed to be normally distributed, the 
likelihood function is multivariate Gaussian. 
As such, it includes an exponential term 
whose negative logarithm is equal to half the 
weighted (by the inverse covariance matrix) 
sum of theoretical square residuals. 
Parameters are estimated by minimizing the 
negative logarithm of the likelihood 
function. In the special case where all 
statistical parameters are known, the 
negative log likelihood function reduces to 
the standard generalized least squares 
criterion. 
 
A maximum likelihood approach to model 
calibration, which incorporates information 
about prior parameter statistics into the 
statement of the inverse problem, was 
proposed by Carrera and Neuman (1986a-b). 
It yields a negative log likelihood criterion 
that includes two weighted square residual 
terms instead of one. The first is the usual 
generalized sum of squared differences 
between simulated and observed state 
variables. The second is a generalized sum 
of squared differences between posterior and 
prior parameter estimates. The 
corresponding weight matrix is proportional 
to the inverse covariance matrix of prior 
parameter estimation errors. The constant of 
proportionality, λ, is treated as a free 
statistical parameter that may be estimated 
jointly with the remaining parameters by 
maximum likelihood. The authors have done 
so by calibrating the model for various 
values of λ, plotting the negative log 
likelihood (S) against λ, and finding 
graphically the value of λ that minimizes S 
(Figure 7-1). Allowing λ to be initially 
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unspecified means that neither the 
covariance matrix of the observational data 
nor that of the prior parameters need be fully 
specified; it is enough to specify each of 
them up to its own constant of 
multiplication. A method to estimate these 
constants of multiplication on the basis of λ 
has been described by the authors (see also 
Carrera et al., 1997). 
 
Including prior information in the 
calibration criterion allows Carrera and 

Neuman (1986a-b) to condition the 
parameter estimates not only on site 
monitoring (observational) data but also on 
site characterization data from which prior 
parameter estimates are usually derived. 
When both sets of data are considered to be 
statistically meaningful, the posterior 
parameter estimates are compatible with a 
wider array of measurements than they 
would be otherwise and are therefore better 
constrained (potentially rendering the model 
a better predictor).

 

 
 

Figure 7-1. Variation of log-likelihood criterion, sum of squared head residuals,  
and sum of squared log-transmissivity estimation errors with λ   

(after Carrera and Neuman, 1986b). With permission, AGU. 
 
7.4.4 What to Do with Insufficient Data? 
 
When either set of data is too small, 
clustered or otherwise unsuitable for a 
meaningful assessment of prior statistics, it 
may still be possible to come up with prior 
parameter estimates and weigh them 

subjectively relative to each other, based on 
their perceived reliability. Similar weights 
may be assigned to site monitoring data. 
One can then adopt a calibration criterion 
J Pλ+  equal to a weighted sum (J) of 
squared residuals (differences between 
simulated and observed state variables), plus 
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the product of λ with a weighted sum (P) of 
squared differences between posterior and 
prior parameter estimates. One can then 
calibrate the model for various choices of λ 
and plot the weighted sum of squared 
residuals versus 1/λ to see how the latter 
affects the former. As shown by Neuman 
(1973), one would typically find that the 
sum of squared residuals is largest when 1/λ 
= 0 and decreases more-or-less 
monotonically to an asymptote as 1/λ 
increases (Figure 7-2). This is clear 
considering that 1/λ = 0 corresponds 

to λ = ∞ , which is equivalent to giving 
infinite weight to the prior parameter 
estimates and forcing the posterior estimates 
to coincide with them. As 1/λ is allowed to 
increase, the weight placed on the prior 
parameters decreases and their constraining 
effect on the posterior estimates gradually 
diminishes. Eventually 1/λ  becomes large 
enough to virtually eliminate any effect of 
the prior on the posterior estimates. The 
calibration is now unconstrained by site 
characterization data and relies entirely on 
site monitoring data. 

 

 
 

Figure 7-2. Residual versus parameter plausibility criteria  
(after Neuman, 1973). With permission, AGU. 

 
Rather than one calibration criterion one 
now has two, the weighted sum of squared 
residuals (J) and the weighted sum of 
squared differences between posterior and 
prior parameter estimates (P). These two 
criteria are mutually incompatible in that to 

satisfy one, it is necessary to sacrifice the 
other (to achieve the objective of 
minimizing one, the other must be allowed 
to remain arbitrarily large, as seen in Figure 
7-2). In most cases, the optimum solution to 
this multiobjective or Pareto problem is not 
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to minimize either objective but to find an 
acceptable tradeoff between them on the 
basis of subjective value judgment. The idea 
is discussed in detail by Neuman (1973). 
 
In the absence of sufficient or reliable site 
monitoring data, the model must rely 
entirely on prior parameter estimates and is 
only as good as are the latter. The model 
remains uncalibrated, untested and 
unconfirmed. 
 
7.5 How to Calibrate Stochastic Models? 
 
7.5.1 How to Calibrate High-Resolution 

Monte Carlo Models? 
 
High-resolution Monte Carlo modeling 
entails generating multiple random 
realizations of flow and transport parameters 
on a fine grid, solving standard deterministic 
flow and transport equations with these 
parameters on the same grid, averaging the 
results and analyzing them statistically. 
Conditional Monte Carlo simulations honor 
measured values of the parameters at 
discrete points in space. They however do 
not guarantee that the simulations produce 
results which correspond to actual records of 
system behavior. To render Monte Carlo 
simulations compatible with observational 
data, the approach has been to simply 
discard realizations that do not conform to 
such data. This is the approach that underlies 
the GLUE (Generalized Likelihood 
Uncertainty Estimation) strategy of Beven 
and Binley (1992; see also Beven, 2000) and 
the Bayesian approach of Gaganis and Smith 
(2001). The problem with it is that it usually 
requires a tremendously large number of 
simulations without ever guaranteeing full 
compatibility with the observations. 
 
Sahuiquillo et al. (1992), G\mez-Hern<ndez 
et al. (1997) and Capilla et al. (1997) have 
developed an inverse method that allows one 

to condition individual Monte Carlo 
realizations not only on measured 
hydrogeologic input parameters (notably 
transmissivity) but also on observed system 
states (notably hydraulic head). In the 
version described by G\mez-Hern<ndez et 
al. (1997), first a random transmissivity field 
is generated conditional only on 
measurements of the same (via pumping 
tests). Next, the transmissivity field (and 
possibly the boundary conditions) is 
modified iteratively, without destroying the 
spatial pattern of its variability, until head 
simulations based upon it come close to 
honoring the observational data, by yielding 
a sufficiently small sum of weighted squared 
residuals. The transmissivity is 
parameterized geostatistically in terms of 
discrete values associated with actual and 
fictitious "master" (analogous to de 
Marsily's "pilot", 1978) points of 
measurement. Values associated with real 
measurements are taken to represent known 
transmissivities. Values associated with pilot 
points are treated as hydrogeologic 
parameters to be estimated by the inverse 
algorithm. Both sets of values are projected 
onto a computational grid via kriging to 
yield parameter estimates for the entire 
model. An option is provided whereby 
values associated with real measurement 
points can also be modified during the 
parameter estimation process within their 
respective uncertainty ranges. 
 
To allow variations in boundary conditions, 
head and flux are also parameterized in 
terms of values at a few master locations on 
the boundary, which are estimated jointly 
with the transmissivities.  In the first 
iteration, the flow equation is linearized to 
allow direct solution of the optimization 
problem by quadratic programming. In 
subsequent iterations, the equation is solved 
in its nonlinear form and optimization 
proceeds using a gradient method.  
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Capilla et al. (1997) have applied the 
method to two-dimensional steady state flow 
using a finite difference numerical scheme. 
In their synthetic examples, two or three 
iterations have sufficed to yield excellent 
results even for cases where natural log 
transmissivity variance is as high as 10. 
 
G\mez-Hern<ndez et al. (1997) stress that 
their aim is not to obtain "the optimal 
transmissivity field" but any transmissivity 
field that satisfies the conditions of honoring 
both transmissivity and head data while 
displaying a plausible pattern of spatial 
variability. It is clear that their optimal field 
is only one among many equally likely 
random fields that satisfy the same 
conditions. 
 
In principle, one should be able to generate a 
large number of random fields that satisfy 
the above conditions by combining the 
proposed inverse method with the Monte 
Carlo approach. Though this might require 
considerable computer time and resources, it 
would most probably be much more 
efficient than merely discarding standard 
conditional Monte Carlo simulations that do 
not honor the observational data. 
 
7.5.2 How to Calibrate Moment 

Equation Models? 
 
Inverse algorithms based on the moment 
equation approach are presently under 
development by our group. The algorithms 
yield directly (without Monte Carlo 
simulation) optimized unbiased predictors of 
groundwater flow and transport variables for 
randomly heterogeneous hydrogeologic 
environments, under the action of uncertain 
source and boundary terms. They also yield 
the variance-covariance of associated 
estimation and prediction errors. The 
algorithms do so while accounting explicitly 
for the multiscale (e.g., fractal) nature of 

hydrogeologic heterogeneity. They allow 
optimum use of field information through 
joint conditioning on measured values of 
hydraulic parameters, hydraulic heads and 
solute concentrations. 
 
An inverse algorithm recently developed by 
us for steady state flow in saturated media 
(Hernandez et al., 2002) is based on leading 
finite element approximations of exact first 
and second conditional moment equations. It 
parameterizes log permeability 
geostatistically in terms of discrete values 
associated with actual and fictitious "pilot" 
(de Marsily, 1978) points of measurement. 
Values associated with real measurements 
are taken to represent prior log permeability 
estimates. If and when enough such values 
are available, they are projected onto a 
computational grid via kriging to yield prior 
parameter estimates for the model. Values 
associated with pilot points are treated as 
unknown parameters to be estimated by the 
inverse algorithm. An option is provided 
whereby values associated with real 
measurement points can also be modified 
during the parameter estimation process. 
This is useful when they are uncertain 
and/or suspected of statistical bias. 
 
Free statistical parameters may be 
introduced such as the variance or 
correlation scale of the underlying random 
field and/or its kriging statistics. These are 
then estimated jointly with the 
hydrogeologic parameters by using the 
nonlinear maximum likelihood approach of 
Carrera and Neuman (1986a-b). The 
negative log likelihood function is 
minimized by means of the Gauss-Newton 
nonlinear optimization method (Carrera et 
al., 1997). 
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7.6 How to Gauge Quality of Model Fit? 
 
To gauge the extent to which calibration has 
helped improve the quality of model fit, it is 
helpful to compare values of the calibration 
criterion prior to and after calibration. The 
first is computed with prior parameter 
estimates, and the second with posterior 
estimates. A significant improvement would 
manifest itself in a large relative move 
toward the objective (say of maximizing a 
likelihood function or minimizing a negative 
log likelihood criterion). 
 
Other useful ways to gauge the quality of 
model fit, before and after calibration, 
include comparing contours, time records, 
peaks and trends exhibited by observed and 
simulated state variables. Systematic 
differences between observed and simulated 
behaviors are often an indication of 
systematic errors (biases) in the underlying 
model structure and/or parameters. 
Calibration should help eliminate systematic 
errors in the parameters. It follows that the 
persistence of such errors in a properly 

calibrated model may be taken as an 
indication of bias in model structure 
(provided the observational data are 
considered to be reliable). This may call for 
a reevaluation and revision or abandonment 
of the underlying conceptual-mathematical 
model. 
 
It is also very important to perform an 
analysis of residuals with the aim of 
checking how closely they satisfy the 
assumptions on which the statistical inverse 
approach is predicated. We recall that these 
assumptions include multivariate Gaussian 
distribution, zero mean, and a variance-
covariance similar to that of the 
observational data. Several statistical tests 
and graphical procedures to perform such 
checks are discussed by Hill (1998). 
 
The following example illustrates how 
examining the quality of calibrated model fit 
may help one disqualify the central 
hydrogeologic hypothesis that underpins the 
model. 
 

 

 
 

Figure 7-3.  Whiteshell Research Area (after Ophori et al., 1996).
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7.6.1 Example: Whiteshell Research 
Area 

 
The Whiteshell Research Area (WRA) near 
Pinawa, Manitoba (Figure 7-3), and the 
underground research laboratory (URL) 
contained within it, have been used as a 
generic field site to investigate the potential 
suitability of crystalline rocks in the 
Canadian shield to host a repository for 
spent nuclear fuel. 
 
As part of his service on the Scientific 
Review Group (SRG) for the Canadian 
concept of geologic spent fuel disposal, 
Neuman (Scientific Review Group, 1996) 
has examined a recently revised conceptual 
and mathematical model that has been 
proposed for the area by Atomic Energy for 
Canada Limited (AECL). This model rests 
on a number of fundamental premises, 
which state that 
1. Large intact bodies of sparsely fractured 

rock (SFR) are found at the site; 

2. Uniformly low permeabilities and 
hydraulic gradients in the SFRs render 
transport through them predominantly 
diffusive; 

3. There is a consistent decrease in 
permeability with depth in all rock units 
at the site, including fracture zones (FZs) 
of relatively high permeability; 

4. Vertical and horizontal hydraulic 
communication between permeable rock 
units, including FZs, is limited;  

5. Ambient flow in all rock units takes 
place at steady state. 

 
The review revealed that none of these 
simplifying assumptions are supported, and 
most appear to be contradicted, by the 
available data. A reinterpretation of these 
data by Neuman has led him, and the SRG 
(1996), to a fundamentally different 
conceptual-mathematical model of site 
hydrogeology that is considerably more 
complex.

   
 
Figure 7-4. Selected logs of boreholes WD3 (left) and WG4 (right) (after Stevenson et al., 1996). 
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Figure 7-5. Landsat lineaments in WRA and outline of model finite element grid  
with embedded fracture zones (after Ophori et al., 1996). 
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Figure 7-6.  Equivalent fresh water head profiles in boreholes WD3 (upper left),  
WG4 (upper right), WA1 (lower left), and WG1 (lower right)  
(after Stevenson et al., 1995, and personal communication). 

 
The SRG review has found the available 
data to show and suggest the following: 
1.  Boreholes intersect intervals with up to 

100+ m of SFR (Figure 7-4), which have 
been interpreted in the original model as 
thicknesses of laterally extensive SFR 
bodies. There is however compelling 
evidence (below) that numerous 
permeable fracture zones (FZ) and 
moderately fractured rock (MFR) bodies 
form a hydraulically interconnected 
network which envelopes less permeable 
SFR bodies on many if not all sides. 

2.  Whereas MFR dominates at shallow 
depths, it is sometimes found down to 
depths of 1,000 m (Figure 7-4). 

3. 500+ lineaments and FZs have been 
identified on the surface, but relatively 
few have been encountered in boreholes 
or included in the model (Figures 7-4–7-5). 

4. Only small differences have been found 
between equivalent fresh water head 
values in high-permeability zones at all 
depths across the region (Figure 7-6). 
This suggests that such zones form an 
interconnected regional network which 
allows rapid hydraulic communication 
and equilibration in all directions, 
thereby allowing flow within the 
network to be at a near-steady state. 

5. Heads in high-permeability zones vary 
more in a horizontal direction (between 
boreholes) than in a vertical direction 
(within boreholes; Figure 7-6). This 
suggests that flow in the regional high-
permeability network is predominantly 
horizontal. 

6. Steep local hydraulic gradients prevail 
between high-permeability zones and 
SFR interiors (Figure 7-6). This suggests 
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that embedded within the regional high-
permeability network are low-
permeability SFR blocks from which 
water leaks into the surrounding network 
under steep gradients. Indeed, field 
salinity experiments (below) confirm 
such advective leakage. A plausible 
interpretation is that past heads were 
higher than those of today, possibly due 
to glacial loading. As the corresponding 
load relaxed, heads in the high-
permeability network dissipated rapidly 
toward a new dynamic equilibrium 
(steady state) while heads within the 
low-permeability SFR blocks are still 
dissipating under a transient regime. 
Salts have been flushed from shallower 
parts of the network, but not yet fully 
from the SFR blocks. 

7. The latter explains why salinity 
increases regionally with depth, and is 
locally higher within SFR blocks than 
within more permeable adjacent rock 
units. 

8. Gascoyne et al. (1996) drilled three 
boreholes, up to 100 m in length, into the 
SFR at a depth 420 m (Figure 7-7). They 
packed off six sections which contained 
no apparent fractures, filled them with 
deionized water without pressurizing, 
and observed a continuous increase in 
salinity throughout the period 1992-
1996. Core leaching tests and 
calculations indicated that ionic 
diffusion alone would give a salinity 
increase orders of magnitude lower than 
those actually observed. Gascoyne et al. 
therefore concluded that solute transport 
within the SFR, under sufficiently large 
hydraulic gradients, is predominantly 
advective rather than diffusive. As very 
steep hydraulic gradients between SFR 
interiors and adjacent high-permeability 
rocks have been recorded throughout the 
WRA (Figure 7-7), there appears to be 
no justification for the simplifying 
assumption that radionuclide transport 
through SFR blocks would be 
predominantly diffusive. This 
assumption is evidently nonconservative.
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Figure 7-7.  URL borehole leaching test setup and results (after Gascoyne et al., 1996). 
 
 
The numerical model used for performance 
assessment additionally assumed a 
downward trend in SFR permeability for 
which there is no evidence; disregarded the 
documented three-order variability in SFR 
permeabilities at depths below 200 m; 
underrated MFR permeabilities by many 
orders of magnitude at depths below 100 m; 
neglected spatial variability in FZ 
permeabilities; and set the latter 1-3 orders 
lower than is their mean at depths below 400 
m. The groundwater flow and transport 
model was calibrated in the manner depicted 
in Figure 7-8. Though quantitatively the 

agreement between computed and observed 
equivalent fresh water heads was said by the 
modelers to be satisfactory, qualitatively the 
agreement is poor. This is clearly seen in 
Figure 7-9 where computed heads increase 
near-monotonically with depth while 
measures heads are much lower in high-
permeability rock units than in low-
permeability zones. The most probable 
reason for this mismatch is a conceptual-
mathematical framework that fails to capture 
important complexities of hydrogeology at 
the URL site.
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Figure 7-8.  Flow chart of AECL model calibration procedure (after Ophori et al., 1996). 
 
 



 

116 
 
 

 
 

Figure 7-9. Comparison between computed and recorded equivalent fresh water head profiles 
(after Ophori et al., 1996). Modified by Neuman (Scientific Review Group, 1996). 

 
7.7 How to Quantify Posterior 

Parameter Uncertainty? 
 
The statistical approach to deterministic 
model calibration allows one to quantify the 
uncertainty associated with posterior 
parameter estimates. One measure of 
posterior parameter estimation errors is the 
Cramer-Rao lower bound on their 
covariance matrix. This lower bound is 
given by the inverse Fisher information 
matrix (Carrera and Neuman, 1996a-b; 
Carrera et al., 1997). Each term in the Fisher 
information matrix is one half the ensemble 
average of the second derivative of the 
negative log likelihood criterion with respect 
to a pair of parameters. It thus measures the 
average rate at which model sensitivity to 
one parameter is affected by changes in 
another parameter. From it, one can obtain a 
corresponding lower bound on the 

correlation matrix of the estimates. Ideally, 
the parameter estimates should be 
uncorrelated. 
 
The Fisher information matrix is usually 
approximated by linearizing the relationship 
between system states and parameters when 
the latter are optimal. It is then expressed as 
a function of the calibration weights (inverse 
covariance matrices of observed and prior 
input data) and a Jacobian matrix, whose 
terms represent sensitivities of system states 
to the parameters. It is thus clear that an 
analysis of parameter uncertainty includes in 
it a sensitivity analysis of the model and its 
output. 
 
A large variance associated with a given 
parameter indicates a high level of 
uncertainty in its estimate. A high degree of 
correlation between estimates implies that 
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they are linearly related in a statistical sense. 
This means that they cannot be estimated 
individually with the available data, and 
should either be lumped into one parameter 
or estimated anew when more data become 
available. 
 
Linearization implies that if the prior 
(observation and parameter) errors are 
multivariate Gaussian (as one generally 
assumes), so are the posterior parameter (or 
log parameter) estimation errors. This allows 
one to associate them with linear confidence 
intervals, which can be viewed as 
corresponding error bounds. 

More accurate measures of uncertainty, 
which compensate to some extent for 
nonlinearity, are discussed by Vecchia and 
Cooley (1987). 
 
We illustrate these and related concepts later 
in the report in connection with our inverse 
analysis of experimental data from the 
Maricopa Agricultural Center.  Another 
illustration related to inverse analysis of 
pneumatic pressure data from the Apache 
Leap Research Site is provided by 
Vesselinov et al. (2001a-b). 
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8 QUANTITATIVE COMPARISON AND RANKING OF ALTERNATIVE MODELS 
 

Alternative conceptual-mathematical models 
that have been made compatible with the 
available database must now be compared 
among themselves to see how they rank on a 
relative scale of quality and complexity. 
Models deemed to rank low are iteratively 
reevaluated, revised or discarded. Those 
retained are ranked again on the basis of 
likelihood based model discrimination 
criteria and optionally eliminated from 
further consideration at this final stage of 
model testing and selection. 
 
8.1 How to Establish Comparative 

Measures of Model Quality and 
Complexity? 

 
Alternative conceptual-mathematical models 
that have been successfully calibrated can be 
compared on the basis of quality criteria 
such as model fit and posterior parameter 
uncertainty. Examples include: 

Likelihood or negative log likelihood of 
posterior parameter estimates, given the 
available data;  
Inverse variance-covariance weighted 
sums of squared residuals, which 
measure the overall lack of fit between 
model generated and observed system 
states; 
Various statistics of the residuals, which 
measure how closely they satisfy the 
assumptions of Gaussianity, 
unbiasedness, and similarity of their 
variance-covariance to that of the 
observational data; 
Consistent measures of systematic 
differences between contours, time 
records, peaks and trends exhibited by 
observed and simulated state variables; 
Invariant properties of the Cramer-Rao 
lower bound on the posterior covariance 

matrix of parameter estimation errors 
such as— 

Trace, also known as A-optimality 
criterion (which measures the 
cumulative variance of all estimation 
errors); 
Determinant, also known as D-
optimality criterion (which provides 
an overall measure of the estimation 
error variance-covariance matrix); 
Eigenvectors (the components of 
which represent relative 
contributions by the various 
parameter estimates, implying that 
parameters associated with a single 
eigenvector have uncorrelated 
estimation errors, and those 
associated with multiple 
eigenvectors have cross-correlated 
estimation errors, rendering them 
less amenable to discrimination); and  
Eigenvalues (parameters associated 
with eigenvectors that have small 
eigenvalues being less uncertain than 
those associated with eigenvectors 
that have large eigenvalues); the 
maximum absolute eigenvalue is 
known as E-optimality criterion; 

Linear confidence intervals; 
Invariant properties of the Jacobian 
sensitivity matrix (of system states to the 
parameters); etc.  

 
Models that have not been formally 
compared against monitoring data have 
indeterminate quality in terms of their ability 
to reproduce real system behavior. 
Calibrated models rank higher than 
uncalibrated models in terms of parameter 
quality criteria because (posterior) estimates 
tend to be less biased and uncertain than 
prior estimates, on which uncalibrated 
models are based.  
 



 

120 
 
 

• 

• 
• 

• 
• 
• 
• 
• 

If all models remain uncalibrated, their main 
comparative quality criteria are those that 
pertain to prior parameter uncertainty (if 
monitoring data are available against which 
model predictions can be compared, it is 
advisable to further calibrate the models 
against such data). These include 
 

The variance-covariance of prior 
parameter estimation errors; 
Various invariant properties thereof; and 
Corresponding linear confidence 
intervals. 

 
All models can be compared on the basis of 
model complexity criteria such as 
 

Dimensionality; 
Number of simulated processes; 
Degree of nonlinearity; 
Number of parameters; and 
Number or size of grid cells. 

 
8.2 How to Compare and Select 

Alternative Models Based on 
Quality and Complexity? 

 
8.2.1 Iterative Model Testing and 

Selection 
 
Alternative conceptual-mathematical models 
that have been made compatible with the 
available database must be compared among 
themselves to see how they rank on a 
relative scale of quality and complexity. 
Models deemed to rank low are iteratively 
reevaluated, revised or eliminated from 
further consideration. 
 
In particular, models that do not appear to 
meet acceptable criteria of quality (by 
exhibiting excessive uncertainty or bias) or 
complexity (by being either too refined or 
too crude) are reevaluated, revised or 
discarded. This process of testing, 

comparison, revision and screening is 
repeated iteratively till no further 
improvements appear necessary or feasible. 
A set of models is identified which represent 
acceptable tradeoffs between quality and 
complexity. The retained models are gauged 
and ranked in terms of likelihood based 
model discrimination criteria, which account 
for both model fit and complexity. Models 
that rank low on the list can be eliminated 
from further consideration at this final stage 
of model testing and selection. 
 
Examples of comparison and selection 
between models based on various criteria are 
included in our analysis of data from the 
Maricopa Agricultural Center discussed later 
in this report. 
 
8.2.2 Multiobjective Approach 
 
To help identify a set of models which 
represent acceptable tradeoffs between 
quality and complexity, it is helpful to 
employ a multiobjective approach. 
 
Consider a single hydrogeologic conceptual 
model for a site, expressed in terms of 
several conceptual-mathematical models 
that differ in only one complexity measure, 
such as their number of input parameters (I). 
Suppose that the models have been 
calibrated without the benefit of prior 
parameter estimates and one decides to 
gauge their quality in terms of a single 
criterion, such as negative log likelihood (S). 
Upon plotting S versus I, one typically finds 
that S decreases as I increases, in a manner 
similar to Figure 7-2. In other words, model 
quality improves as the model becomes 
more complex, and deteriorates as the model 
becomes simpler. If the objective is to have 
a high-quality but simple model, then there 
is no obvious way to achieve this objective. 
Instead, one must decide subjectively how 
much quality one is willing to sacrifice for 
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the sake of simplicity (or vice versa), and 
based on this select from the graph a range 
of S and I values that represent an acceptable 
tradeoff between the two. This "feasible" 
range constitutes a "Pareto" solution to the 
dual-objective optimization (or Pareto) 
problem. 
 
It is often advisable to gauge model quality 
in terms of more than a single criterion. For 
example, the calibration objectives for a 
transport model may include minimizing 
three criteria of model fit: negative log 
likelihood (S), a measure (T) of how well the 
model reproduces the observed peak arrival 
time of a plume at a monitoring point, and a 
measure (P) of how accurately it reproduces 
the magnitude of the peak. The objectives 
may also include minimizing two model 
complexity criteria: Its dimensionality (D) 
and number of parameters (I). The overall 
objective thus consists of minimizing 5 
incommensurate criteria simultaneously. Not 
all of them, however, can be achieved 
without sacrificing some other objectives. 
The only solution is to find an acceptable 
tradeoff between them. 
 
To do so, one must consider a range of 
models with different values of D (say 3, 2 
and 1 corresponding to three-, two- and one-
dimensional models, respectively) and I (say 
100, 10 and 1 to represent highly 
heterogeneous, less heterogeneous and 
uniform media, respectively). One must then 
calibrate these models and determine their 
corresponding values of the model fit 
parameters S, T and P. Next, one must 
determine an optimum tradeoff between 
these various model choices. 
 
Consider yet another case where each of 
several hydrogeologic conceptual models for 
a site is represented by a number of 
conceptual-mathematical models, the latter 
differing from each other in one or more 

measures of complexity (number of 
parameters, dimensionality, etc.). Upon 
considering one or more measures of quality 
for these models, one again faces a 
multiobjective problem that may entail 
many more potential choices than those 
obtained in the previous case. 
 
Pareto problems with more than two 
objectives are difficult to solve by 
inspection, as we saw is possible in the dual-
objective case. The alternative is to employ 
multiobjective programming techniques. 
Several methods have been developed for 
the articulation and solution of 
multiobjective decision problems which 
include the ELECTRE technique, 
compromise programming, multiattribute 
utility theory, surrogate worth trade-off, 
cooperative game theory, metagame 
analysis, Q-analysis, multiobjective simplex, 
and other (Duckstein et al., 1991). The idea 
is to make it possible for the analyst to 
investigate a range of feasible solutions to 
the problem and solve it by determining 
(subjectively) an acceptable tradeoff 
between all of its conflicting and 
incommensurate objectives.  A multi-
objective programming method developed 
by Neuman and Krzystofowicz (1977) is 
especially well suited for this purpose. It 
provides a computationally efficient way to 
generate binary graphs of tradeoff between 
pairs of conflicting objectives, and to 
determine an optimum tradeoff between all 
objectives interactively, in an iterative 
manner that is guaranteed to converge under 
commonly encountered conditions. 
 
8.2.3 Combined Measures of Model Fit 

and Complexity 
 
The multiobjective approach helps one 
identify a set of models that represent 
acceptable tradeoffs between quality and 
complexity. To further discriminate between 
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these models, it is useful to gauge and rank 
them in terms of likelihood based model 
discrimination criteria, which account for 
both model fit and complexity. This applies 
only to calibrated models because 
uncalibrated models have unknown 
likelihood. 
 
Consider several models that differ in their 
number of input parameters (I). The quality 
of their model fit is measured in terms of 
negative log likelihood (S). This common 
but special case has been studied intensively 
in connection with models of random time 
series. In particular, several criteria have 
been developed by Akaike (1974, 1977), 
Hannan (1980) and Kashyap (1982) to help 
one discriminate between such models. In 
recent years, the same criteria have been 
used with increasing frequency to 
discriminate between alternative 
geostatistical (Samper and Neuman, 1989a-
b; Chen et al., 2000) and dynamic (Carrera 
and Neuman, 1986a-b; Finsterle and 
Faybishenko, 1999) groundwater models. 
The model discrimination criteria are based 
on a combination of the model fit criterion 
(S) and the complexity criterion (I). By 
ranking the models in ascending order of 
their associated discrimination criteria, one 
favors the least complex among those that 
perform equally well in terms of model fit. 
Among models of equal complexity, those 
that fit the monitoring data better are 
favored. 
 
The model discrimination criterion of 
Kashyap contains yet another term that 
gauges the information content of the 
available data. It thus allows one to consider 
models of growing complexity as the data 
base improves in quantity and quality. 
Stated otherwise, the criterion recognizes 
that when the data base is limited and/or of 
poor quality, one has little justification for 
selecting an elaborate model with numerous 

parameters. Instead, one should then prefer a 
simpler model with fewer parameters, which 
nevertheless reflects adequately the 
underlying hydrogeologic structure of the 
system, and the corresponding flow and 
transport regime. Kashyap's criterion favors 
that model which, among all alternatives 
considered, is least probable (or likely, in an 
average sense) to be incorrect. Stated 
otherwise, the criterion minimizes the 
average probability of selecting the wrong 
model among a set of alternatives. 
 
Other model discrimination criteria can also 
be used, such as those employed by Hills 
and Wierenga (1994) in connection with 
INTRAVAL studies of experiments at the 
Las Cruces Trench Site in New Mexico. 
 
The model testing and selection process 
ends with the final ranking of models on the 
basis of likelihood based discrimination 
criteria, and the optional elimination of low 
ranking models from further consideration. 
We do so for alternative models of the 
Maricopa experimental site, as illustrated 
later in the report. 
 
8.2.4  Example: Chalk River Monzonitic 

Block 
 
The above quantitative method of 
discriminating between conceptual-
mathematical models has been applied 
successfully by Carrera et al. (1990) to the 
inverse modeling of transient flow during 
pumping tests conducted in fractured 
crystalline rock at Chalk River National 
Laboratories in Canada (Figure 8-1).  They 
used formal model discrimination criteria to 
rank four different zonation patterns of 
hydraulic parameters, labeled Models 1 - 4 
in Figure 8-2, to find that Model 4 is favored 
and indeed agrees extremely well with 
measurements.
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Figure 8-1. Block diagrams (a) and section (b) showing fracture zones and boreholes  
at Chalk River (after Carrera et al., 1990). With permission, Swets & Zeitlinger Publishers. 

 

 
 

Figure 8-2.  Four alternative parameter zonation patterns used in Chalk River model  
(after Carrera et al., 1990). With permission, Swets & Zeitlinger Publishers. 
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8.2.5  Example: Los Monegros Basin, 
Spain 

 
Samper-Calvete and Garcia-Vera (1999) 
applied similar criteria to the inverse 
modeling of groundwater flow in the 
semiarid basin of Los Monegros in Spain. 
They compared isotropic and anisotropic 
representations of two aquifers in the basin, 
and found that anisotropy is very important 
in one of them but not so much in the other. 
 
8.2.6  Example: Apache Leap Research 

Site 
 
Chen et al. (2000) compared three different 
conceptual-geostatistical models of spatial 
variability for single-hole natural log air 
permeability data collected on a nominal 
scale of 1 m at the Apache Leap Research 
Site in Arizona: (1) a fractal power-law 
variogram model, (2) an exponential 
variogram model with linear drift, 

and (3) an exponential variogram model 
with quadratic drift. Upon applying the 
maximum likelihood cross-validation 
method of Samper and Neuman (1989a-b) to 
these data, they found that whereas all three 
models yield comparable kriged estimates of 
log permeability in three dimensions, they 
yield very different estimation variances. 
This is illustrated along a vertical cross-
section for models 1 and 3 in Figure 8-3. 
The negative log likelihood model fit 
criterion, NLL, in Table 8-1 is very similar 
for all three models, implying that all three 
fit the data equally well. Yet all four model 
discrimination criteria, AIC, MAIC, HIC 
and KIC (due to Kashyap), consistently rank 
model 1 first and model 3 last. The reason is 
that, even though all three models fit the 
data reasonably well, model 1 is the most 
parsimonious and model 3 the least 
parsimonious among the three, hence the 
former is the choice of preference. 
 

 

 
 

Table 8-1.  Model fit and discrimination criteria for three geostatistical models  
applied to log air permeabilities from the ALRS. 
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Figure 8-3.  Gray scale images of kriged log air permeabilities and their variances  
along a vertical cross-section at the ALRS using two geostatistical models.
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9 RENDERING PREDICTIONS AND ASSESSING PREDICTIVE UNCERTAINTY 
USING MULTIPLE MODELS 

 
Alternative models that have been tested, 
compared, ranked and retained for further 
consideration are considered to constitute 
potentially valid simulators and predictors of 
site hydrogeology. There is no valid basis to 
prefer one of these models over another, and 
one must therefore use them in tandem. This 
means applying all of them to any given 
scenario and averaging their results to form 
a single "best" prediction. The prediction is 
best only in a relative and not in an absolute 
sense: It is conditional on the available 
models and data. This implies that better 
predictions could potentially be produced 
with other (as yet unidentified) models or 
data. The next task is to render a joint 
prediction by means of all the retained 
models and to identify their joint conditional 
predictive uncertainty. 
 
9.1 How to Assess Predictive 

Uncertainty for a Single 
Deterministic Model? 

 
9.1.1 Monte Carlo Method 
 
Monte Carlo simulation is by far the most 
common method of assessing the predictive 
uncertainty of a model. The method is 
conceptually straight forward and has the 
advantage of applying to a very broad range 
of both linear and nonlinear flow and 
transport models. Given information about 
the statistical properties of the model input 
parameters (including those that represent 
forcing terms) or their log transformed 
values, one generates numerous equally 
likely realizations of the parameters (or log 
parameters, as in the case of permeability 
and transmissivity). If the model has been 
calibrated, the input statistics correspond to 
the posterior parameter estimates. If the 
model is uncalibrated, they correspond to 

the prior estimates. In both cases, the 
estimates are generally associated with a full 
variance-covariance matrix. Upon assuming 
that the estimation errors are multivariate 
Gaussian, one has all the information one 
needs to produce random realizations of the 
parameters. 
 
One way to produce random realizations of 
a multivariate Gaussian vector (of 
parameters) is by Cholesky decomposition 
of its variance-covariance matrix. This LU-
factorization method, introduced by Clifton 
and Neuman (1982), is well suited for full 
matrices and highly efficient when the latter 
are not too large. Its efficiency stems from 
the fact that only one decomposition is 
required for an unlimited number of 
realizations. 
 
Once a parameter realization has been 
generated, one runs the model under a given 
scenario to generate a corresponding random 
prediction of system states. Upon averaging 
the predictions over all realizations, one 
obtains a sample mean prediction. As the 
number of such Monte Carlo runs increases, 
one hopes that the sample mean converges 
to a theoretical ensemble mean. While such 
convergence can neither be insured nor 
verified in most cases, it is important to at 
least plot a representative measure of the 
sample mean versus the number of runs to 
verify that it has reached a stable value. The 
stable sample mean is then taken to 
constitute the best prediction the model can 
produce. 
 
In addition to computing the sample mean, 
one typically also computes the sample 
variance of the predictions and generates a 
corresponding frequency histogram. Both 
converge more slowly to their theoretical 
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ensemble equivalents than does the sample 
mean. It is therefore very important to verify 
that both have stabilized with the number of 
runs. Since most groundwater models are 
nonlinear, one need not expect the histogram 
of the predictions to resemble either a 
normal or a log normal distribution.  
 
9.1.2 Linearization 
 
Linearizing the flow and transport models 
allows one to establish approximate error 
bounds, or confidence limits, on model 
predictions on the basis of linear regression 
theory. Linearization expresses each 
observed value of a state variable as a linear 
combination of unknown "true" parameters 
plus a random error, ε . As the model is 
considered exact and its parameters true, the 
latter implies that ε  represents an error of 
observation. For regression (calibration) 
purposes, ε  is replaced by a corresponding 
residual and an optimum (posterior) estimate 
of the unknown parameters is obtained by 
minimizing a suitably weighted sum of 
squared residuals. This sum thus becomes a 
measure of the error (variance) with which 
observed state variables are represented by 
the calibrated model. The variance is 
generally larger than that of ε  because the 
model is based on estimated rather than true 
parameters. 
 
The weighted sum of squared residuals does 
not, however, measure the error with which 
state variables that have not yet been 
observed (or have not been considered for 
calibration) would be predicted by the 
model. This is so because future predictions 
would be done with parameter estimates that 
are themselves corrupted by an estimation 
error. Linearization expresses each predicted 
value of a state variable as a linear 
combination of unknown parameters plus a 
random error, ε . Each unknown parameter 

is the sum of a known posterior parameter 
estimate and an associated estimation error. 
Hence the error in predicted system states is 
the sum of two errors: one due to replacing 
the true parameters by their posterior 
(calibrated) estimates (proportional to the 
weighted sum of residuals), and the other 
due to rendering a prediction with the aid of 
uncertain posterior parameters (the 
uncertainty being characterized by the 
estimation variance-covariance of the 
parameters). 
 
Hill (1998) explains how one can establish 
linearized confidence limits, or error 
bounds, for predictions rendered by models 
calibrated using nonlinear least squares with 
a diagonal weight matrix. 
 
9.2 Why Consider Stochastic Models? 
 
Appendix C explains that assessing the 
uncertainty of standard deterministic model 
parameter estimates may allow one to 
quantify the uncertainty in computed 
conditional mean system state predictors 
(mean head, concentration, flux etc.). This, 
however, says nothing about how actual 
(random and unknown) system states 
fluctuate about their predictors; such 
information is provided only by stochastic 
models that treat hydraulic parameters as 
random fields. 
 
Appendix C concludes that traditional 
methods of assessing uncertainty in the 
output of a calibrated deterministic model, 
of the kind just described, fail to account for 
the stochastic component of prediction error. 
To do so, one must adopt a stochastic model. 
 
 
 
 
 
 



 

129 
 
 

9.3 How to Assess Predictive 
Uncertainty for a Single Stochastic 
Model? 

 
9.3.1  High-Resolution Monte Carlo 

Method 
 
High-resolution Monte Carlo simulation is 
by far the most common method to assess 
predictive uncertainty stochastically. It 
entails generating multiple random 
realizations of flow and transport parameters 
on a fine grid, solving standard deterministic 
flow and transport equations with these 
parameters on the same grid under scenarios 
of interest, averaging the results and 
analyzing them statistically. If based on 
prior parameter estimates, the Monte Carlo 
results honor measured values of the 
parameters at discrete points in space. If 
based additionally on the inverse method of 
Sahuiquillo et al. (1992) and G\mez-
Hern<ndez et al. (1997), they also honor 
observed values of state variables. 
 
In all other respects, the analysis of 
predictive uncertainty by the stochastic 
Monte Carlo method is similar to that 
described previously in connection with 
deterministic models. 
 
9.3.2  Moment Equation Method 
 
We mentioned earlier that forward and 
inverse algorithms based on the moment 
equation approach are presently under 
development by our group. The algorithms 
yield directly (without Monte Carlo 
simulation) optimized unbiased predictors of 
groundwater flow and transport variables for 
randomly heterogeneous hydrogeologic 
environments, under the action of uncertain 
source and boundary terms. They also yield 
the variance-covariance of associated 
estimation and prediction errors. The 
algorithms do so while accounting explicitly 

for the multiscale (e.g., fractal) nature of 
hydrogeologic heterogeneity. They allow 
optimum use of field information through 
joint conditioning on measured values of 
hydraulic parameters, hydraulic heads and 
solute concentrations. To see how this works 
for steady state flow in saturated media the 
reader is referred to Hernandez et al. (2002). 
 

9.4 How to Render Joint Predictions 
with a Set of Alternative 
Deterministic Models? 

 
Alternative models that have been tested, 
compared, ranked and retained for further 
consideration are considered to constitute 
potentially valid simulators and predictors of 
site hydrogeology. There is no valid basis to 
prefer one of these models over another, and 
one must therefore use them in tandem. This 
raises the question how to render an 
optimum joint prediction using multiple 
models, and how to assess their joint 
predictive uncertainty? 
 
We propose to do so by adopting a novel 
Maximum Likelihood Bayesian Model 
Averaging (MLBMA) approach recently 
described by Neuman (2002). His paper is 
included in Appendix E. As mentioned 
earlier, the approach differs in fundamental 
ways from previous methods. It relies on 
probabilistic maximum likelihood (ML) 
concepts to (a) calibrate each model against 
observed space-time variations in system 
states (pressure, water content, 
concentration), considering prior 
information about relevant soil properties; 
(b) eliminate models that cannot be so 
calibrated with acceptable fidelity; 
(c) predict future system behavior or 
performance measures (travel times, 
concentrations, mass rates), and assess 
corresponding predictive uncertainty, using 
each model; and (d) average the results 
using posterior model probabilities as 
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weights. MLBMA supports the principle of 
parsimony in that among models that have 
similar predictive capabilities, it favors those 
having fewer parameters and being therefore 
simpler. 
 
9.4.1 How to Render Joint Predictions? 
 
Let M = ( 1,..., KM M  be the set of all 
retained models and let  be a quantity one 
wants to predict. The optimum joint 
prediction of  by means of all the models, 
given a discrete set of data D, is given by its 
conditional ensemble mean (expectation) 

∆

∆

E ∆⎡⎣ ⎤⎦D . According to MLBMA, the latter 
can be approximated by (Appendix E) 

( )
1

ˆ, ,
K

l l l
l

E E M p M
=

⎡ ⎤∆ ∆⎡ ⎤⎣ ⎦ ⎣ ⎦∑D D Dθ  

where ˆ, ,l lE M⎡∆⎣
⎤
⎦Dθ  is the conditional 

mean associated with model lM  and its 
maximum likelihood parameter estimates 

l̂θ , and ( )lp M D  is the posterior 
(conditional) probability of this model. The 
term ˆ, ,l lE M⎡∆⎣

⎤
⎦Dθ  represents simply a 

prediction of  generated by model ∆ lM  
after it has been calibrated against data D 
using the maximum likelihood method. The 
posterior model probability ( )lp M D  can 
be calculated as a byproduct of this 
calibration using equation (6) in Appendix 
E. The joint prediction E ∆⎡⎣ ⎤⎦D  is thus seen 
to be a weighted average of predictions 
obtained using individual calibrated models 
where the weights are the posterior (post 
calibration) probabilities of these models. 
 
 
 
 

9.4.2 How to Assess Joint Predictive 
Uncertainty? 

 
The joint posterior probability of predictions 
∆  is given approximately by 

( ) ( ) ( )
1

ˆ,θ ,
K

k k k
k

p p M p M
=

∆ ∆∑D D D  

where ( )ˆ, ,k kp M∆ Dθ  is the posterior 

probability of ∆  associated with model kM  
after it has been calibrated against data D 
using the maximum likelihood method. The 
joint predictive probability is thus seen to be 
a weighted average of predictive 
probabilities associated with individual 
calibrated models where the weights are the 
posterior (post calibration) probabilities of 
these models. 
 
The joint posterior variance of predictions is 
given approximately by 
Var ∆⎡ ⎤⎣ ⎦D  

{ }2

1

ˆ ˆ, , , ,
K

k k k k
l

Var M E M
=

⎡ ⎤ ⎡ ⎤∆ + ∆⎣ ⎦ ⎣ ⎦∑ D Dθ θ  

( ) 2
lp M E⋅ − ∆⎡ ⎤⎣ ⎦D D  

 
Methods to evaluate k̂θ  by calibrating a 
deterministic model kM  against 
hydrogeologic data D, which may include 
prior information about the parameters, are 
described by Carrera and Neuman (1986a-b) 
and Carrera et al. (1997). The same can be 
done with a stochastic model based on 
moment equations in a manner patterned 
after Hernandez et al. (2002). These 
methods also yield an approximate 
covariance matrix for the estimation errors 
of k̂θ . Upon considering the parameter 
estimation errors of a calibrated 
deterministic model kM  to be Gaussian or 
log Gaussian, one easily determines 
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( ˆ, ,k kp M∆ )Dθ  by Monte Carlo simulation 

of  through random perturbation of the 
parameters. The simulation also yields 
corresponding approximations 

∆

ˆ, ,k kE M⎡ ⎤∆⎣ ⎦Dθ  of ,kE M⎡∆ ⎤⎣ ⎦D , and 

ˆ, ,k kVar M⎡ ⎤∆⎣ ⎦Dθ  of ,kVar M⎡∆ ⎤⎣ ⎦D . 

 
If kM  is a stochastic model based on 
moment equations, it can yield 

ˆ, ,k kE M⎡ ⎤∆⎣ ⎦Dθ  and ˆ, ,k kVar M⎡ ⎤∆⎣ ⎦Dθ  

directly without Monte Carlo simulation 
(Hernandez et al. 2002). Such a model does 
not, however, yield ( )ˆ, ,k kp M∆ Dθ . 

 
9.5 How to Evaluate Hydrogeologic 

Performance? 
 
Hydrogeologic performance of a site, under 
a given scenario, is evaluated in terms of 
corresponding performance measures. These 
in turn are computed on the basis of system 
states (such as travel time and concentration) 

that are predicted using groundwater flow 
and transport models.  This implies that the 
same models and methods that one uses to 
predict system states, and to assess their 
predictive uncertainty, can also be used to 
predict performance measures and their 
uncertainty. No special methodology is 
needed for this purpose. 
 
9.6 Conditional Nature of 

Hydrogeologic Predictions 
 
We recall that predictions of hydrogeologic 
system behavior and performance are 
conditional on the available models and 
data. Many other predictions are potentially 
(and most probably) possible with other 
models and data that are equally valid and 
telling, perhaps more so. The uncertainty 
measures one associates with these 
predictions are likewise conditional. They 
therefore provide at best a lower bound on 
actual predictive uncertainty, which may 
(and most probably is) larger to an unknown 
degree.
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10 MODEL CONFIRMATION AND ASSESSMENT OF DATA NEEDS 
 

Once a set of predictive models have been 
developed and their predictive uncertainty 
assessed, one should try to confirm the 
models through comparison with 
observational data not previously used for 
calibration. This provides a suitable 
opportunity to evaluate the adequacy of the 
available database and make a decision 
whether or not to expand it, and how. 
 
10.1 How to Confirm Calibrated Models? 
 
In rare situations where enough 
observational data are available to allow 
using only some of them for model 

calibration, it may be possible to use the 
remaining data for purposes of model 
verification or confirmation. For this to be 
valid, the data used for confirmation must 
represent a different mode of system 
behavior that those used for calibration. 
Otherwise, the confirmation data are merely 
an extension of the calibration data and 
being able to reproduce them does not 
constitute a meaningful test of model 
predictive capability. As both the model and 
the data are generally uncertain, model 
confirmation must be cast in a suitable 
probabilistic and/or stochastic framework.

 

 
 

Figure 10-1. Drawdown versus log time in response to pumping from well FS-11-2.  
Continuous lines represent predictions and their 95% confidence intervals; dots represent 

measurements (after Carrera et al., 1990). With permission, Swets & Zeitlinger Publishers. 
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10.1.1 Example: Chalk River Monzonitic 
Block 

 
In section 8.2.4 we discussed briefly inverse 
modeling by Carrera et al. (1990) of 
transient flow during pumping tests 
conducted in fractured crystalline rock at 
Chalk River National Laboratories in 
Canada (Figure 8-1). The authors used 
formal model discrimination criteria to rank 
four different zonation patterns of hydraulic 
parameters, labeled Models 1 - 4 in Figure 
8-2, to find that Model 4 is favored and 
indeed agrees extremely well with 
measurements taken while water was 
withdrawn from well FS-10. They then 
checked the extent to which the same model 
reproduces drawdowns during another 
pumping test when water is withdrawn from 
well FS-11-2. As shown in Figure 10-1, the 
predicted drawdown (dots) is within the 
95% prediction confidence interval in some 
of the monitoring intervals but not in others. 
 
10.2 How to Assess Additional Data 

Needs 
 
10.2.1 Role of Sensitivity Analyses 
 
To help evaluate what if any additional data 
might be worth collecting so as to materially 
reduce model uncertainty (by further 
constraining the range of alternative 
structures and parameters), one may conduct 
a sensitivity analysis to indicate what system 
behavior appears to be most sensitive to 
which parameters at what locations. The 
next step is to consider performing 

additional site characterization where 
existing parameter estimates are least certain 
and the model is relatively insensitive to 
their values, and monitoring system 
behavior where it is most sensitive to model 
parameters while prediction errors appear to 
be relatively large and consequential. This 
may indicate the type and quantity of 
additional site data that might materially 
enhance model reliability and credibility. 
 
10.2.2 How to Decide When To Stop 

Collecting Data? 
 
The question how much and what kind of 
data are enough for model development and 
evaluation is one of economics and policy, 
not of hydrogeologic analysis or modeling. 
It is therefore the responsibility of managers 
and decision-makers to answer, not 
hydrogeologists or modelers. The strategy in 
this report is designed to help one address 
the question by how much would additional 
site characterization and monitoring improve 
the prediction of performance measures 
derived from the hydrogeologic analysis. In 
other words, the strategy addresses the 
worth of data in terms of their contributions 
to the potential enhancement of model 
reliability and credibility, not in terms of 
their marginal cost-benefit. Its aim is to 
allow managers and decision-makers to 
make informed decisions about the time, 
manpower and budget that they deem worth 
allocating to these activities in light of such 
enhancement under existing administrative, 
budgetary and policy constraints.
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11 CASE STUDIES 
 

The case studies in this chapter illustrate 
selected components of the proposed 
strategy. These include the use of public, 
generic and site data in the 
conceptualization, characterization, and 
modeling of flow and transport, 
geostatistical analysis of hard and soft data, 
model calibration, assessment of prior and 
posterior parameter uncertainty, and model 
discrimination. 
 
11.1 Maricopa Agricultural Center 
 
This case study is based on the doctoral 
dissertation of Wang (2002). 
 
11.1.1 Introduction 
 
Field infiltration and tracer experiments 
were conducted at the Maricopa Agricultural 
Center (MAC) near Phoenix, Arizona 
(Young et al., 1999; Yao et al., 2003). We 
(Wang, 2002) have conducted a study to 
address the questions 
• How accurately can site hydrogeology, 

with emphasis on the vadose zone, be 
conceptualized on the basis of public 
data and generic databases? 

• How reliably can flow and transport 
within the vadose zone at a site be 
reproduced by means of simple models, 
and how simple can such models be? 

• What methods can be used to quantify 
related uncertainties? 

• What is the role of site data in bringing 
about a reduction in uncertainty? 

 
To address these questions, we employ 
various methods to postulate, compare and 
rank alternative conceptual-mathematical 
models of unsaturated flow and transport 
during selected infiltration and tracer 
experiments at the MAC site. Our models 

include one- and two-dimensional flow and 
transport in a uniform soil, a soil consisting 
of uniform layers, and a stratified soil 
having laterally varying properties. 
Characterization of the soil as a uniform 
medium with a relatively deep regional 
water table is based on information obtained 
from public sources. Characterization of the 
soil as a layered medium with a relatively 
shallow water table is based on site data. 
 
At the time of this study, only a handful of 
soil hydraulic properties were available for 
the MAC site. We use various ways to 
estimate these properties indirectly on the 
basis of soil pedologic data. We start by 
ascribing uniform soil hydraulic properties 
to each layer on the basis of soil type using 
mean values of three generic databases. We 
then ascribe variable soil hydraulic 
properties to individual soil samples based 
on soil type and bulk density using 
regression and neural network pedotransfer 
models. Upon treating these variable 
hydraulic property estimates as 
measurements, we incorporate them in the 
original databases to obtain Bayesian 
updates of their mean values and variances 
of the corresponding estimates. Next, we 
conduct a geostatistical analysis of soil 
pedologic and hydraulic properties which 
provides support for a layered conceptual 
model with relatively large-scale lateral 
variability in each layer. 
 
In the next stage of our analysis, we use the 
above conceptual-mathematical models and 
hydraulic parameter estimates to compare 
simulated and observed water contents 
during one of the infiltration experiments at 
the MAC. We show that in order to 
reproduce observed behavior, it is necessary 
to further modify the hydraulic parameter 
estimates through inverse modeling. We 
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compare and rank the various conceptual-
mathematical models and parameter 
estimates using likelihood-based model 
discrimination criteria and confirm our 
choice of best model by successfully 
simulating flow during an earlier infiltration 
experiment. Finally, we adopt one-
dimensional inverse estimates of soil 
hydraulic parameters based on one 
infiltration experiment for one-dimensional 
solute transport modeling of bromide tracer 
data collected during an earlier experiment. 

An advection-dispersion model with linear 
mass transfer to and from a zone of 
immobile water, or anion exclusion, is 
employed in forward and inverse modes. 
 
Our study illustrates how a combination of 
methods and data sets can be used 
sequentially and in tandem to improve one's 
understanding of unsaturated flow and 
transport conditions at a site. 
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Figure 11-1. Location of monitoring equipment (Scale in meters). 
 
11.1.2 Brief Description of Experiments 1–3 
 
Three infiltration and tracer experiments 
were conducted at the MAC by Young et al. 
(1999). During these experiments, water was 
uniformly applied to a 50  50  area 
using a drip irrigation system at a controlled 

rate. The area was covered by a 60 

× 2m

×  60  
thick Hypalon® pond liner to minimize 
evaporation. Monitoring took place along a 
trench, within two islands, and in boreholes 
(Figure 11-1). The backfilled trench was 65 
m long, 1.5 m deep and contained various 
instrument clusters at 10 m intervals. The 

2m
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islands consisted of highway culverts, 1.5 m 
in diameter, placed vertically in the soil 
down to 3 m depth. They were instrumented 
to measure soil water tension, soil water 
content and tracer concentration. Borehole 
monitoring equipment consisted of neutron 
probe access tubes, tensiometers and 
solution samplers. Nine neutron probe 
boreholes were drilled to 15 m depth and 
several others to 3 m depth. Solution 
samplers near the nine deep boreholes were 
installed at depths of 3, 5, and 10 m. 
Solution samplers in the monitoring islands 
were installed at depths from 0.5 to 3.0 m at 
0.5 m intervals. 
 
We focus on the first and last of the three 
experiments. Experiment 1 lasted 93 days 
starting April 28 and ending July 30, 1997. 
Water was applied at an average rate of 1.85 
cm/day to the field for 24 days, with a 
bromide tracer added for the first 15 days at 
a mean concentration of 31.6 ppm. The 
water application period was followed by a 
redistribution period of 69 days. Experiment 
3 lasted more than 200 days; in this study, 
we use data from the first 56 days starting 
April 24 and ending June 19, 2001. Water 
was applied at an average rate of 2.66 
cm/day for 28 days and redistribution 
measured for the following 28 days. In 
experiment 3, monitoring was limited to the 
nine deep boreholes, yet data were collected 
more frequently, using fewer field 
monitoring devices (neutron probes and 
deep tensiometers). 

 
11.1.3 Summary of Relevant Public 

Information 
 
To develop a conceptual hydrogeologic 
model for the MAC, we started by collecting 
public data on geology, soils, aquifers, 
driller's logs, well logs, climate and weather, 
evaporation and evapotranspiration as well 
as related information from monographs and 

research papers. These data were obtained 
from various sources including United 
States Geological Survey (USGS), Arizona 
Department of Water Resources (ADWR), 
Arizona Department of Agriculture, Arizona 
Land Department, Arizona Land Resource 
Information System (ALRIS), and Arizona 
Meteorological Network (AZMET). They 
led to the following conceptual model of the 
experimental site. 
 
The site lies within the upper fill of the 
Maricopa-Stanfield alluvial basin (Andersen 
et al., 1992). The upper fill, which has the 
hydrostratigraphic designation of upper 
alluvial unit (UAU), consists mainly of 
gravel, sand and silt. It has a relatively 
uniform thickness of between 200 and 300 
feet, becoming thinner as one nears 
mountain fronts. The unit was deposited by 
ancestral surface rivers during the final 
stages of basin development. It comprises 
alluvial channel, terrace, floodplain and 
alluvial fan deposits. 
 
Historically, the unconfined UAU has been 
the most productive aquifer of the basin. 
However, groundwater pumping has greatly 
reduced its saturated thickness. Currently, 
groundwater levels are recovering 
throughout the basin. The rise in water 
levels results from an overall reduction in 
groundwater withdrawals, recharge 
following floods, and the introduction and 
widespread use of Central Arizona Project 
(CAP) water. 
 
The State Soil Geographic Database 
(STATSGO), developed by the Natural 
Resource Conservation Service and 
accessible through the ALRIS website, 
includes a soil map for the State of Arizona. 
According to this map, soils in the MAC 
area consist of sandy loam. 
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Abundant well logs provide public 
information about the geology of the MAC 
area. Figure 11-2 shows a schematic log for 
a well about 200 meters southwest of the 
MAC. Figure 11-3 depicts our attempt to 
correlate several well logs along a west-east 
section near the site.  Data about well 
locations, pumping rates and historical water 

levels are available for more than 1000 wells 
across the basin from the ADWR. Figure 
11-4 shows water table elevations within the 
UAU aquifer across part of the basin in 
November 1988 (left) and 1993 (right), 
respectively. For reasons mentioned earlier, 
water levels in the MAC area have increased 
by about 50 feet between 1988 and 1993.

 
 

Figure 11-2. Well log of D-04-04 20 BCD near the MAC (depth and thickness in feet). 
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Figure 11-3. An East-West cross-section near the MAC  
(depth and thickness in feet; see legend in Figure 2). 

 
 

   
 

Figure 11-4. Elevation contours (in feet) of water level in the UAU aquifer  
in Nov. 1988 (left) and Nov. 1993 (right). 
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Figure 11-5. Monthly irrigation (a), reference evapotranspiration ET0 (b), and precipitation (c)  

in MAC area. 
 

Meteorological data from the AZMET 
include air temperature, relative humidity, 
solar radiation, precipitation, soil 
temperatures and wind velocity. Information 
about agricultural irrigation is available 

from the MAC Administration and ADWR. 
Figure 11-5 shows how monthly irrigation, 
reference evapotranspiration (ET0) and 
precipitation varied at the MAC during 
1993-1998. ET0 is evapotranspiration from 
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3–6 inches tall cool season grass that 
completely covers the ground and is 
supplied with adequate water. Average 
annual irrigation during 1989 - 1998 over an 
area of 430 acres was 1.09 m, average 
annual reference evapotranspiration during 
1990 - 1998 was 1.98 m, and average annual 
precipitation during 1988 - 1998 was 0.18 
m. Information about the distribution of 
irrigated land is available from the ALRIS 
website. 

 
11.1.4 Conceptual-Mathematical Modeling 

Based on Public Data 
 
The available public data suggest the 
following conceptual hydrogeologic model 
for the MAC experimental site: 
 
• Soils at the experimental site consist of 

sandy loam down to a depth of about 16 
m. 

• The UAU aquifer is unconfined with a 
regional water table locally at a depth of 
22 m. 

• At the site, groundwater within the UAU 
flows from northeast to southwest under 
a gradient of about 0.3 %. 

• Local recharge of the UAU is due to 
irrigation and precipitation; floods are a 
source of recharge elsewhere in the 
basin. At the covered experimental site, 
recharge is entirely due to applied 
irrigation. 

• Local discharge from the UAU is due to 
pumping. 

• Loss of water from the unsaturated zone 
is due to evapotranspiration, which is 
suppressed at the covered experimental 
site. 

 
To simulate flow in the unsaturated zone, we 
adopt the following constitutive 
relationships between soil hydraulic 
variables (Van Genuchten, 1980) 
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where θ  is volumetric water content; rθ  and 

sθ  are residual and saturated water content, 
respectively;  is capillary pressure head; h
α  and  are van Genuchten parameters 
with 

n
1 1/m n= − K;  is unsaturated 

hydraulic conductivity; and sK is saturated 
hydraulic conductivity. 
 
The available public information does not 
include soil hydraulic properties for the site. 
We start by estimating soil hydraulic 
parameters indirectly on the basis of soil 
class. Several generic databases have been 
developed for this purpose including 
RAWLS (Rawls et al., 1982), ROSETTA 
(Schaap and Leij, 1998) and CARSEL 
(Carsel and Parrish, 1988). 
 
The RAWLS database includes 5401 soil 
samples from across the United States. 
Rawls et al. (1982) published a table of 
mean parameter estimates and their standard 
deviations for 11 USDA soil texture classes, 
based on the constitutive model of Brooks 
and Corey (1964). The parameters include a 
pore size distribution index, λ , and the air-
entry pressure head, . These are related to 
parameters of the van Genuchten (1980) 
constitutive model through 

bh

1nλ = −  and 
1/bh α= . 
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The ROSETTA database is pooled from part 
of the AHUJA (Schaap and Leij, 1998), 
UNSODA (Leij et al., 1996) and RAWLS 
databases. It contains water retention 
parameters for 2134 soil samples and sK  for 
1306 samples. Schaap and Leij (1998) 
tabulate mean values of these parameters for 
12 USDA soil classes. 
 
The CARSEL database contains 15,737 soil 
textural samples collected by the Natural 
Resources Conservation Service (formerly 
Soil Conservation Service) from 42 of the 
United States. The database does not contain 
measured hydraulic parameters. Based on a 
regression model due to Rawls and 
Brakensiek (1985) coupled with Monte 
Carlo simulations, Carsel and Parrish (1988) 
derived from the same database probability 
distributions for saturated volumetric water 
content sθ , residual volumetric water 
content rθ , saturated hydraulic 
conductivity sK , and van Genuchten’s 
parameters α and n for twelve USDA soil 
textural classes. Meyer et al. (1997) 
extended their results to include probability 
distributions for the Brooks-Corey 
parameters λ  and , effective porosity, 

field capacity, wilting point, and available 
water content. 

bh

 
The distribution of samples among soil 
classes in RAWLS, ROSETTA and 
CARSEL is quite uneven. Whereas the sand 
portion of samples in RAWLS and 
ROSETTA is much larger than in CARSEL, 
the sandy loam portion in RAWLS is 
smaller and there are fewer fine-textured 
samples in RAWLS and ROSETTA than in 
CARSEL. We apply all three databases to 
the MAC and assess the extent to which they 
are supported by site data. 

 
11.1.5 Variogram Analysis of Soil 

Composition at the MAC Site 
 
Pedologic data at the MAC site include soil 
composition down to a depth of 15 m and 
bulk density down to 5 m (Young et al., 
1999). Soil samples were collected from the 
trench, monitoring islands and boreholes at 
depth intervals of about 0.3 m. Most 
samples are concentrated in the upper 1.8 m 
(Table 11-1) and we therefore focus our 
variogram analysis on this shallow depth 
interval. Samples below 1.8 m originate 
mainly from boreholes. Histograms and 
statistics of soil composition at the site can 
be found in Wang (2002).

 
Table 11-1. Distribution of Soil Samples with Depth. 

 
Sampling Depth Number of Samples 

0-30 cm 70 
31-60 cm 33 
61-90 cm 46 
91-120 cm 39 
121-150 cm 88 
151-180 cm 74 
181-1545 cm 198 
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Figure 11-6. Omni-directional sample variograms and fitted spherical models  

for percent sand, silt, and clay at depths 0 to 30 cm. 
 
Figure 11-6 shows omni-directional sample 
variograms and fitted spherical models for 
percent sand, silt and clay at depths 0 to 30 
cm. Similar variograms for underlying 30-
cm depth intervals, down to 1.8 m, can be 
found in Wang (2002). Though some appear 
to fit a linear or Gaussian model, most fit 
spherical models with ranges of 20 - 25 
meters (Table 11-2). This implies that soil 

composition should be expected to vary 
laterally on scales exceeding 20–25 m.  
Figure 11-7 shows a vertical sample 
variograms and fitted spherical models of 
percent sand, silt and clay for depths 0–15 m. 
They reveal that the vertical correlation 
scale is about 2 m. In other words, soil 
composition should be expected to vary 
vertically on scales exceeding 2 m.
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Table 11-2. Omni-directional variogram models fitted to soil composition data at various depths. 
 

Depth (cm) Component Model Nugget Sill 
Range 

(m) Slope 
0-30 Sand+gravel Spherical 47.0 113.0 24.0   

  Silt Spherical 13.0 33.0 21.0   
  Clay Spherical 20.0 35.0 22.0   

31-60 Sand+gravel Spherical 2.0 27.0 25.0   
  Silt Spherical 3.5 23.5 20.0   
  Clay Spherical 6.0 35.0 23.0   

61-90 Sand+gravel Spherical 13.0 163.0 20.0   
  Silt Spherical 5.0 56.0 21.0   
  Clay Spherical 9.5 39.5 21.0   

91-120 Sand+gravel Linear 40.0     1.5 
  Silt Linear 15.0     0.9 
  Clay Spherical 7.0 20.0 24.0   

121-150 Sand+gravel Linear 40.0     0.2 
  Silt Linear 25.5     0.3 
  Clay Spherical 6.5 13.0 22.0   

151-180 Sand+gravel Spherical 24.0 44.0 35.0   
  Silt Gaussian 15.8 29.8 26.0   
  Clay Spherical 5.7 13.0 33.0   

11.1.6 Postulation of Layered Structure 
 
Our variogram analysis of soil composition 
supports a conceptual model whereby the 
soil consists of horizontal layers that are 
about 2 m thick and laterally heterogeneous 
on scales exceeding 20 – 25 m. A layered 
structure of similar average thickness is 
supported by neutron count ratios which 
correlate with soil compositional data as 
illustrated for borehole 402 by Figure 11-8; 
see Wang (2002) for similar correlations in 
other boreholes. Neutron readings were 
taken in 9 boreholes down to a depth of 14 

meters at 0.25 m intervals. The two sets of 
data suggest a subdivision of the soil profile 
down to a depth of 20 m into 10 layers 
consisting of four different soil types (sandy 
loam, gravelly loam sand, sand and sandy 
clay loam). Figure 11-9 is a panel diagram 
showing our interpretation of site 
stratigraphy at the MAC based on neutron 
probe and soil compositional data in the 9 
boreholes. In preparing this diagram, we 
have given more weight to the neutron than 
to the soil sample data. The neutron data 
have revealed a perched water table at a 
depth of about 13 m across the site.  
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Figure 11-7. Vertical sample variograms and fitted models of percent sand, silt, and clay  
from the surface to 15 m depth. 

 

 
 

Figure 11-8. Neutron count ratio and soil class variations with depth at borehole 402. 
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Figure 11-9. Local stratigraphy based on soil and neutron data  
(scale in meters; see legend in Figure 11-9). 

 
11.1.7 Estimation of Hydraulic Parameters 

Using Pedotransfer Models 
 
Various methods (called pedotransfer 
functions; Bouma and van Lanen, 1997) 
have been developed to translate soil 
pedologic data into hydraulic parameters. 
One approach is to translate soil class into 
mean hydraulic parameter values or 
corresponding probability distributions, 

based on generic databases, as we have done 
earlier. Another approach is to estimate soil 
hydraulic properties based on soil physical 
properties such as soil composition, bulk 
density, and organic matter content by 
regression or neural network models. This 
provides continuously varying soil hydraulic 
properties across the entire triangle of 
possible soil compositions. We use 
regression equations due to Rawls and 
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Brakensiek (1985) and a the Rosetta neural 
network software developed by Schaap et al. 
(1998) to estimate the hydraulic properties 
of individual samples across the MAC based 
on their particle size distribution and bulk 
density.  
 
Meyer et al. (1997) provide probability 
distributions for the hydraulic parameters of 
various soil classes based on the CARSEL 
database. They use the Kolmogorov-
Smirnov test of the null hypothesis  that 
a sample is drawn from a population having 
a particular probability distribution. Kenkel 
(1989) points out that this test is 
inappropriate when statistical parameters 
such as mean and variance are estimated 
from sample data. We therefore use the chi-
square test to modify somewhat their 
probability distributions for hydraulic 
parameters of soil classes found at the MAC. 
Our approach consists of (a) postulating the 
null hypothesis  that the data are drawn 
from one of several theoretical probability 
distributions (we consider normal, 
lognormal and beta); (b) assigning the 
sample mean and variance to the selected 
theoretical distribution; (c) drawing random 
“observations” out of the sample distribution 
and grouping them into K bins; (d) 
calculating the Chi-square statistic 
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where 1 2, ,....., Ko o o  are the frequencies of 
observations in the K bins and 1 2, ,...., Ke e e  
are corresponding theoretical frequencies; 
(e) minimizing 2χ  with respect to the mean 
and variance (we do so using the Levenberg-
Marquardt algorithm); (f) repeating the 
process for all distributions; and (g) 
associating the data with that distribution 
which yields the smallest value of 2χ . We 
found in many cases that using sample mean 

and variance, the Kolmogorov-Smirnov test 
would not reject  at a given level of 
significance 

0H
α  (0.05) for either the normal 

or lognormal distributions. However, using 
the above procedure we were always able to 
identify a single best-fit distribution among 
the three considered. 
 
Figure 11-10 shows histograms and fitted 
distributions (solid curves) of hydraulic 
parameters for sand; histograms and fitted 
distributions for other soil components can 
be found in Wang (2002). The dashed curve 
of van Genuchten parameter n is adopted 
from the distribution of Meyer et al. (1997) 
based on a Kolmogorov-Smirnov test. 
Distributions based on the latter tests are 
associated with 2χ  values that tend to be an 
order of magnitude larger than those 
obtained by our procedure. 
 
The regression model of Rawls-Brakensiek 
requires saturated water content as input. 
The latter is equal to porosity, which we 
infer from bulk density according to θs = 1- 
ρb /ρs where ρb is bulk density and ρs is the 
density of the solids. Unfortunately, bulk 
density was determined only for shallow 
samples at depths of less than 5 m. Figure 
11-11 shows corresponding estimates of 
saturated and residual water content, α , n 
and sK  at various depths. Saturated water 
content tends to decrease with depth due to a 
corresponding increase in bulk density.  
 
To estimate hydraulic parameters at all 
depths we use the Rosetta neural network 
model. Results are shown in Figure 11-12. 
The statistics of these estimates differ from 
those obtained by regression (Table 11-3).
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Figure 11-10. Distribution of hydraulic parameters for sand based on Meyer et al. (1997).  
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Figure 11-11. Hydraulic parameters at the MAC using Rawls-Brakensiek (1985) regressions 

with site-specific soil component and bulk density data at shallow depths of less than 5 m. 
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Figure 11-12. Hydraulic parameters at the MAC using Rosetta software  
with site-specific soil component (all the depths) and bulk density data (above 5 m). 
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Table 11-3. Comparison of hydraulic parameter estimates  
using two different pedotransfer models. 

 
Estimates Using Parameter Mean St.D. Min Max 

θr (cm3 / cm3) 4.98E-02 6.67E-03 2.99E-02 7.05E-02 
θr (cm3 / cm3) 3.80E-01 1.97E-02 3.11E-01 4.40E-01 

α (1/cm) 3.21E-02 5.81E-03 1.21E-02 5.03E-02 
n 1.84E+00 6.58E-01 1.31E+00 4.20E+00 

Rosetta 
Neural Network 

  
  
  Ks (cm/s) 1.69E-03 2.49E-03 0.00E+00 1.15E-02 

θr (cm3 / cm3) 7.47E-02 1.25E-02 3.67E-02 1.02E-01 
θr (cm3 / cm3) 4.15E-01 2.78E-02 3.19E-01 4.75E-01 

α (1/cm) 1.26E-01 3.83E-02 3.42E-02 2.73E-01 
n 1.39E+00 5.07E-02 1.26E+00 1.56E+00 

Rawls-Brakensiek 
Regression 

  
  
  Ks (cm/s) 2.79E-03 2.32E-03 9.68E-05 1.62E-02 

 
We note in particular that whereas van 
Genuchten parameters n and α  estimated by 
Rosetta differ from corresponding estimates 
using Rawls-Brakensiek regression, most 
other parameter estimates are comparable. 
The mean of Rosetta n estimates is much 
larger that of Rawls-Brakensiek estimates, 
the opposite being true for the mean of α  
estimates. The mean estimates of  from 
Rosetta and 

n
α  from regression are 

comparable to mean values of corresponding 
CARSEL distributions for sandy loam, 
loamy sand and sand, the three dominant 
soil classes at the MAC.  

 
11.1.8 Bayesian Updating of Hydraulic 

Parameter Estimates 
 
Generic probability distributions of 
hydraulic parameters based solely on soil 
class can be updated by treating our 
pedotransfer estimates of these parameters 
as "measurements."  In particular, we 
incorporate these measurements in the prior 
CARSEL database to obtain posterior 
estimates of the population mean values and 
the variance of these estimates. We do so by 

using a slightly modified version of a 
Bayesian updating code developed for this 
purpose by Meyer et al. (1997). 
 
Updated mean hydraulic parameter 
distributions for sand obtained using 
“measurements” based on the Rosetta neural 
network model are depicted in Figure 11-13; 
corresponding distributions for this and 
other soil components, using either Rosetta 
or Rawls-Brakensiek regression, can be 
found in Wang (2002). The Bayesian 
approach of Meyer et al. (1997) equates the 
variance of prior mean values with that of 
soil hydraulic parameters in the CARSEL 
database. In this sense, Figures 11-10 can be 
viewed as representing the prior distribution 
of mean values. As expected, a comparison 
of Figures 11-10 and 11-13 reveals that 
Bayesian updating has brought about a 
change in the mean (reduction in bias) and a 
drastic reduction in its estimation variance. 
The same happens in the case of all soil 
classes at the MAC, regardless of what 
pedotransfer model one uses to obtain the 
“measurements” (Table 11-4).
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Figure 11-13. Bayesian updates of hydraulic parameters for sand using Rosetta estimates.   
 
 
 
 



 

153 
 
 

 
 
 
 

Table 11-4. Prior (based on CARSEL database) and posterior (following Bayesian updating) 
mean hydraulic parameter estimates and their standard deviations by soil class. 

 
Soil Type sθ  St. D. rθ  St. D. α  St. D. n St. D. sK  St. D. 

unit     1/cm    cm/s  
Sandy loam           

Meyer et al 0.410 9.00E-
02 0.065 1.70E-

02 
7.57E-

02 
3.68E-

02 1.890 1.55E-
01 

1.17E-
03 

1.37E-
03 

Updated by 
Rawls-

Brakensiek 
regression 

0.422 1.30E-
03 0.077 6.80E-

04 
1.24E-

01 
2.39E-

03 1.380 1.13E-
05 

1.97E-
03 

9.30E-
09 

Updated by 
Rosetta 0.385 1.00E-

03 0.052 3.51E-
04 

2.90E-
02 

1.47E-
07 1.556 1.20E-

04 
5.61E-

04 
5.71E-

10 
Gravel Loamy 

Sand           

Meyer et al 0.410 9.00E-
02 0.057 1.40E-

02 
1.26E-

01 
4.04E-

02 2.270 2.70E-
01 

1.40E-
04 

3.17E-
03 

Updated by 
Rawls-

Brakensiek 
regression 

0.391 7.70E-
03 0.062 3.00E-

03 
1.33E-

01 
1.00E-

02 1.459 1.20E-
04 

3.45E-
03 

1.42E-
10 

Updated by 
Rosetta 0.365 3.24E-

03 0.049 1.00E-
03 

4.00E-
02 

1.17E-
05 1.882 1.15E-

02 
1.80E-

03 
9.98E-

08 
Sand           

Meyer et al 0.430 6.00E-
02 0.047 1.00E-

02 
1.47E-

01 
2.55E-

02 2.670 2.67E-
01 

8.22E-
03 

4.39E-
03 

Updated by 
Rosetta 0.384 2.37E-

02 0.048 8.16E-
04 

3.94E-
02 

8.42E-
06 3.055 1.35E-

02 
7.22E-

03 
4.85E-

07 
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Figure 11-14. Omni-directional lateral (left, at depth 0–30 cm) and vertical (right)  
sample variograms and fitted models for log( sK ). 

 
11.1.9 Variogram Analysis of Hydraulic 

Parameter Estimates 
 
We conduct a variogram analysis of 
hydraulic parameter estimates obtained 
using the Rosetta neural network software. 
Figure 11-14a shows omni-directional 
sample variograms and fitted spherical 
models for log sK  at depths of 0–30 cm. 
Similar variograms are obtained down to a 
depth of 1.8 m for log sK  and saturated 
water content ( sθ ) (Wang, 2002). Most of 
them fit spherical models and one fits a 
Gaussian model with horizontal range 
values between 20 and 36 m; some fit linear 
models that do not possess finite correlation 
scales (Table 11-5). 
 

Vertical sample variogram and fitted 
spherical model of log sK  are depicted in 
Figure 11-14b. Similar results are obtained 
for saturated water content ( sθ ). Both have a 
vertical range on the order of 1–2 m. 
 
Our variograms of hydraulic parameter 
estimates closely corresponds to those of 
soil composition. This is not surprising 
considering that the former were estimated 
in part on the basis of the latter. Together 
with neutron probe data they support a 
conceptual model whereby the soil consists 
of horizontal layers that are about 2 m thick 
and laterally heterogeneous on scales of 20–
30 m.
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Table 11-5. Omni-directional variogram models fitted to hydraulic parameter estimates  
at various depths. 

 
Parameter Depth (cm) Model Nugget Sill Range (m) Slope 

31-60 Spherical 1.70E-05 2.70E-05 25  
61-90 Linear 3.60E-05   3.2E-07
91-120 Spherical 0.00E+00 3.40E-05 30  
121-150 Linear 3.84E-05   1.09E-07

sθ  
 
 151-180 Gaussian 9.00E-06 2.30E-05 22  

0-30 Spherical 0.025 0.18 20  
31-60 Spherical 0.009 0.119 20  
61-90 Spherical 0.013 0.168 21  
91-120 Linear 0.04   0.0015 
121-150 Spherical 0.029 0.055 24  

sK  
 
 151-180 Spherical 0.036 0.064 36  

 
11.1.10 Forward Flow Modeling Based on 

Public Data 
 
As pointed out earlier, publicly available 
data suggest that soils at the experimental 
site consist of sandy loam down to a depth 
of about 16 m with a regional water table 
located at a depth of 22 m. In this paper we 
examine the extent to which such public 
information allows reproducing observed 
behavior during field infiltration experiment 
3 at the MAC. We do so by postulating 
uniform vertical flow through the shallow 
subsurface, which we take to consist of 
uniform sandy loam. To characterize the 
sandy loam hydraulically, we ascribe to it 
mean parameter values taken from the three 
generic databases RAWLS (Rawls et al., 
1982), ROSETTA (Schaap and Leij, 1998) 
and CARSEL (Carsel and Parrish, 1988; 
Meyer et al., 1997). 
 
Volumetric water contents are obtained from 
neutron probe readings using a calibration 
curve developed by Young (1999). The 
calibration is based on measured water 
contents from core samples and neutron 
probe readings at depths of 3.0 meters or 
less. We adopt water content measurements 

in borehole 422 prior to experiment 3 as 
initial water contents and set the water table 
as a constant head boundary. A constant flux 
of 2.66 cm/day is maintained at the soil 
surface during the first 28 days of the 
experiment. During the remainder of the 
experiment, the soil surface constitutes a no-
flow boundary. We use the TOUGH2 code 
of Pruess et al. (1999) to simulate 
unsaturated flow. 
 
Figures 11-15 – 11-18 compare measured 
and simulated water contents in borehole 
422 using mean hydraulic parameters from 
ROSETTA, RAWLS and CARSEL, 
respectively. Only the latter yield acceptable 
matches with observations at depths of less 
than 4.0 m. 
 
We conclude that 
• Relying entirely on publicly available 

data leads to a poor reproduction of 
observed infiltration at the Maricopa 
site. 

• Among the three generic databases 
examined, the best results are obtained 
with the CARSEL set.
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Figure 11-15. 1-D forward simulation of infiltration during experiment 3 at borehole 422  

using mean hydraulic parameters from ROSETTA. 
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Figure 11-16. 1-D forward simulation of infiltration during experiment 3 at borehole 422  
using mean hydraulic parameters from RAWLS. 
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Figure 11-17. 1-D forward simulation of infiltration during experiment 3 at borehole 422  
using mean hydraulic parameters from CARSEL. 

 
11.1.11 Forward Flow Modeling Based on 

Site Data 
 
Whereas public data imply that soils at the 
MAC consist of sandy loam down to a depth 
of about 16 m, site data indicate that the 
upper 20 m of soil consist of 10 layers 
composed of four different soil types (sandy 

loam, gravelly loam sand, sand and sandy 
clay loam), which are laterally 
heterogeneous on scales exceeding 20 – 30 
m (see paper 1, this issue). Whereas publicly 
available data identify a regional water table 
that is locally about 22 m deep, site data 
indicate the additional presence of a perched 
water table at a depth of about 13 m across 
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the site. We conduct a series of one- and 
two-dimensional forward numerical 
simulations of flow during infiltration 
experiment 3 based on this site-specific 
conceptual model. Our computational 
domain consists of 9 - 11 layers in line with 
Figures 11-9 – 11-10. In one-dimensional 
simulations, the water table at depth 13 m 
constitutes a constant head boundary. In 
two-dimensional simulations, either a 
constant head boundary is prescribed at a 
depth of 13 m or a no-flow boundary at a 
depth of 20 m. The latter condition is 
motivated by the fact that soils below 16 m 
consist of low-permeability sandy clay loam 
or clay. Neutron-probe data suggest that the 
water table at the eastern and northern 
boundaries is higher by about 0.2 m than at 
the western and southern boundaries. This is 
reflected in the head boundaries prescribed 
on the sides of the two-dimensional domain. 
The latter extends 110 m horizontally. A 
constant flux of 2.66 cm/day is maintained 
at the soil surface during the first 28 days of 
the experiment within the irrigated plot, and 
a flux of zero outside this plot. During the 
remainder of the experiment, the soil surface 
constitutes a no-flow boundary.  
 
Figure 11-18 shows the results of a one-
dimensional forward simulation in borehole 
402 using mean hydraulic parameters from 
CARSEL. The computed response (curves) 
captures in a very crude way the observed 
behavior (dots). However, there are large 
differences between measured and computed 
water contents and wetting-front arrival times. 
This suggests that the parameter estimates 
would have to be improved by model 
calibration against the observed water 
contents.  
 
Figure 11-19 shows what happens when we 
adopt mean hydraulic parameters from 
ROSETTA. The results are much poorer 
than those in Figure 11-18. The same 

happens when we adopt mean hydraulic 
parameter values from RAWLS. 
 
Figure 11-20 depicts results obtained using 
Bayesian updates of ROSETTA parameter 
estimates. Though there is some 
improvement in comparison to results 
obtained without updating, the results are 
still poorer than those obtained using mean 
hydraulic parameters from CARSEL. The 
same happens when we use updated 
parameter estimates from RAWLS. 
 
These and similar simulations corresponding 
to borehole 422, summarized in Table 11-6, 
indicate that mean hydraulic parameters 
from CARSEL provide best fit simulations 
to measured water content data in all cases. 
Bayesian updates improve the accuracy of 
generic ROSETTA and RAWLS hydraulic 
parameters, but not significantly. 
 
Figure 11-21 compares two-dimensional 
forward simulations and measurements 
along a N-S uniformly layered transect 
passing through boreholes 402, 422 and 442 
(see Figure 11-10) using mean hydraulic 
parameter values from CARSEL. The 
quality of the results varies with depth, with 
simulated wetting front arrival times lagging 
by up to ten days behind those measured. 
Results obtained using mean parameter 
estimates from ROSETTA or RAWLS, as 
well as those obtained using Bayesian 
updates of these parameters, are much less 
satisfactory. The same is true for a central E-
W transect through boreholes 422, 423 and 
425 (Figure 11-10). A summary of all these 
runs in Table 11-7 indicates that hydraulic 
parameter estimates from CARSEL are 
generally superior to those from ROSETTA, 
RAWLS, or their Bayesian updates. 
However, none of the forward simulations 
are entirely satisfactory and there is an 
obvious need to calibrate the models against 
observed system behavior.
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Figure 11-18. 1-D simulation of infiltration experiment 3 at borehole 402 using mean hydraulic parameter 

values from CARSEL at various depths. 
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Figure 11-19. 1-D simulation of infiltration experiment 3 at borehole 402 using mean hydraulic parameter 
values from ROSETTA at various depths. 



 

162 
 
 

 
 

Time (days)

W
at

er
co

nt
en

t

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1.5 m

Time (days)

W
at

er
co

nt
en

t

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2.75 m

Time (days)

W
at

er
co

nt
en

t

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

3.0 m

Time (days)

W
at

er
co

nt
en

t

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

6.5 m

Time (days)

W
at

er
co

nt
en

t

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

7.0 m

Time (days)

W
at

er
co

nt
en

t

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

8.0 m

Time (days)

W
at

er
co

nt
en

t

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

8.25 m

Time (days)

W
at

er
co

nt
en

t

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

8.5 m

 
 

Figure 11-20. 1-D simulation of infiltration experiment 3 at borehole 402 using Bayesian updates of 
saturated hydraulic conductivity, van Genuchten's α  and n based on Rosetta estimates. 
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Figure 11-21. 2-D forward simulation along N-S uniformly layered transect using mean 
hydraulic parameter values from CARSEL at various depths. 



 

164 
 
 

Table 11-6. Results of forward simulations using 1-D layered models. 
 
Borehole Parameter source Sum of weighted squared residuals

402 CARSEL 7.28E+02 
402 ROSETTA 3.62E+03 
402 RAWLS 3.35E+04 
402 Bayesian updates based on Rosetta neural network 2.05E+03 
402 Bayesian updates based on Rawls-Brakensiek regression 2.59E+04 
422 CARSEL 1.53E+03 
422 ROSETTA 3.74E+03 
422 RAWLS 3.66E+03 
422 Bayesian updates based on Rosetta neural network 2.30E+03 
422 Bayesian updates based on Rawls-Brakensiek regression 3.21E+03 

 
Table 11-7. Results of forward simulations using 2-D uniformly layered models. 

 

Transect Parameter source 
Sum of weighted  
squared residuals 

N-S  CARSEL 2.65E+03 
N-S ROSETTA 5.35E+03 
N-S  RAWLS 5.53E+03 
 N-S   Bayesian updates from Rosetta 3.17E+03 
 N-S   Bayesian updates from Rawls-Brakensiek regression 4.06E+03 
 E-W  CARSEL 2.01E+03 
E-W ROSETTA 6.14E+03 
 E-W  RAWLS 6.73E+03 
 E-W  Bayesian updates from Rosetta 3.46E+03 
 E-W  Bayesian updates from Rawls-Brakensiek regression 4.72E+03 

 
11.1.12 Inverse Flow Modeling Based on 

Site Data 
 
We use the inverse code ITOUGH2 
(Finsterle, 1999 a-b) to calibrate our one- 
and two-dimensional flow models against 
observed water contents at the MAC. The 
inverse code estimates hydraulic parameters 
by minimizing a negative log likelihood 
criterion equal to the weighted sum of 
squared water content and parameter 
residuals. Water content residuals are 
differences between simulated and observed 
water contents, the square of each being 

weighted by the inverse variance of the 
corresponding observation error. Parameter 
residuals are differences between posterior 
(inverse) and prior (input) parameter 
estimates, the square of each being weighted 
by the inverse variance of the corresponding 
prior estimation error. 
 
Previously we described various ways to 
obtain prior hydraulic parameter estimates 
and error variances for the MAC site. 
Parameter estimates obtained on the basis of 
Bayesian updating have very small 
variances and therefore very large weights. 
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The latter allow only minimal departure of 
the posterior parameters from their initial 
(input) values, which is not enough to yield 
a significant improvement in model fit 
(reduction in the weighted sum of squared 
water content residuals). As unsaturated 
flow equations are highly nonlinear and soil 
hydraulic parameter estimates are correlated 
with each other, it is difficult to identify soil 
hydraulic properties uniquely using 
inversion. The more accurate are the input 
parameters, the higher is the prospect of 
obtaining meaningful inverse estimates. 
Since the CARSEL database has proven to 
yield best results in forward simulations, we 
adopt the mean and variance of hydraulic 
parameters from Meyer et al. (1997) as input 
into the inverse code. 
 
Calibrating a one-dimensional model 
consisting of a single uniform layer against 
water content data in various boreholes 
during infiltration experiment 3 brings about 
only a minor improvement over the 
uncalibrated model. This model is clearly 
inferior to the multilayer models we 
consider below. 
 
As the sandy loam at depths 0 - 2 m has a 
different bulk density than deeper sandy 
loam layers, we estimate its hydraulic 
properties separately. This yields a total of 
four materials for each sequence of layers: 
Sandy loam in the top layer, sandy loam in 
deeper layers, gravel loamy sand and sand. 
Sensitivity analysis about the prior 
parameter estimates suggests (see Wang, 
2002, for details) that it should be possible 
to estimate independently the saturated 
hydraulic conductivity Ks and van 
Genuchten’s n and α  for each of these 
materials, and this is what we do. 
 
Figure 11-22 shows matches between 
simulated (curves) and measured (dots) 
water contents in borehole 402 during 

infiltration experiment 3 following 
inversion. Inverse modeling is seen to have 
improved these matches significantly as 
compared to the forward modeling results in 
Figure 11-18. It has also brought about a 
significant change in the estimate (mean) 
and reduction in the estimation error 
(variance) of each parameter. The same 
happens when we calibrate our one-
dimensional model against water content 
data from boreholes 422, 442, 423 and 425. 
 
Figure 11-23 shows the results of two-
dimensional inverse modeling along the 
western N-S transect by considering the soil 
to consist of horizontally uniform layers. 
The matches are seen to be much better than 
those obtained prior to inversion in Figure 
11-21. While some simulation results fit the 
data well, other are systematically too low or 
too high. For example, water content in the 
top sandy loam layer in borehole 402 is 
systematically under-predicted, whereas in 
sandy loam and sand layers at depths 6 - 10 
m in boreholes 422 and 442 it is 
systematically over-predicted. Figure 11-23 
suggests indirectly that computed wetting-
front arrival times in deeper sections of 
borehole 442 lag considerably behind the 
measured ones. Similar results are obtained 
for the central E-W transect. We conclude 
that it may be necessary to account for 
lateral variations in layer properties. 
 
Variogram analysis has shown that the 
dominant horizontal correlation scale of soil 
hydraulic parameters at the MAC is 20 - 25 
m. We therefore subdivide the transect into 
3 horizontal segments, one per borehole. We 
ascribe to each segment initial parameter 
values equal to those previously obtained 
from corresponding one-dimensional inverse 
modeling results. This yields a total of 36 
parameters per transect. 
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Figure 11-22. 1-D simulation of infiltration experiment 3 in borehole 402 using inverse estimates of 
saturated hydraulic conductivity and van Genuchten's α  and n. 
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Figure 11-23. 2-D simulation of infiltration experiment 3 along western N-S transect  
(boreholes 402, 422, 442) using inverse estimates of saturated hydraulic conductivity  

and van Genuchten's α  and n. Uniform soil layers. 
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Figure 11-24. 2-D simulation of infiltration experiment 3 along western N-S transect  
(boreholes 402, 422, 442) using inverse estimates of saturated hydraulic conductivity  

and van Genuchten's α  and n. Non-uniform layers. 
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Figure 11-25. Histogram of differences between observed and simulated water contents  
along western N-S transect (boreholes 402, 422, 442) following inversion. Non-uniform layers. 

 
Figure 11-24 compares simulated and 
observed water contents using inverse 
parameter estimates along the western N-S 
transect. The fit is seen to be good in all 
cases. A histogram of residuals (Figure 11-
25) suggests that they are close to normal 
with a near-zero mean and small standard 
deviation. At a confidence level of 95%, 
only 14 out of the 300 residuals are 
identified as outliers. The parameter 
estimates differ only slightly from their one-
dimensional counterparts. Similar results are 
obtained for the central E-W transect. 
 
Tables 11-8 and 11-9 compare the various 
one- and two-dimensional models along the 
western N-S and central E-W transects, 
respectively, following inversion. The 
quality of model fit is compared on the basis 

of a D-optimality criterion equal to the 
determinant of the covariance matrix of 
parameter estimation errors, an A-optimality 
criterion equal to the trace of this matrix, an 
E-optimality criterion equal to the largest 
absolute eigenvalue of the same matrix 
(Steinberg and Hunter, 1984), the negative 
log likelihood criterion that is minimized 
during the inverse process, and the 
logarithm of the corresponding likelihood 
function (which is being maximized). These 
model fit criteria can be used to compare the 
quality of different models that have similar 
structure and number of parameters (such as 
our N-S and E-W two-dimensional models 
with uniform layers), but not models that 
have different structures or numbers of 
parameters (such as our two-dimensional 
models with uniform and non-uniform 
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layers). To validly compare the quality of all 
models in Tables 11-8 and 11-9, we employ 
likelihood-based model discrimination 
criteria due to Akaike (1974) and Kashyap 
(1982) as done previously by Carrera and 
Neuman (1986a-c). The smaller (or more 
negative) are these criteria, the better is the 

model. The model discrimination criteria 
consistently identify the uniform one-
dimensional model as being the worst 
among those considered and the two-
dimensional non-uniformly layered model as 
being the best.

 
Table 11-8. Model quality criteria for four 1-D and two 2-D models associated with N-S transect. 

 
1-D models 2-D N-S models Model Quality 

Criteria 422 uniform 422 402 442 Uniform 
layers 

Non-uniform 
layers 

D-optimality 4.79E-11 5.77E-68 5.65E-58 1.15E-58 5.83E-57 5.50E-179 

A-optimality 9.21E-03 2.00E-04 4.80E-04 8.95E-04 1.96E-03 1.11E-03 

E-optimality 9.00E-03 1.30E-04 2.21E-04 3.78E-04 8.49E-04 2.35E-04 
Negative log 

likelihood 1.28E+03 2.34E+02 1.99E+02 2.29E+02 8.20E+02 2.70E+02 

Log likelihood -3.45E+01 6.28E+02 6.09E+02 6.96E+02 6.11E+02 1.00E+03 
Akaike 7.51E+01 -1.23E+03 -1.19E+03 -1.37E+03 -1.20E+03 -1.93E+03 

Kashyap 1.02E+02 -1.06E+03 -1.05E+03 -1.22E+03 -1.04E+03 -1.45E+03 
 

Table 11-9. Model quality criteria for three 1-D and two 2-D models associated with E-W transect. 
 

1-D Models 2-D E-W Models 
Model Quality Criteria 

422 423 425 Uniform 
layers 

Non-uniform 
layers 

D-optimality 5.77E-68 3.16E-74 4.06E-56 7.55E-62 1.44E-194 
A-optimality 2.00E-04 9.79E-05 1.10E-03 1.04E-03 3.55E-04 
E-optimality 1.30E-04 5.29E-05 6.19E-04 5.27E-04 8.80E-05 

Negative log likelihood 2.34E+02 2.45E+02 2.61E+02 8.37E+02 4.54E+02 
Log likelihood 6.28E+02 7.00E+02 6.99E+02 6.32E+02 9.55E+02 

Akaike -1.23E+03 -1.38E+03 -1.37E+03 -1.24E+03 -1.84E+03 
Kashyap -1.06E+03 -1.19E+03 -1.23E+03 -1.07E+03 -1.31E+03 
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Figure 11-26. 2-D simulation of experiment 1 along the N-S transect (boreholes 402, 422, 442)  
using layered non-uniform conceptual model and hydraulic parameters obtained from experiment 3. 
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Figure 11-27. Simulated (curves) and measured (dots) bromide concentrations at the south monitoring 
island obtained using inverse estimates of dispersivity, immobile or excluded water content,  

and mass transfer coefficient.  
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11.1.13 Confirmation of Inverse Modeling 
Results 

 
Our conceptual model and inverse hydraulic 
parameter estimates are based on data 
collected during infiltration experiment 3. 
We use them to simulate water contents at 
the MAC site during experiment 1. 
 
Figure 11-26 shows a two-dimensional 
simulation of infiltration experiment 1 along 
the western N-S transect using the non-
uniform layered model and inverse 
hydraulic parameters, which are obtained by 
calibrating against water contents observed 
during experiment 3. The good matches 
between simulated and observed water 
contents for experiment 1 constitute a 
confirmation of the calibrated model. 
Similar results were obtained for the central 
E-W transect. 
 
11.1.14 Inverse Modeling of Solute 

Transport 
 
One-dimensional inverse estimates of soil 
hydraulic parameters based on infiltration 
experiment 3 were adopted for one-
dimensional solute transport modeling of 
bromide tracer data collected during 
experiment 1. We model transport as an 
advection-dispersion process with linear 
mass transfer to and from a zone of 
immobile water or, equivalently, anion 
exclusion. 
 
Figure 11-27 shows simulated (solid curve) 
and measured (dots) bromide concentrations 
at the south monitoring island obtained 
using inverse estimates of dispersivity, 
immobile or excluded water content, and 
mass transfer coefficient. Varying the latter 
has no effect on our simulations.  
 
 
 

11.1.15 Conclusions 
 
Our work at the MAC site leads to the 
following conclusions: 
• Publicly available data suggest that soils 

at the experimental MAC site consist of 
sandy loam down to a depth of about 16 
m. Site data indicate instead that the soil 
profile down to a depth of 20 m consists 
of 10 layers composed of four different 
soil types (sandy loam, gravelly loam 
sand, sand and sandy clay loam), which 
are laterally heterogeneous on scales 
exceeding 20 – 30 m. 

• Publicly available data identify a 
regional water table that is locally about 
22 m deep. Site data indicate the 
additional presence of a perched water 
table at a depth of about 13 m across the 
site. 

• Generic databases make it possible to 
associate each soil type at the MAC with 
prior probability distributions of relevant 
hydraulic parameters. The distributions 
vary with the database. 

• Regression and neural network 
pedotransfer models allow translating 
information about the composition and 
density of discrete soil samples at the 
MAC into estimates of hydraulic 
parameters. The statistics of these 
estimates vary with the model and 
generic database on which it is based. 

• Generic probability distributions of 
hydraulic parameters based solely on 
soil class can be updated by treating our 
pedotransfer estimates of these 
parameters as "measurements."  
Bayesian updating has brought about a 
change in the mean (reduction in bias) 
and a drastic reduction in its estimation 
variance. 

• Our conclusion about the layered and 
laterally heterogeneous structure of soils 
at the MAC is supported in large part by 
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variograms of soil compositional data 
and hydraulic parameter estimates 
obtained using pedotransfer models. 

• The same conclusion is supported by 
neutron probe readings, which correlate 
with soil compositional data and appear 
to be more consistent across the site than 
are these data. 

•  Relying entirely on publicly available 
data leads to a poor reproduction of 
observed infiltration at the MAC site. 

• Mean hydraulic parameter estimates 
based on the generic CARSEL database, 
published by Meyer et al. (1997) on the 
basis of data assembled by Carsel and 
Parrish (1988), allow a much better 
reproduction of observed water contents 
at the MAC than do estimates based on 
the RAWLS (Rawls et al., 1982) or 
ROSETTA (Schaap and Leij, 1998) 
databases. Bayesian updating of mean 
hydraulic parameters based on RAWLS 
and ROSETTA leads only to a marginal 
improvement in their ability to 
reproduce observed water contents at the 
site. 

• Regardless of our choice of database, 
pedotransfer function or flow model we 
were unable to reproduce observed water 
contents at the site without calibrating 
the flow model against such 
observations. We used the mean and 
variance of hydraulic parameters 
associated with the CARSEL database as 
inputs into our inverse flow models. 

• Calibrating a one-dimensional model 
consisting of a single uniform layer 
against water content data in various 
boreholes during infiltration experiment 
3 brings about only a minor 
improvement over the uncalibrated 
model. This model is clearly inferior to 
multilayer models we consider for the 
site. 

• Inverse modeling brings about a 
significant improvement in our ability to 
reproduce observed water contents at the 
MAC using multilayer models regardless 
of whether the latter are one- or two-
dimensional with uniform or laterally 
heterogeneous layers. Inverse modeling 
is accompanied by a significant change 
in the estimate (mean) and reduction in 
the estimation error (variance) of each 
hydraulic parameter. 

• Likelihood-based model discrimination 
criteria consistently identify the uniform 
one-dimensional model as being the 
worst among those considered and the 
two-dimensional model with laterally 
heterogeneous layers as being the best. 

• The latter model, calibrated against 
water content data observed during 
infiltration experiment 3, reproduces 
with fidelity water content data observed 
during infiltration experiment 1. 

• One-dimensional inverse estimates of 
soil hydraulic parameters based on 
infiltration experiment 3 were adopted 
for one-dimensional solute transport 
modeling of bromide tracer data 
collected during experiment 1. An 
advection-dispersion model with linear 
mass transfer to and from a zone of 
immobile water, or anion exclusion, was 
employed in forward and inverse modes. 
Following calibration, the model 
reproduced reasonably well measured 
bromide breakthroughs at the monitoring 
island during experiment 1. 

 
11.2 Apache Leap Research Site 
 
11.2.1 Introduction 
 
Issues associated with the site 
characterization of fractured rock terrains, 
the analysis of fluid flow and contaminant 
transport in such terrains and the efficient 
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handling of contaminated sites are typically 
very difficult to resolve. A major source of 
this difficulty is the complex nature of the 
subsurface "plumbing system” of pores and 
fractures through which flow and transport 
in rocks take place. This is especially true 
for fractured rocks that are only partially 
saturated. 
 
One relatively convenient way to 
characterize such rocks is by means of 
single-hole and cross-hole pneumatic 
injection tests. Considerable experience with 
such testing of unsaturated fractured tuffs 
has been accumulated in recent years by the 
University of Arizona (U of A) at the 
Apache Leap Research Site (ALRS) near 
Superior, Arizona, under the auspices of the 
U.S. NRC (Chen et al., 2000; Guzman et al., 
1996; Illman et al., 1998; Illman and 
Neuman, 2000, 2001; Neuman et al., 2001; 
Vesselinov et al., 2001a-b; Vesselinov and 
Neuman, 2001: Hyun et al., 2002). This 
research has established the following 
conceptual framework for the ALRS: 
 
• It is possible to model airflow through 

unsaturated fractured tuffs at the ALRS 
by treating water as if it was immobile, 
and the rock as if it was a porous 
continuum. 

• During a pneumatic injection test, air 
moves primarily through fractures most 
of which contained relatively little water, 
and the test therefore yields 
permeabilities and porosities which 
reflect closely the intrinsic properties of 
the surrounding fractures. This is so 
because capillary forces tend to draw 
water from fractures into porous (matrix) 
blocks of rock, leaving the fractures 
saturated primarily with air, and making 
it difficult for air to flow through matrix 
blocks. 

• Pneumatic permeabilities increase 
systematically with applied pressure, as 
air appears to displace water under two-
phase flow. In a few single-hole tests, 
where the injection intervals were 
intersected by widely open fractures, air 
permeabilities decrease with applied 
pressure due to inertial effects. Two-
phase flow and inertial phenomena 
decay rapidly with distance from the 
injection interval. Enhanced permeability 
due to slip flow (the Klinkenberg effect) 
appeares to be of little relevance to the 
interpretation of single-hole or cross-
hole air injection tests at the ALRS. 

• Flow in the vicinity of most relatively 
short pneumatic test intervals is three-
dimensional regardless of the number or 
orientation of fractures in the surrounding 
rock. This implies that such flow is 
controlled by a single continuum, 
representative of a three-dimensional 
network of interconnected fractures, 
rather than by discrete planar features. 
Only in a small number of single-hole 
test intervals, known to be intersected by 
widely open fractures, do such features 
dominated flow. Some pressure records 
indicate radial flow during early and 
intermediate times, but none do so fully 
at late times. 

• It is generally not possible to distinguish 
between the permeabilities of individual 
fractures, and the bulk permeability of 
the fractured rock in the immediate 
vicinity of a test interval, by means of 
pneumatic injection tests. Hence there is 
little justification for attempting to 
model flow through individual fractures 
at the site. The explicit modeling of 
discrete features appears to be justified 
only when one can distinguish clearly 
between layers, faults, fracture zones, or 
major individual fractures on scales not 
much smaller than the domain of interest. 
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• Air permeabilities obtained from single-
hole tests are poorly correlated with 
fracture densities, as is known to be the 
case for hydraulic conductivities at many 
water-saturated fractured rock sites 
worldwide (Neuman, 1987). This 
provides further support for Neuman’s 
conclusion that the permeability of 
fractured rocks cannot be reliably 
predicted from information about fracture 
geometry (density, trace lengths, 
orientations, apertures and their roughness) 
but must be determined directly by means 
of hydraulic and/or pneumatic tests. 

• Core and single-hole measurements, 
conducted over short segments of a 
borehole, provide information only 
about a small volume of rock in the 
immediate vicinity of each measurement 
interval. They tend to vary erratically in 
space in a manner that renders the rock 
randomly heterogeneous and anisotropic. 

• Local-scale air permeabilities from 
single-hole tests vary by orders of 
magnitude between test intervals across 
the site; their spatial variability is much 
more pronounced than their dependence 
on applied pressure. 

• It is possible to interpolate some of the 
core and single-hole measurements at 
the ALRS between boreholes by means 
of geostatistical methods, which view 
the corresponding variables as correlated 
random fields defined over a continuum. 
This is especially true about air 
permeability, porosity, fracture density, 
water content, and the van Genuchten 
water retention parameter α, for each of 
which there are enough measurements to 
constitute a workable geostatistical 
sample. It supports the application of 
stochastic continuum flow and transport 
theories and models to unsaturated 
fractured porous tuffs at the ALRS on 
scales of one meter or more. 

• Air-permeability is well characterized by 
a power variogram, which is 
representative of a random fractal field 
with multiple scales of spatial 
correlation. 

• Cross-hole pneumatic injection test data 
from individual monitoring intervals are 
amenable to analysis by type-curve and 
numerical inverse models, which treat 
the rock as a uniform and isotropic 
fractured porous continuum. Analyses of 
pressure data from individual monitoring 
intervals by the two methods provide 
information about pneumatic 
connections between injection and 
monitoring intervals, corresponding 
directional air permeabilities, and air-
filled porosities. All of these quantities 
vary considerably from one monitoring 
interval to another in a given cross-hole 
test on scales ranging from a few meters 
to several tens of meters. Thus, even 
though the analyses treat the rock as if it 
was pneumatically uniform and 
isotropic, they ultimately yield 
information about the spatial and 
directional dependence of pneumatic 
connectivity, permeability and porosity 
across the site. 

• The pneumatic permeabilities and 
porosities of unsaturated fractured tuffs 
at the ALRS vary strongly with location 
and scale of measurement. The scale 
effect is most probably due to the 
presence in the rock of various size 
fractures that are interconnected on a 
variety of scales. 

• As there is consistency between single-
hole and cross-hole test results, the 
pronounced permeability scale effect at 
the ALRS is unrelated to the method of 
testing. As there is consistency between 
results obtained by means of diverse 
steady-state and transient, analytical and 
numerical methods of test interpretation, 
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the scale effect is unrelated to the 
method of interpretation. As neither the 
single-hole nor the cross-hole test results 
have been affected by any skin effect of 
consequence, the scale effect is unrelated 
to phenomena associated with borehole 
drilling and completion. The observed 
permeability scale effect at the ALRS 
appears to be real. 

• The question was asked to what extent 
can one interpret the observed 
permeability scale effect at the ALRS by 
means of a stochastic scaling theory due 
to Di Federico and Neuman (1997) and 
Di Federico et al. (1999), which views 
log permeability as a truncated random 
fractal. There is considerable uncertainty 
about the magnitude of the observed 
scale effect at the ALRS, making it 
difficult to answer this question 
conclusively. However, there is 
sufficient correspondence between the 
site data and the theory to suggest that 
the latter may indeed provide a viable (if 
not complete) explanation of the 
observed scale effect. 

 
These findings amount to a conceptual 
model of the pneumatic characteristics of, 
and airflow through, unsaturated fractured 
tuffs at the ALRS. It however leaves many 
fundamental questions unanswered, 
implying that the present conceptual model 
is incomplete and uncertain. Among 
conceptual issues that require resolution are 
the following: 
 
• To what extent do conceptualizing the 

air permeability and air-filled porosity of 
unsaturated fractured tuffs at the ALRS 
as multiscale random fields, defined over 
a continuum, apply to saturated and 
unsaturated hydraulic conductivities and 
porosities? 

• To what extent do bulk air permeabilities 
and air-filled porosities represent 
hydraulic conductivities and porosities 
of the fractured rock? 

• How can unsaturated hydraulic rock 
properties be determined under field 
conditions? 

• What roles do fractures play in 
controlling these properties? 

• Would a (stochastic or deterministic) 
continuum representation of these 
properties be appropriate? 

• How variable are these properties in 
space? Could their variability be 
described geostatistically, or would there 
be a need to consider discrete features 
such as fractures or channels in the 
conceptual model of medium 
heterogeneity? 

• What role does preferential flow play 
under saturated and unsaturated 
conditions? Can preferential flow 
channels or unstable fingers be seen, 
identified and characterized in the field? 

• Is there a need to identify fractures and 
preferential-flow-channels discretely? If 
so, is this feasible, and how? 

• What role does dispersion play in the 
movement of tracers with water? Can it 
be predicted by means of continuum 
stochastic concepts? 

• What role does matrix-fracture 
interaction play during saturated and 
unsaturated water flow and solute 
transport in fractured porous rocks? Are 
dual porosity, dual permeability and/or 
matrix diffusion active during such flow 
and transport? 

• Can these interaction phenomena be 
detected in the field, and how? 

 
These fundamental questions of conceptual 
understanding cannot be answered without 
conducting appropriate experiments with 
water and dissolved tracers at the ALRS. 
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To address them, a long-term ponding 
infiltration and tracer experiment was 
conducted at the site by Yao et al. (2002). 
Here we provide a brief synopsis of the 
experiment and our findings. 
 
11.2.2 Experimental Setup 
 
A 9 x 9 meter plot was divided into nine 3 x 
3 meter subplots and instrumented as shown 
in Figure 11-28. An air compressor was used 
to expose the surface of the rock and major 
fractures. Ponding started on November 12, 
1999 and bromide tracer was added on May 
30, 2000. Ponding ceased on August 28, 
2001. The advance of the water front was 
measured with tensiometers and a neutron 
probe within each subplot. Solute movement 
was determined based on solution samples 
collected from suction lysimeters at various 
locations and depths. 
 
Figure 11-29 shows cumulative outflow 
from the pond over each subplot. Examples 
of neutron count and soil potential variations 
with depth are given for subplot 1 in Figures 
11-30 and 11-31, respectively. Neutron 
counts were also available for vertical and 
slanted deep boreholes in and around the 
experimental plot which are not indicated in 
Figure 11-28. Figure 11-32 shows bromide 
concentrations versus time at 3 and 5m 
depth beneath pond 1. 
 

11.2.3 Findings 
 
The long-term ponding infiltration and 
tracer experiment at the ALRS has shown 
that arrivals of water fronts were clearly 
detectable from the tensiometer data but not 
as clearly from the neutron probe data. 
Higher infiltration rates were found in plots 
with apparent surface fractures than in other 
plots. After 650 days of flooding with 
bromide labeled water, 14 of the 45 suction 
lysimeters have indicated the arrival of 
surface applied bromide, but only 3 have 
indicated early arrival. Concentration spikes 
of bromide were detected in two lysimeters 
under plot 8 (at 2 and 3 m) and in one 
lysimeter under plot 9 (0.5 m). Though there 
was a clear increase in matric potential 
under all plots at depths of 0.5 and 1.0 m, 
there was no measurable bromide at 6 of the 
9 lysimeters at these depths. High apparent 
dispersivity values were calculated from 
bromide breakthrough data at eight sampling 
points using a one-dimensional model with 
uniform velocity. The relatively high 
infiltration rates in some plots, early arrivals 
of bromide spikes at deep sampling points 
without showing up at shallow points, and 
high apparent dispersivity values at some 
points suggest the presence of a complex 
system of preferential flow paths at the site. 
Though fracture data beneath the plots are 
lacking, it stands to reason that these 
preferential flow paths are associated with 
fractures. 
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Figure 11-28. Experimental site with plots, instrumentation, and surface exposure of fractures. 
 

 
 

Figure 11-29. Cumulative outflow from each subplot pond. 
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Figure 11-30. Plot 1 neutron probe count ratios versus depth. 

 
 

Figure 11-31. Plot 1 soil water potentials versus depth. 
 

 
 

Figure 11-32. Plot 1 bromide concentrations versus time at 3 and 5 m depths. 
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11.3 Fanay-Augères 
 
This case study is based on a paper by Ando 
et al. (2002). 
 
11.3.1 Introduction 
 
Cacas et al. (1990a-b) described flow 
experiments in a uranium mine at Fanay-
Augères near Limoges, France. The 
experiments were conducted in a 100 m 
horizontal drift at a depth of 150 m within 
highly fractured granite. Ten 50 m long 
boreholes were drilled radially from the drift 
in three vertical planes at distances of 25.9 m 
and 23.7 m from each other (Figure 11-33). 
Planes 1 and 3 contain three boreholes each 
and plane 2 contains four boreholes. Fractures 
were mapped in the drift and observed in 
borehole cores. Water was injected into 180 
packed-off chambers of length 2.5 m and 
diameter 7.6 cm at 10 MPa. Similar injection 
tests were conducted in 50 chambers of length 
10 m and 10 chambers of length 50 m. Head 
was monitored in 68 chambers of length 5 m 
for over 400 days starting February 2, 1985 
and ending March 3, 1986. They reveal the 
presence of a near-horizontal water table 
(zero-pressure isobar) a short distance above 
the drift. Below it, the rock is fully saturated 
with water. 
 
Inflow into the drift was measured 
continually before and after partial 
desaturation due to borehole drilling. It 
exhibits two stages of near steady state with 
an intervening transient flow period (Figure 
11-34). Two tracer tests were conducted by 
injecting different tracers into 5 m long 
chambers in boreholes F2 and F3 (Figure 
11-35). Chambers are identified by symbols 
in which the first character refers to chamber 
number (increasing toward the drift, as 
illustrated in Figure 11-35) and the rest 
identify the borehole (for example, 4F3 is 
chamber 4 in borehole F3). During the first 

test that commenced on September 19, 1985, 
two tracers were injected into 7F2 and one 
into each of 6F2, 4F2, 1F2 and 4F3. During 
the second test that commenced on 
December 19, 1985, one tracer was injected 
into each of 3F2, 6F3, 3F3 and 1F3. 
Measurements included tracer 
concentrations at location "A" (a plastic 
sheet glued to the roof of the gallery near its 
intersection with borehole F2 at 50 m as 
measured from the north end of the drift); 
chambers 1 - 7 of borehole F4; rhodamine 
WT, injected into 4F3 at 50 m, along the 
drift intervals 43.5 m - 66.5 m on October 
13 and 70.0 m - 99.0 m on October 30, 
1985; location "B" in a 25m long drain 
along the gallery extending from the 
injection plane of boreholes F1 - F4 to the 
plane of boreholes F5 - F7; and location "C" 
along a 25 m - 50 m segment of the gallery 
downstream of the injection plane (Figure 
11-35). 
 
A stochastic discrete fracture network model 
was developed for the site by Cacas et al. 
(1990a-b). In their model, fractures were 
represented by circular disks with randomly 
prescribed radia and orientations based on 
statistics inferred from in situ geometric 
observations (Figurer 11-36). Flow in each 
disk was one-dimensional, purportedly to 
represent channels. The probability 
distribution of flow rates through fractures 
across the network was assumed to be log-
normal, in analogy to the distribution inferred 
from steady state flow rates (and hydraulic 
conductivities) measured during 2.5 m scale 
constant-pressure packer tests. This inference 
ignored about 1/3 of the test values, which 
fell below the detection limit of 

106 10K −= ×  m/s (Figure 11-37). In 
postulating the analogy, no notice was taken 
of the fact that correlation between the 
intensity of fracturing (as represented by 
fracture density, measured by number of 



 

182 
 
 

fractures per unit length of borehole) and 
hydraulic conductivities from the 2.5 m 
scale tests is highly tenuous (Figure 11-38). 
A similar lack of clear correlation between 
fracturing and permeability has been noted 

by us at other sites (Neuman, 1997; Chen et 
al., 2000), throwing into question the 
validity of models that relate the latter to the 
former.

 

 

Figure 11-33. Layout of drift and boreholes (after Cacas et al., 1990a). With permission, AGU. 

 

Figure 11-34. Measured inflow rates into drift and periods of tracer tests. 
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Figure 11-35. Tracer release intervals and monitoring locations in drift  
(after Cacas et al., 1990b). With permission, AGU. 

 

 
Figure 11-36. 3-D network of circular disks with 1-D flow and transport paths  

(after Cacas et al., 1990a). With permission, AGU. 
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Figure 11-37. Normal probability plot of natural log-hydraulic conductivity from 2.5 m packer tests. 
 

 
Figure 11-38. Scatter plot of fracture density (number per unit length of boreholes)  

versus hydraulic conductivity from 2.5 m scale packer tests. 
 
Cacas et al. (1990a) generated 17 random 
networks of fractures within 10 m scale 
cubes. No spatial correlation between the 
fractures was considered even though the 
2.5 m scale hydraulic conductivities (to 
which the fracture statistics were deemed 
related) are strongly auto-correlated, as we 
show later. By computing steady state flow 

across each cube under an externally 
imposed hydraulic gradient (and noting, as 
should have been anticipated by 
construction, that cube orientation has little 
effect on the results) the authors had 
obtained 17 scalar equivalent hydraulic 
conductivity values  that they considered 
representative of 10-m scale rock volumes.  

eK
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The  values were treated as a sample 
from a statistically homogeneous and isotropic 
multivariate log-normal random field across 
the experimental site. An approximate three-
dimensional stochastic continuum formula 
was then used to calculate an effective scalar 
hydraulic conductivity 

eK

( )2 81 / 6 1.6 10eff gK K σ −+ ×
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acas et al. (1990b) stated that it would not 
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than 10 m.

 m/s for the 
rock mass on scales much larger than 10 m.  
Next, a circular finite element model was 
constructed on a plane transverse to the drift. 
Pressure head in the drift was set equal to 
zero and head was prescribed along 7 
concentric circular boundaries with radii 
increasing from 5.5 m to 47.5 m, based on 
borehole measurements projected onto the 
model plane (Figure 11-39). For each of the 
7 boundaries, the two-dimensional model 
was calibrated against measured flow into 
the drift (it is not clear how well did the 
calibrated models reproduce heads projected 
onto the interior of the model plane, a 
question we address later in the context of 
our own model). The calibrations yielded 7 
equivalent uniform scalar hydraulic 
conductivity estimates that tended to 
decrease with domain size. Even though the 
estimates had not fully stabilized at the 
maximum radius of 47.5 m, their smallest 
value of  m/s was taken to 
represent the large-scale hydraulic 
conductivity of the rock. That this estimate 
is within the range  m/s of 17 

values generated by means of the three-
dimensional discrete network model, and is 
close to the stochastic 
average m/s of these values, 
was considered by Cacas et al. (1990a) to 
constitute a validation of their fracture 
network model with respect to flow. 

81.8 10−×

81.5 2.3 10−− ×

eK

81.6 10effK −×

 
To simulate tracer transport, Cacas et al. 
(1990b) generated 20 random three-

channels interconnected at 10,000 nodes. 
The network covered part of the domain, 
which was subjected to prescribed head 
boundary conditions (Figure 11-40) that 
not appear to be entirely consistent with 
those observed (Figure 11-39). Tracer wa
advected through each network by particle 
tracking. Local-scale dispersion was 
simulated by routing particles random
one of several downstream channels. Large-
scale dispersion was simulated by drawing 
random particle residence times in channels
from a normal distribution with variance 
proportional to an (apparently arbitrary) 
dispersivity of 0.8 m. The mean residence
time was made proportional to a retardation
coefficient that was calibrated against peak 
arrival times at location A for tracers 
injected into 7F2 and 6F2, and locatio
for tracers injected into 6F3 and 4F3. As 
injection into 3F3 at a distance of 35 m fr
the drift would have required including 
25,000 fractures in the model, it was not
simulated. Measured and simulated mass 
recovery fractions did not match well and 
the paper includes no comparison between
simulated and observed tracer breakthrough
curves. Their finding that the model was 
able to reproduce observed breakthrough 
durations with some fidelity was taken by 
Cacas et al. to constitute a validation of the
fracture network model with respect to 
solute transport.  
 
C
be realistic to interpret the tracer experiments
at Fanay-Augères without accounting for 
discrete channels in the model. In the view
Cacas et al. (1990a), continuum models are 
not capable of adequately interpreting small 
scale measurements; at best, they may be use
at some distance where only average behavior 
is required. Judging by their papers, Cacas 
et al. considered the continuum approach to
be invalid at Fanay-Augères on scales smalle
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Figure 11-39. Projection of observed piezometric heads (in meters) onto transverse model plane 

(after Cacas et al., 1990a). With permission, AGU. 
 

 
Figure 11-40. Boundary conditions used for simulating tracer injections  

 
e obtained data relating to the flow and 

e 
t 

and transport at Fanay-Augères by viewing 
 

 proposed by 

(after Cacas et al., 1990b). With permission, AGU. 

W
transport experiments at Fanay-Augères 
courtesy of Professor G. de Marsily of th
University of Paris in France. In the presen
paper, we utilize these data to model flow 

the fractured rock as a stochastic continuum
on the nominal 2.5 m support 
(measurement) scale of available packer test 
data. This approach, originally
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Neuman (1987, 1988), is based on the 
recognition that (a) it is expensive and 
difficult to characterize the geometry, 
hydraulic and transport properties of 
individual fractures on such small scale
across a site, (b) fracture geometry ten
be a poor indicator of how such small sca
hydraulic and transport properties vary 
across a site, and therefore (c) it is neither 
feasible nor necessary to collect detailed
information about individual fractures on 
such small scales for the purpose of 
analyzing flow and transport on similar or 
larger scales. Instead, flow and transp
many fractured rock environments are 
amenable to analysis by continuum models 
that account adequately for medium 
heterogeneity. This includes the stochastic 
continuum approach, which treats in 
measurements of hydraulic conductivity 
(and possibly other rock properties) as a 
correlated random field and obviates the 
need for either detailed information abou
fracture geometry or assumptions about h
individual fractures control flow and 
transport. The concept, and methods of 
analysis based upon it, have been appl
successfully to fractured granites by 
Neuman and Depner (1988) and to 
unsaturated fractured tuffs by Chen e
(2000), Vesselinov et al. (2001) and
al. (2002). 
 
When flow 
d
dykes) on relatively large scales, one has the 
option of embedding them as discrete slabs 
within the model and treating the internal 
properties of each feature as spatially auto-
correlated random fields (Neuman, 1997). 
Though a fault zone has been identified at 
the Fanay-Augères experimental site (Figur
1), neither Cacas et al. (1990a-b) nor we 
have found it necessary to include this fault 
in our models. In fact, we show that it is 
possible to reproduce a larger selection of 

experimental results than those considere
by Cacas et al. merely upon modeling the 
rock as a statistically homogeneous 
continuum in two dimensions. Our results 
demonstrate that a continuum approa
be well suited for the analysis of flow and 
transport in fractured rock. This does not 
constitute a validation of the continuum 
approach, just as the results of Cacas et al
fall short of validating the discrete fractu
approach. Instead, the two sets of results 
illustrate jointly the well established 
principle that an open system, especially o
as complex as fractured hydrogeologi
environments tend to be, cannot be 
described uniquely on the basis of spars
data and need not be described in gr
detail to capture its salient behavior by a 
model. 
 
The foll
sy
theses of Kostner (1993) and Ando (19
Readers interested in details beyond those 
presented here are encouraged to consult 
these theses. 
 
11.3.2 Indi

 
y subjecting hydraulic 

c
from packer tests in 2.5 m boreho
to indicator geostatistical analysis. Such 
analysis treats the data as a sample from a 
spatially auto-correlated random field defi
on a continuum. We use indicator rather tha
standard geostatistical analysis to account for 
the spatial distribution of hydraulic 
conductivities below the detection limit 
(Figure 11-37), which may have 
considerable impact on the movement of
tracers by forcing it to migrate aro
of low permeability.  
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he first step in the analysis is to transform T
( )K x  into a binary indicator function 

)( ; cI Kx  equal to 1 if ( ) cK K≤x  and 0

, where cK ed 
utoff) va  and x is a vec

coordinates. We subdivide the available 
range of K data into 7 classes defined by 
indicator cutoffs, listed in Table 11-10 
together with the percent of K data that 
lie at or below each cutoff. The first cutoff is
the detection limit and the third is the 
median of the data. Indicator analysis 
requires no distributional assumptions 
K. Instead the expectation of ( ); c

 if 

K
indicator (c tor of 

6 

that 
 

about 

( ) cK >x  is a specifi
lue

I Kx , 
conditional on a set of measur

( )1 2, ,... NK K KTK =  where K is a vect
is an estimate of the 

conditional cumulative probability 
distribution of ( )K x , 

( )

ements 
or and 

T denotes transpose, 

( );E I K⎡ ⎡x TKc cP K K⎤ ⎤= ≤⎣ ⎦ ⎣ ⎦x TK . 

 
igure 11-37 shows that if one ignores 

, the 
 cumulat
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he next step is to infer from the indicator-
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te 

mni-

s noted by Cacas et al. (1990a), the spatial 

stify 

 all the 
e 

dicator kriging yields a best linear 

F
values of lnY K=  at the detection limit
remaining ive distribution is near-
normal with slight positive skewness. The 
indicator approach makes it possible to 
extrapolate this distribution below the fi
and above the sixth cutoffs with the aid of 
suitable parabolic and hyperbolic models, 
respectively. The augmented distribution 
yields a variable probability of encountering 
a hydraulic conductivity below the detection 
limit and a finite probability of encountering 
one above the highest value measured. It 
increases slowly above the sixth cutoff an
thus preserves the statistical properties of the
data including their slight positive skewness. 
 
T
transformed data sample and theoretical 
(model) indicator variograms. Variogram
models for all the cutoffs fit isotropic 

spherical models with ranges (measure
spatial auto-correlation) that vary from 18 m
to 23 m. Variogram models for cutoffs 1 – 5 
have sills (total variances) varying form 0.16 
to 0.25 and nuggets (variances of white 
background noise) varying from 0.10 to 
0.16. The variogram of cutoff 6 has much
smaller sill (0.05) and nugget (0.02) values
which, however, are based on a relatively 
small sample (Table 11-10) and are 
therefore less reliable. Normalizing a
variograms with respect to the sill of the 
median variogram shows that they are qui
similar (Figure 11-41). As the sill has no 
effect on indicator kriging weights, we 
calculate them on the basis of a single o
directional variogram corresponding to the 
median cutoff (Figure 11-42). 
 
A
distribution of near steady state heads in the 
three parallel planes that contain the 
boreholes are sufficiently similar to ju
modeling flow into the drift in two 
dimensions. We do so by projecting
available K and head data onto a single plan
transverse to the drift. 
 
In
unbiased estimate of the conditional 
probability ( ) cP K K⎡ ⎤≤⎣ ⎦x TK  for ea

cutoff (G\m Srivastava
1990). We estimate the latter on a 44 

ch 

ez-Hern<ndez and , 
×  47

grid of 2 m 
 

×  2 m cells in a plane tran vers
to the drift using an algorithm found in 
Deutsch and Journel (1998). For exampl
Figure 11-43 shows how our estimate of the
probability that hydraulic conductivity 
exceeds the fifth cutoff varies across the
plane. One can use the results to map out 
estimates of the conditional mean of K or 
other statistical moments such as median o
mode.

s e 

e, 
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Figure 11-41. Omni-directional indicator variogram models of   lnY K=
normalized with respect to sill of variogram model corresponding to indicator no. 3. 

 
Table 11-10. Indicator cutoffs of hydraulic conductivity data  

and percent of data not exceeding each cutoff. 
 

 
 

 
Figure 11-42. Omni-directional sample and spherical model semivariogram for indicator no. 3. 
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Figure 11-43. Kriged estimate of probability that hydraulic conductivity exceeds the fifth cutoff. 
 
Finally, we use conditional Monte Carlo 
simulation to generate 100 stochastic 
realizations of the hydraulic conductivity 
field on the transverse plane. We do so by 
means of a sequential algorithm (Deutsch 
and Journel, 1998) that honors hard 
indicator data, hard indicator constraints, the 
augmented probability distribution of the 
data, and the indicator variogram of the 
median cutoff. The simulations are 
performed on a rectangular grid of 34× 36 
cells measuring 2.5 m ×  2.5 m 
corresponding to the nominal support scale 
of the packer test data. Both the mean and 
the variance of the generated fields stabilize 
after only about eighty realizations. Two of 
the realizations are depicted in Figure 11-44. 
Whereas the sampled data do not fall below 
the detection limit, many of the simulated 
values do. Their histograms and probability 
plots (illustrated for the above two 
realizations in Figure 11-45) show bimodal 

distributions and a slight positive skewness 
as do the sampled data. The only notable 
difference between the original and 
simulated histograms is the wider spread 
(tail) of the latter below the detection limit. 
The generated hydraulic conductivity data 
under the detection limit are log-normally 
distributed. 
 
11.3.3 Geostatistical Analysis and 

Simulation of Flow 
 
To simulate flow and transport at Fanay-
Augères we limit ourselves to the saturated 
zone. We work with pressure heads rather 
than hydraulic heads to allow easy 
identification of the water table as a zero-
pressure isobar. Near steady state pressure 
head data collected during the first and 
second stages of the experiment, prior to and 
following a transitional nonsteady state 
period (Figure 11-34), are represented well 
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by omni-directional residual semivariograms 
with second-order polynomial drifts in the 
transverse (vertical) plane (depicted for 
stage 1 in Figure 11-46). We use them to 
estimate pressure head on the above grid of 
34× 36, 2.5 m  2.5 m cells by kriging, and 

to identify the position of the water table at 
each stage (as shown for stage 1 in Figure 
11-47). Kriging estimation errors 
(represented by their standard deviations) 
are seen to increase with distance from the 
borehole monitoring intervals.×

 

   
 

Figure 11-44. Two random realizations of hydraulic conductivity honoring the data. 
 

   
 

Figure 11-45. Cumulative distribution of hydraulic conductivity estimates in Figure 11-44. 
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Figure 11-46. Sample (dots) and spherical model (solid curve) omni-directional variogram  
of pressure head at stage 1 with quadratic polynomial drift. 

 

   
 

Figure 11-47. Kriged pressure head at stage 1 (left)  
and standard deviations of corresponding kriging errors (right). 

 
Next we prescribe zero pressure head along 
the water table and the drift, and nonzero 
estimated pressure heads along the remaining 
boundaries of the saturated zone (Figure 11-
48). We then simulate flow through this zone 
in each of the 100 generated permeability 
fields at each stage using the finite element 
code SUTRA (Voss 1984, 1990). Pressure 
and total heads corresponding to one of these 
simulations (no. 48 at stage 1) are depicted in 
Figure 11-49. 
 
Figure 11-50 shows histograms of simulated 
inflow rates into the 100 meter long drift at 
stages 1 and 2. Corresponding statistics are 

given in Table 11-11. Cumulative frequency 
plots (not shown) suggest that the rates are 
close to being log-normally distributed with 
geometric mean values of 2.09 l/min and 1.56 
l/min, respectively. The measured inflow 
rates of 2.42 l/min (September 1985) and 1.48 
l/min (December 1985) during the two stages 
correspond closely to the most frequently 
simulated values. Simulations using 
geometric mean hydraulic conductivities over 
all 100 realizations at each stage (which vary 
from grid cell to grid cell) yield inflow rates 
of 2.14 l/min and 1.35 l/min, respectively. 
These are very close to the measured rates.
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Figure 11-48. Flow model. 

  
 

Figure 11-49. Conditional simulation no. 48 of pressure head (left) and total head (right)  
at stage 1. 

 

           
 

Figure 11-50. Histograms of simulated drift inflow rates at stages 1 (left) and 2 (right).  
∇ indicates measured value. 
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Table 11-11.  Statistics of simulated inflow rates into drift (in l/min). 

 Stage-1 Stage-2 
Mean of 100 realizations 10.09 5.97 

Maximum of 100 realizations 34.49 23.18 
Minimum of 100 realizations 1.57 0.73 

Median of 100 realizations 8.25 4.90 
Mode of 100 realizations 2 to 8 1 to 5

Using geometric mean hydraulic conductivities 2.14 1.35 
Measured 2.42 1.48 

 
Tables 11-12 lists statistics of differences 
between simulated and kriged pressure head 
values at stages 1 and 2 for five hydraulic 
conductivity realizations (nos. 15, 41, 48, 72, 
95). Table 11-13 lists corresponding statistics 
of differences between simulated and 
measured pressure heads. The five 
simulations yield inflow rates into the drift, 
and pressure head residuals, that are closest to 
those actually measured. Among these five 

simulations, no. 48 yields the best fit to 
measured drift inflow rates at both stages 
(Figure 11-51). Corresponding scattergrams 
of simulated versus measured head residuals 
in Figure 11-52 show an acceptable fit (we do 
not know how well the model of Cacas et al. 
(1990a) reproduces observed heads in the 
interior of the flow domain). We therefore 
adopt conductivity realization no. 48 for the 
purpose of simulating transport.

 
Table 11-12.  Statistics of pressure head residuals  

(differences between simulated and kriged values in meters). 
 

Realizatio
n 

#15 #41 #48 #72 #95 

Stage 1 2 1 2 1 2 1 2 1 2 
Mean 0.77 0.95 1.19 1.26 1.30 1.29 1.251

. 
1.28 1.19 1.19

Variance 2.39 1.78 3.09 2.42 2.72 2.13 1.89 1.58 3.17 2.25
Max 3.73 3.80 5.07 5.45 5.09 4.32 5.587 4.77 4.54 4.05
Min -4.90 -3.34 -4.91 -3.81 -4.70 -3.49 -2.52 -2.23 -4.28 -2.64

 
Table 11-13. Statistics of pressure head residuals  

(differences between simulated and measured values in meters). 
 

Realizatio
n 

#15 #18 #48 #72 #95 

Stage 1 2 1 2 1 2 1 2 1 2 
Mean 1.00 1.30 1.00 1.27 1.00 1.38 1.55 1.71 1.60 1.68
Variance 4.70 2.95 6.38 2.09 6.83 1.96 1.55 1.72 5.13 3.44
Max 3.70 3.65 4.67 5.40 4.77 4.12 4.30 3.78 4.48 4.18
Min -6.52 -4.62 -9.07 -6.82 -6.89 -4.82 -2.96 -1.72 -5.26 -3.52
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Figure 11-51. Measured and simulated flow rate into drift. 
 

11.3.4 Simulation of Transport 
 
For the simulation of transport we select a 
single realization (no. 48) that yields the best 
reproduction of inflow rates into the drift and 
a reasonable reproduction of measured heads 
at both stages of the analysis. We focus on 
four tracer tests during which injection took 
place into chambers 3F3, 4F3, 6F3 and 7F2. 
According to Cacas et al. (1990b), these 
four tests are the most reliable and offer the 
most complete database among all tracer 
tests at the site. Since their model was 
limited to a relatively small rock volume, 
Cacas et al. were unable to simulate test 
3F3, analyzing instead test 6F2. Our model 
has no such limitation (mainly because we 
do not consider individual fractures, and to a 
lesser extent because we limit our analysis 
to two dimensions) and we therefore analyze 
test 3F3. We add that injection during test 
6F2 took place above the water table, a fact 
not explicitly considered by Cacas et al. 
 
The periods during which breakthrough of 
the four tracers injected into 3F3, 4F3, 6F3 
and 7F2 were monitored are indicated by 

bars in Figure 2. Injection took place for 30 
minutes at the start of each monitoring 
period. To mimic the transient stage during 
tracer tests 4F3 and 7F2, we interpolate 
linearly over time between the preceding 
steady state head configuration of stage 1 
and the subsequent steady state head 
configuration of stage 2. 
 
We use SUTRA and the two-dimensional 
grid in Figure11-48 to simulate each of the 
four tracer tests. Neglecting the third 
dimension in our model means that we do 
not allow the tracer to advect or disperse 
perpendicular to our planar flow domain. 
For example, the distance from 7F2 to 
observation site B is 5m in the two 
dimensional section, but in reality varies 
from 5m to 25.5m with distance along B, 
implying that transport at the site is three-
dimensional. We however achieve 
sufficiently accurate results for our purposes 
with a two-dimensional model. 
 
Maloszewski and Zuber (1993) estimated 
porosity indirectly to range between 

 and . We estimate -41.25 10× -31.10 10×
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effective porosity and longitudinal as well as 
transverse dispersivities in three steps: 
1. Select dispersivities and modify 

effective porosity to fit peak arrival 
times (all tracers were conservative). 

2. Modify longitudinal and transverse 
dispersivities to fit observed shapes of 
breakthrough curves. 

3. Repeat steps 1 and 2 until a satisfactory 
fit to the data is obtained. 

 
Figure 11-53 compares computed (curves) 
and measured (solid squares) breakthrough 
curves, normalized with respect to 
maximum concentration, for tracer tests 
6F3, 4F3, 3F3 and 7F2, respectively. 
Concentration data for 4F3 and 3F3 were 
derived by conversion from fluorescence 
data. The corresponding best-fit effective 
porosities are , ,  
and , all but the first of which are 
within the range proposed by Maloszewski 

and Zuber (1993). The large effective 
porosity in 6F3 suggests that transport may 
be taking place through a preferential path 
of high permeability, such as a channel or 
wide fracture. Longitudinal dispersivity is 
17.5 m and transverse dispersivity is one 
tenth this value in all four cases. We 
attribute the high dispersivities in part to 
mixing within the drift and to neglect of the 
third dimension in our model. 

-38.0 10× -48.0 10× -46.0 10×
-44.0 10×

 
Cacas et al. (1990b) did not provide 
simulated breakthrough curves. We 
therefore compare our simulated peak 
arrival times with those measured (Figure 
11-54) and computed by Cacas et al. (Table 
11-14). It appears that our two-dimensional 
stochastic continuum model reproduces 
observed behavior at least as well as does 
the three-dimensional stochastic discrete 
network model of these authors, if not 
better.

 

   
 

Figure 11-52. Scattergrams of simulated (using conductivity realization no. 48)  
versus measured heads at stages 1 (left) and 2 (right). 
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Figure 11-53. Computed versus measured concentrations normalized by maximum  
for tests 6F3 (upper left), 4F3 (upper right), 3F3 (lower left), and 7F2 (lower right).  

Por = effective porosity, Alfl = longitudinal dispersivity, Alft = transverse dispersivity. 
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Table 11-14. Simulated and measured tracer arrival times. 
 

Tracer 
Number 

Simulated peak arrival 
time (hr) 

Measured peak arrival 
time (hr)  

Peak arrival time from  
Cacas et al. (hr)  

6F3    748 757 1 to 900 
4F3 179 199 27 to 14900 
3F3 236   274 out of computation 

 

 
 

Figure 11-54. Simulated versus measured peak arrival times. 
 
It might be possible to improve model fit 
further by conditioning a particular random 
conductivity field not only on measured 
conductivities as we have done but also on 
measured drift inflow rates and heads 
(G\mez-Hern<ndez et al., 1997, 2000) as 
well as tracer concentration data (G\mez-
Hern<ndez et al., 2002) via an automated 
inverse procedure. We deem this 
unnecessary because the much simpler 
approach we use yields simulations of flow 
and transport that are sufficiently accurate 
for our purpose of juxtaposing the stochastic 
discrete network and continuum approaches. 
 
11.3.5 Conclusions 

1. Our work confirms the suitability of 
stochastic continuum modeling for the 
analysis of flow and transport in 
fractured crystalline rocks at Fanay-
Augères in France. Claims in the 
literature that only discrete fracture 
network models are suitable for this 
purpose are unfounded. 

2. Stochastic continuum conceptualization 
avoids the need for detailed information 
about fracture geometry and assumptions 
about the nature of flow within 
individual fractures. Embedding such 
information and assumptions in a 
discrete fracture network model has 
proven not to have any advantage over 
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the stochastic continuum approach in the 
case considered here. 

 
Our results do not constitute a validation of 
the continuum approach just as those of 
Cacas et al. (1990a-b) fall short of validating 
the discrete fracture approach. Instead, the 
two sets of results illustrate jointly the well 

established principle that an open system, 
especially one as complex as fractured 
hydrogeologic environments tend to be, 
cannot be described uniquely on the basis of 
sparse data and need not be described in 
great detail to capture its salient behavior by 
a model.
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12  GUIDELINES FOR REVIEW OF HYDROGEOLOGIC MODELING  
AND UNCERTAINTY ANALYSES

12.1 Introduction 
 
The following guidelines for review of hydrogeologic modeling and uncertainty analyses are 
intended to help insure that documents reviewed conform in a broad way to the methodology 
described in this report. This means that such documents should reflect a systematic and 
comprehensive approach to hydrogeologic conceptualization, model development and predictive 
uncertainty analysis. The guidelines cover all stages of model building and uncertainty analysis. 
Model building stages include regional and site characterization, hydrogeologic 
conceptualization, development of conceptual-mathematical model structure, parameter 
estimation on the basis of monitored system behavior, and assessment of predictive uncertainty. 
Uncertainty analysis includes assessment of estimation and predictive errors arising from the 
conceptual framework that determines model structure, the definition of model parameters, 
spatial and temporal variations in hydrologic variables that are either not fully captured by the 
available data or not fully resolved by the model, and the scaling behavior of hydrogeologic 
variables. 
 
The guidelines are generic but designed to be of practical use to NRC staff in their review of 
decommissioning plans and performance assessment of high-level and low-level radioactive 
waste disposal sites as well as uranium recovery facilities. For this purpose, the guidelines are 
cast in the context of a framework that is relevant to NRC staff review and performance 
evaluation needs. The context is defined in terms of corresponding performance measures, 
hydrogeologic analyses that are needed to assess them, the desired reliability of such 
assessments, and the expenditure (in time, effort and money) that is allowed to achieve it. 
 
12.2 Summary of Guidelines 
 
The guidelines are summarized below and explained further in subsequent sections of this 
chapter. The guidelines are arranged in an iterative sequence of steps that correspond to our 
proposed strategy of model building and uncertainty assessment. 
 
• Define the hydrogeologic context of the problem. 
• Collect a broad range of regional and site data from public and private sources that are 

relevant to the hydrogeologic context of the problem. Provide a detailed rationale for your 
choice of data. 

• Interpret the data in a way that leads to several plausible conceptual models (hypotheses 
and assumptions) of regional and site hydrogeology in three spatial dimensions. Provide a 
detailed rationale for each interpretation and explain why no other hydrogeologic 
interpretations of the data would be plausible. 

• Verify in detail that none of the selected conceptual models are in conflict with any of the 
data; discard those that are. 
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• Rank the conceptual models of regional and site hydrogeology in the order of their 
plausibility in light of the data, regardless of context. Provide a detailed rationale for your 
ranking and discard models that appear much less plausible than those retained. 

• Starting with the most plausible conceptual model and continuing down the ranks: 
▫ Develop a complete, coherent and internally consistent conceptual-mathematical model 

of three-dimensional transient flow and transport that is as simple as warranted by the 
context of the problem and the data. Provide a detailed rationale for your schematization 
of regional and/or site hydrogeology; choice of governing, state and constitutive 
equations; type and space-time distribution of forcing terms (sources, initial and 
boundary conditions); parameterization (functional form and number of parameters); and 
all other conceptual-mathematical aspects of the model. Discard models that do not 
lend themselves to such mathematical description. 

▫ If mathematical modeling in three spatial dimensions and/or in time is considered 
unnecessary or computationally infeasible, provide a detailed explanation of how the 
three-dimensional transient conceptual-mathematical model reduces to a two-
dimensional and/or steady state model. In particular, demonstrate (preferably through a 
mathematical formalism and/or computationally) how the lower-dimensional model 
captures all relevant aspects of the original three-dimensional transient model. Avoid 
one-dimensional models at this stage. 

▫ Select a suitable computational code or algorithm to represent the conceptual-
mathematical model. 

▫ Associate objective or subjective prior statistics with all input parameters and forcing 
terms that are considered to be uncertain. Provide a detailed rationale for considering any 
of these inputs to be known with certainty. 

▫ Test the conceptual-mathematical model for qualitative consistency with the available 
data through computational exploration and visualization in at least two spatial 
dimensions, within a plausible range of input parameters and forcing terms. If 
inconsistent, repeat the previous steps in modified form (by altering and/or refining the 
hydrogeologic scheme and mathematical description of flow and/or transport) or discard 
the underlying conceptual model and select an alternative. 

▫ Use an inverse (preferably Maximum Likelihood) approach to calibrate the 
computational model against observational (monitoring) data. This should yield 
posterior estimates of the model parameters, statistical measures of their estimation 
errors and associated model quality criteria. If the model cannot be properly calibrated 
against reliable data, repeat the previous steps in modified form (by altering and/or 
refining the hydrogeologic scheme and mathematical description of flow and/or 
transport) or discard the underlying conceptual model and select an alternative. 

▫ If feasible, confirm aspects of the model by predicting system behavior under 
conditions other than those used for calibration and comparing with observed system 
behavior. Quantify model predictive uncertainty and check the extent to which the 
observations lie within corresponding uncertainty bounds. If not, repeat the previous 
steps in modified form (by altering and/or refining the hydrogeologic scheme and 
mathematical description of flow and/or transport) or discard the underlying conceptual 
model and select an alternative. 
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• 

• 

• 

• Compare all retained calibrated models on the basis of suitable model quality criteria. 
Discard models that are clearly inferior to others. 

• Use each retained calibrated model to predict system behavior as well as relevant 
hydrogeologic performance measures under various scenarios of relevance to the problem, 
and quantify the corresponding predictive uncertainty. 

• Use Maximum Likelihood Bayesian Model Averaging to render joint predictions by all 
the retained calibrated models, and to assess their joint predictive uncertainty. 
Acknowledge the conditional nature of the predictions and their corresponding uncertainty 
measures. 

• If none of the models are deemed acceptable, perform a sensitivity analysis to help identify 
the type and quantity of additional site data that might materially enhance their reliability 
and credibility. Decide based on the potential benefit (in terms of bias and uncertainty 
reduction) and cost (in terms of time, effort and money) of such data whether or not to collect 
them and how. 

• If and when new data of significant weight are obtained, repeat the iterative process till its 
cost-benefit ratio reaches a value that is not considered worth exceeding. 

 
The following provides additional detail concerning each guideline. 
 
12.2.1 Define Hydrogeologic Context 
 
The first step in model development is to define its context and purpose. Within the context of 
NRC staff criteria (see Appendix A), the purpose of hydrogeologic site models is to help one 
analyze, qualitatively and quantitatively, subsurface flow and transport at a site in a way that is 
useful for review of decommissioning plans and performance of high-level and low-level 
radioactive waste disposal sites and uranium recovery facilities. For this purpose, the strategy 
developed in this report is cast in the context of a framework that is useful to NRC staff review 
and performance evaluation needs. The framework is defined in terms of performance measures 
identified by the NRC staff (see Appendix A). 
 
The contextual framework defines key questions to which groundwater flow and transport 
models are expected to provide answers; it helps narrow down the problem as well as the range 
and type of potential model applications. Each reviewed document should provide clear answers 
to the following questions: 
 

For what purposes will the model be used? The answer should include defining the nature 
and magnitude of an existing and/or potential problem, location of the problem area, its 
causes, potential short- and long-term solutions and/or remedies, their anticipated 
consequences and costs-benefits, issues needing resolution, and criteria by which a solution 
and/or remedy will be selected. 
To what hydrogeologic system will the models be applied? The answer should include 
defining the hydrogeologic environment that is or may potentially be affected by the problem 
and/or its solution or remedy, the corresponding site and surrounding environs of (potential) 
concern, and the regional hydrogeologic setting. 
Under what circumstances and scenarios will the modeled hydrogeologic system operate? 



 

203 
 
 

• 

• 

• 

This requires defining predevelopment, current and potential undisturbed and disturbed site 
and regional conditions, and corresponding natural as well as anthropogenic influences, 
under which flow and transport would be modeled. 
What measures will be adopted to assess performance of the hydrogeologic system? This 
requires specifying measures and/or criteria related to site and regional hydrogeology that 
would be used to identify issues, potential solutions and/or remedies, their cost-efficiency 
and ability to meet regulatory requirements. 
What aspects of site and regional hydrogeology and flow/transport dynamics are expected to 
impact these  performance measures, and how? The answer involves defining key elements 
of the hydrogeologic system, key flow and transport mechanisms, key natural and 
anthropogenic influences, and space-time scales that may potentially impact these measures, 
as well as the manners in which such impacts might occur. 
With what reliability, certainty and accuracy does one need to predict performance 
measures?  How important a role will such measures play in the decision process? What is 
the worth (in time/effort/resources) of assessing performance measures for the site at 
specified levels of reliability/certainty/accuracy? These are the most basic questions that 
must be addressed before any site investigations and modeling efforts are initiated, as the 
answer would have a major impact on the time, effort and resources that could validly be 
expended in pursuit of performance assessment for the site. 

 
Performance measures are typically articulated within the broader context of a system in which 
groundwater is only one among several components. However, our strategy focuses solely on 
groundwater aspects of these broader criteria. Groundwater-related performance measures that 
need to be assessed by means of hydrogeologic flow and transport models are listed in Chapter 3. 
All of them require developing a good understanding, and reliable models, of subsurface flow 
and transport. One cannot do so without recognizing and considering the full complexity of a site 
before attempting to represent it by means of a simplified conceptual-mathematical model. This 
is true regardless of the specific performance criteria one needs to address. 
 
The process of model simplification or abstraction must consider the degree of reliability, 
certainty and accuracy with which given performance measures need to be predicted, their 
importance in the decision process, and the amount of time, effort and resources that assessing 
them at the specified levels of reliability, certainty and accuracy would justify in each specific 
case. These questions involve regulatory issues which might be best addressed by hydrologists 
through case-by-case dialogues with regulators. As such, they are not addressed by the strategy 
in this report. Instead, the strategy stipulates that these fundamental questions should be 
addressed and resolved through discussions with the NRC staff before any site investigation and 
modeling are initiated. This is so because the answers impact in a major way the degree to which 
one justifies the use of a simplified conceptual-mathematical model for what is ubiquitously a 
complex hydrogeologic system with three-dimensional, transient groundwater flow and 
contaminant transport. 
 
Therefore, it is very important the hydrogeologists first articulate these processes in their 
naturally complex setting as best understood in light of available site data and the state of 
prevailing hydrogeologic knowledge prior to postulating a groundwater flow and transport for 
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performance at a given site. Even if performance assessment is ultimately conducted with the aid 
of highly simplified conceptual-mathematical models of groundwater flow and transport, the 
strategy deems it essential for the credibility of the assessment that these models derive 
objectively (and if possible formally) from a more complete description of site hydrogeology, 
based on clearly reasoned and properly defended arguments. 
 
Rather than taking the attitude that a limited performance assessment goal justifies a limited view 
of hydrogeology, we propose that a comprehensive description of hydrogeology is required to 
properly adapt a hydrogeologic model to such a limited goal. 
 
12.2.2 Collect a Broad Range of Regional and Site Data 
 
Collect a broad range of regional and site data from public and private sources that are relevant 
to the hydrogeologic context of the problem. Provide a detailed rationale for your choice of data. 
 
The guideline is based on the recognition that it is often possible to postulate hydrogeologic 
conceptual models or hypotheses for a site on the basis of a broad range of publicly available 
geologic and geographic information about its surroundings. Additional conceptualization can be 
done on the basis of generic data about similar regions and the properties of similar materials 
elsewhere. Several such regional and generic sources of information are identified and discussed 
in this report. Yet each site is unique and so virtually guaranteed to reveal additional features, 
properties and behaviors when characterized in some detail locally. Hence the strategy considers 
local characterization essential for the postulation of acceptably robust conceptual hydrogeologic 
models for a site. The broader is the available database, the more robust is the conceptualization. 
 
Key data categories include site and regional physiography, topography, climate, meteorology, 
soils, vegetation, land use, geomorphology, geology, geophysics, surface and subsurface 
hydrology, inorganic and organic hydrochemistry, radiochemistry, natural and anthropogenic 
isotopes, remotely sensed data, etc. Of special relevance to hydrogeologic model development 
are regional and site data that allow one to define the distribution of hydrostratigraphic units on a 
variety of scales; their geologic structure; rock and soil types; their textural, physical, flow and 
transport properties; fluid types; their state of saturation, pressure, temperature and density; 
chemical constituents and isotopes; major contaminants in soil, rock and groundwater; and their 
sources. 
 
Site characterization data form the foundation on which one postulates one or more conceptual-
mathematical models for an area and assigns initial values to their input parameters (i.e., material 
properties and forcing terms such as sources, initial and boundary conditions). To test and 
compare these models among themselves qualitatively and/or quantitatively, one also needs 
monitoring data that constitute observations of actual hydrologic behavior at and around the site. 
Only with such data can one evaluate the ability of models to mimic real system behavior 
(qualitatively at the conceptual level, quantitatively at the conceptual-mathematical level), 
improve their ability to do so through calibration against the monitoring data, determine their 
optimum degree of refinement or complexity, rank them and assess their cumulative impact on 
predictive uncertainty, and compare them with each other. 
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Site characterization and monitoring data are expensive and difficult to collect, leading to a 
ubiquitous scarcity of hard site information. It is therefore critically important to assess the role 
that such data play in rendering the hydrogeologic performance analysis credible. One cannot 
overemphasize the role of characterization and monitoring data in helping one identify and test 
alternative conceptual models, make rational choices among them, gauge and reduce model bias 
and uncertainty through proper model selection and calibration, assess the reliability of model 
predictions, and confirm the assessment through independent peer review as well as at least some 
degree of direct verification. 
 
Regional and site characterization data tend to represent a wide range of measurement scales, not 
all of which are compatible with the intended scale of hydrogeologic model resolution. It is 
important to recognize this important issue explicitly and to make a conscious effort rendering 
the scale of measurement compatible with the scale of model resolution. This can be done by 
either rescaling the data to fit the scale of model resolution (which often entails averaging or 
upscaling over computational grid cells) or adapting model resolution to fit the scale of 
measurement (which often entails adapting the size of grid cells to the size of the data support). 
 
12.2.3 Postulate Alternative Conceptual Models 
 
Interpret available data in a way that leads to several plausible conceptual models (hypotheses 
and assumptions) of regional and site hydrogeology in three spatial dimensions. Provide a 
detailed rationale for each interpretation and explain why no other hydrogeologic 
interpretations of the data would be plausible. 
 
A conceptual hydrogeologic model is a mental construct or hypothesis accompanied by verbal, 
pictorial, diagrammatic and/or tabular interpretations and representations of site hydrogeologic 
conditions as well as corresponding flow and transport dynamics. It should be presented in the 
form of written text accompanied by pictures, charts and diagrams (including maps, block-
diagrams, cross-sections, panel diagrams, vertical/horizontal profiles) of system components, 
arrangements and relationships (flows) known collectively as structure. A conceptual model 
identifies relevant hydrogeologic units (soils, aquifers, aquitards, aquicludes, bedrock) and 
features (faults, intrusions, fractures), their makeup (mineralogy, petrography, texture, 
cementation, porosity, permeability, related petrophysical and geophysical properties), geometry 
(horizontal and vertical dimensions, boundary and internal configurations), system states under 
undisturbed and disturbed conditions (types of fluids that permeate the soils and rocks, their 
pressure, saturation, density and temperature, dissolved solutes and their concentrations), flow 
and transport dynamics and kinematics (active flow and transport processes; their driving 
mechanisms; fluid and solute fluxes and velocities; fluid, solute and energy balances), 
hydrochemistry and isotopes. 
 
A hydrogeologic knowledge base typically includes information obtained from boreholes, soil 
and geologic outcrops, underground openings and geophysical surveys. This adds a depth 
dimension to geographic information about the site and its surroundings which is largely two-
dimensional. A hydrogeologic knowledge base is thus inherently three-dimensional in space, and 
should allow one to describe the system in as many dimensions. This is important because 
hydrogeology is inherently three-dimensional (with many quantities depending additionally on 
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time), complex, and manifests itself on a multiplicity of scales. As such, it cannot be 
meaningfully captured in a single two-dimensional map or cross-section, nor can it be described 
adequately by a one-dimensional profile such as a stratigraphic column or a lithologic log, that 
show only selected details on a given scale. Instead, hydrogeologic data must be interpreted in 
three-dimensions and in some detail on a range of scales (from regional down to thin sections). 
There virtually always is at least some regional and site information that should allow one to do 
so; seldom can lack of data be validly quoted as a reason for doing less. This is true regardless of 
how complex or simple a set of models one ultimately employs for the assessment of site 
performance and the analysis of corresponding uncertainty. 
A systematic approach to the qualitative conceptualization and screening of hydrogeologic 
hypotheses requires as a prerequisite the availability or acquisition of expertise in the qualitative 
and quantitative interpretation of hydrogeologic field data. With such expertise, and a healthy 
dose of hydrogeologic insight, one may proceed to conceptualize hydrogeologic units and 
features on the regional, site and subsite scales in terms of their hydrostratigraphy, lithology, 
vertical and horizontal boundaries, structural features such as  folds, faults, offsets and 
intrusions, textural features such as grain size, cementation, microstructure and fracturing, flow 
and transport properties such as porosity, permeability, dispersivity and sorption coefficients, 
related pedological and petrophysical properties (spatial, directional and textural) as well as their 
distributions and variations (heterogeneity and anisotropy) on a range of scales, both between 
and within hydrogeologic units and relevant structural and textural features. 
 
To help in this task, one must assemble or develop descriptions of geologic outcrops, well logs, 
air and satellite images, maps and cross-sections, panel diagrams, quantitative records of 
measured variables, and qualitative descriptions of observed phenomena. It is useful, but not 
necessary, to embed these in tools for the computer management of comprehensive 
hydrogeologic data of the kind discussed in Chapter 4. 
 
The next step is to describe the space-time distributions of fluid types (water, air, nonaqueous 
phase liquids) and corresponding states such as saturation, pressure, temperature and density, 
followed by significant solutes and their concentrations, as well as the delineation of saturated, 
vadose and perched zones, all on a range of scales between and within hydrogeologic, structural 
and textural units and features.  This in turn allows one to describe active and anticipated flow 
and transport phenomena such as advection (of solutes or particulates), convection (of heat), 
diffusion, dispersion and sorption, their modes (discrete features; single, dual or multiple 
continua) and scales of manifestation (regional, site, subsite, long-term, short-term) boundary 
and internal mechanisms, forces and sources that drive them (infiltration, evapotranspiration, 
recharge, discharge, pumping), as well as their relative intensities and significance. 
 
The next stage is to delineate in a qualitative but internally consistent and coherent manner 
contours of equal hydraulic potential (head), pressure, saturation, density, temperature and solute 
concentration together with corresponding flowlines (streamlines, pathlines, streaklines), vectors 
of fluid and solute flux and velocity, and isochrones (of groundwater residence time and solute 
travel time). The potential for the development of fast flow paths, on scales smaller than are 
represented by these contours and vectors (focused and episodic infiltration, preferential wetting, 
high-permeability channels, instability of fluid fronts, fingering), must be articulated at this 
stage. One should also assess the overall balance of fluids, solutes and energy within the system. 
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To conceptualize contaminant transport on regional, site and subsite scales, one must describe 
the space-time distribution of major contaminants in the soil, vadose zone and groundwater on 
these scales. The description must include the space-time distributions of contaminant sources; 
mechanisms and rates of source contaminant mobilization and leaching; active transport 
phenomena such as average and fast advection, diffusion, dispersion, radioactive or biochemical 
decay, sorption, colloid transport; space-time distribution of migration, spreading, and dilution 
patterns; and overall mass and ionic balance for key contaminants. 
 
A hydrogeologic conceptualization is not complete without a description of hydrogeochemistry 
and isotope hydrology on regional, site and subsite scales in three-dimensions. This includes the 
space-time distributions of major hydrochemical constituents, environmental isotopes and their 
sources above and below the water table; space-time distribution of groundwater ages; 
implications concerning flow between and within hydrogeologic, structural and textural units and 
features (including infiltration, evapotranspiration, recharge, discharge, directions and rates); and 
implications concerning transport (directions and velocities, possible compartmentalization, 
isolation and mixing of groundwater bodies, chemical reactions, and water-rock interactions). 
 
It often helps to conceptualize temperature and heat flow on regional, site and subsite scales in 
three-dimensions. This may include the space-time distributions of temperature and heat flow 
above and below the water table, and their implications concerning flow between and within 
hydrogeologic, structural and textural units and features (including infiltration, 
evapotranspiration, recharge, discharge, directions and rates). 
 
Hydrogeologic systems are open and complex and the corresponding knowledge base is 
invariably incomplete and imprecise. Therefore, such systems almost always lend themselves to 
multiple conceptualizations and the postulation of several alternative hypotheses. It is therefore 
important to explore varied conceptual frameworks and assumptions through a comprehensive 
evaluation of a broad range of regional and site data, their translation into coherent and internally 
consistent conceptual models or hypotheses, and an in-depth examination of these hypotheses in 
light of the available knowledge base. The more experts with a wider range of earth and 
environmental specialties are given access to the knowledge base, the larger and more varied are 
the alternative site descriptions they may identify. 
 
To develop alternative conceptual models for a site, one should consider (among others) 
alternative representations of space-time scales; number and type of hydrogeologic units such as 
layers and structures such as faults; flow and transport properties (their values and statistics, 
spatial distribution and geostatistics, internal heterogeneity, anisotropy); location and type of 
system boundaries; space-time distribution of fluids and their states (pressure, density, saturation, 
temperature); space-time distribution of saturated, vadose and perched zones; space-time 
distribution of driving forces (infiltration, recharge, discharge, initial system states, boundary 
conditions); space-time distribution of flow patterns; existence and nature of fast flow paths; 
overall water balance; space-time distribution of contaminants; space-time distribution of 
contaminant sources; mechanisms and rates of source contaminant mobilization and leaching; 
controlling transport phenomena; migration, spreading and dilution patterns of contaminants; 
contaminant mass balance; space-time distribution of groundwater ages; space-time relationships 
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between major chemical constituents, isotopes, temperatures and heat flows; and their 
implications regarding flow and transport on regional, site and subsite scales in three dimensions 
and time. 
 
The alternative conceptualizations should be firmly grounded in the available knowledge base. 
Each alternative conceptualization should be supported by key data. 
 
The conceptualization is not complete without a clear articulation of ambiguities and 
uncertainties associated with each alternative description and interpretation (conceptual model or 
hypothesis) of site hydrogeology. 
 
12.2.4 Avoid Conflict with Data 
 
Verify in detail that none of the selected conceptual models are in conflict with any of the data; 
discard those that are. 
 
Make sure that the selected conceptual models contain a minimum number of inconsistencies, 
anomalies and ambiguities with the lowest possible amount of remaining uncertainty about the 
site and the corresponding flow and transport regimes. 
 
12.2.5 Rank Conceptual Models 
 
Rank all alternative conceptual models in the order of their plausibility in light of the data, 
regardless of context. Provide a detailed rationale for the ranking and discard models that 
appear to be much less plausible than those retained. 
 
Once a number of alternative hydrogeologic conceptualizations have been articulated, they must 
be systematically examined, compared, screened and ranked according to acceptance criteria that 
include logical consistency and coherence, and the extent to which they are supported or 
contradicted by available observations and data. Among otherwise equal conceptual models, we 
favor the least complex based on the principle of parsimony. Models that do not meet reasonable 
acceptance criteria of internal consistency, coherence and correspondence with the available data 
should be eliminated from further consideration at this stage of the analysis. 
 
12.2.6 Develop Conceptual-Mathematical Models 
 
For each alternative conceptual model, develop a complete, coherent and internally consistent 
conceptual-mathematical model of three-dimensional transient flow and transport within the 
schematized hydrogeologic system that is as simple as warranted by the context of the problem 
and the data. Provide a detailed rationale for your schematization of regional and/or site 
hydrogeology; choice of governing, state and constitutive equations; type and space-time 
distribution of forcing terms (sources, initial and boundary conditions); parameterization 
(functional form and number of parameters); and all other conceptual-mathematical aspects of 
the model. Discard models that do not lend themselves to such mathematical description. 
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A conceptual-mathematical model helps define and describe the hydrogeologic system in terms 
of space-time dimensions; topology; geometry; interactions (called processes) between kinematic 
(mass, concentration, flux, velocity) and dynamic (energy, force, stress) quantities; parameters 
and forcing terms (sources, initial and boundary conditions). Whether such a model is analytical 
or numerical (written in the language of calculus or algebra) is merely a technical, not a 
fundamental, distinction. The model ultimately allows one to explain and interpret existing 
observations, and to predict new observations, quantitatively. 
For each alternative conceptual model identified during the qualitative stage of the process, one 
needs to define the hydrogeologic units and features (such as folds, faults, offsets and intrusions) 
that are to be explicitly modeled; their three-dimensional topology and geometry in terms of 
location, shape, size and relationship to other units and features (extent of external and internal 
boundaries and structural elements); equations that govern flow and transport phenomena 
included in the model; corresponding equations of state, in the form of functional relationships 
between parameters and state variables in the model; spatial variability of parameters that enter 
into the governing and state equations, within each hydrogeologic unit and feature; spatial 
variability of initial states in each unit and feature; boundary equations for flow and transport; 
and the space-time distribution of boundary and source parameters and values.  
 
The quantification of system states includes functional and quantitative representations of fluid 
saturation, pressure, temperature, density, solute mass and concentration and regional as well as 
perched water tables on a range of scales (between and within hydrogeologic, structural and 
textural units and features). Governing and boundary equations include mathematical definitions 
and descriptions of active and anticipated flow and transport phenomena such as advection, 
convection, diffusion, dispersion and sorption for selected modes (discrete features; single, dual 
or multiple continua) and scales of manifestation, in the interior of units and features as well as 
on their boundaries and interfaces, including source terms, parameters, functional relationships 
between these quantities, and their space-time distributions. 
 
 
 
 
 
12.2.7 Consider Simplifying the Model 
 
If mathematical modeling in three spatial dimensions and/or in time is considered unnecessary 
or computationally infeasible, provide a detailed explanation of how the three-dimensional 
transient conceptual-mathematical model reduces to a two-dimensional and/or steady state 
model. In particular, demonstrate (preferably through a mathematical formalism and/or 
computationally) how the lower-dimensional model captures all relevant aspects of the original 
three-dimensional transient model. Avoid one-dimensional models at this stage. 
 
The purpose of conceptual-mathematical models is to help quantify alternative hypotheses 
regarding the hydrogeologic makeup and behavior of a site. Since such hypotheses are always 
cast in three spatial dimensions, ideally so should the corresponding conceptual-mathematical 
models. Both model types must allow for the hydrogeologic regime to evolve in time. 
 



 

210 
 
 

Model simplification may entail a reduction in dimensionality (from three spatial dimensions to 
two or one; from transient to steady state), model size (smaller area and/or reduced depth); or 
details of various features, events and processes (fewer layers, faults or fracture zones; a less 
detailed representation of internal heterogeneity; single rather than dual continuum or discrete 
representation of a fractured rock; fewer discrete rainfall or infiltration events; a less detailed 
delineation of contaminant sources; constant rather than scale-dependent dispersion; equilibrium 
rather than kinetic sorption). Various types and levels of simplification can be entertained, 
leading to a number of simplified model structures for each initial (and more complex) 
conceptual-mathematical model. 
 
In reality, it is much more difficult and time consuming to set up and run mathematical models in 
three than in two spatial dimensions. Working in two spatial dimensions is often feasible because 
eliminating the third dimension usually entails a far lesser phenomenological change than 
reducing the dimensionality of the problem from two to one. Modeling and visualization of 
complex flow and transport phenomena is much easier in two than in three dimensions, but not 
much harder than in one dimension. Hence the strategy in this report supports two-dimensional 
flow and transport analyses (whether mathematical-analytical or computational-numerical) in 
cases where the effect of the third dimension is demonstrably minor. However, the strategy 
discourages one-dimensional analyses unless a very strong and convincing hydrogeologic 
argument is made in their favor. This is so because flow and transport behaviors predicted by 
one- and multi-dimensional models often differ from each other in a fundamental way. 
 
The spatial and temporal scales at which flow and transport phenomena are modeled depend in 
part on the contextual framework (area, depth and time-frame of concern; space-time scales on 
which performance measures are defined). These phenomena are affected to a large extent, but 
not exclusively, by hydrogeologic complexities, heterogeneities and driving-mechanisms that 
manifest themselves on similar scales. It is therefore important that conceptual-mathematical 
modeling start by identifying these "site-scale" features, factors and/or phenomena and by 
incorporating them directly as explicit elements in the model. Models that do not incorporate 
such elements explicitly, but account for them implicitly, are considered here to be simplified or 
abstracted. Models that fail to account for site scales complexities, either explicitly or implicitly, 
are oversimplified and would generally be too crude to provide a reliable description of site 
hydrogeology for most purposes. 
 
Site-scale hydrogeologic complexities, heterogeneities and driving-mechanisms may be 
influenced and/or controlled by larger- or regional-scale features and factors such as regional 
recharge, discharge, and flow mechanisms and patterns on various time scales. A model must 
account for these large-scale influences and controls, as well as for associated uncertainties, 
through the appropriate assignment of initial conditions, boundary conditions, and source terms 
such as those that describe infiltration, recharge, discharge and leakage across aquitards. 
 
Site-scale hydrogeologic complexities, heterogeneities and driving mechanisms may be 
significantly influenced by smaller- or subsite-scale features and factors such as space-time 
irregularities and fluctuations in external and internal boundary and source shapes or conditions; 
internal heterogeneities within site-scale hydrogeologic units, faults, dikes or other features; as 
well as smaller-scale units, faults, dikes, fractures or preferential flow channels. Determining 
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what is the nature and extent of these influences is an integral part of developing a conceptual-
mathematical model for a site. If features and factors that manifest themselves on subsite scales 
are deemed important for the modeling of site-scale phenomena, one must account for them 
directly (explicitly, by embedding such features and factors discretely in the site model) or 
indirectly (implicitly, by formally integrating these features and factors into the site model 
equations and parameters) in the model. 
 
Embedding discrete small-scale features and factors in a model renders it relatively complex. 
Integrating small-scale features and factors into the model equations and parameters renders it 
less complex than embedding. However, to compensate for loss of information, the equations 
change form and phenomenology (from Stokes to Darcy, isotropic to anisotropic, juxtaposed to 
overlapping dual or multiple continua, differential local to integro-differential nonlocal) and 
acquire new phenomenological parameters (permeability, dispersivity, integral kernels) that 
differ in nature and magnitude (from scalar to tensor, local to nonlocal, well-defined to scale-
dependent) from the original parameters. Only in special cases can the original form and 
phenomenology be recovered, and even then the parameters usually change (due to upscaling). It 
is not presently clear which of these two approaches is better suited for their intended task. The 
strategy in this report considers both options. 
 
Ignoring the influence of regional- or subsite-scale features or factors on site-scale flow or 
transport without due justification, or failing to insure that the treatment of all scales is 
self-consistent without demonstrating that some of them are not relevant to the problem at hand, 
constitute oversimplifications which may cast doubt on the reliability of the model. 
 
Narrowly defined contextual or regulatory criteria, limited data or resources, and a quest for 
simplicity or transparency may motivate the adoption of hydrogeologic flow and transport 
models that are less than three-dimensional, ignore time, and include few details on limited 
scales. While such motivation for simplification and abstraction of hydrogeology and flow or 
transport dynamics may sometimes be justified on practical grounds, it does not in itself turn 
simplified and/or abstracted models into scientifically valid tools of performance assessment. 
Only a formal demonstration that such models capture the essential features and capabilities of 
their more complex and complete counterparts, and that they thereby provide comparable 
performance assessments or conservative bounds thereof, might justify their use. 
 
To insure that relevant aspects of hydrogeologic complexity are reflected in modeled system 
behavior and performance, and that the model can be rendered compatible with site data, it is 
important that the process of simplification be done systematically and objectively. This can be 
done by filtering out undesirable details through formal averaging of the governing equations in 
space-time or in probability space, in a way which retains and renders their influence on the 
model implicit. This is equivalent to embedding. 
 
Averaging three- or two-dimensional equations across one spatial dimension renders them two- 
or one-dimensional, respectively. Averaging transient equations over time may (but need not) 
render them representative of a steady state. Averaging can also be done over subdomains of the 
site being modeled, and over multiple time intervals. In each case, the averaging results in 
governing flow and transport equations that contain upscaled quantities. If the space-time scales 
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of these quantities differ from those of the available site data, then either the model or the data 
must be rescaled to render them compatible and comparable with each other. 
 
Many scale-related problems are avoided if the averaging is done in probability space. Such 
"ensemble" averaging leads to stochastic equations that contain statistical moments of 
hydrogeologic variables (considered random), most commonly the mean and variance-
covariance. The mean is a predictor of system behavior or performance, and the variance-
covariance is a measure of predictive error. Both are smoother (vary more slowly in space-time) 
than their random counterparts and, in this sense, render the model relatively "simple." Despite 
their smoothness, both moments are defined on the same space-time scales as are the random 
hydrogeologic variables on which they are based. Stochastic models thus achieve smoothness 
and simplicity without any need to average or upscale in space-time. As they are typically 
conditioned on site measurements (i.e., they honor the data), stochastic models are compatible 
with these measurements both in scale and magnitude. Yet another advantage of the stochastic 
method over space-time averaging is that it yields measures of predictive uncertainty. Stochastic 
approaches are increasingly recognized as offering a way to deal with complex, scale-dependent 
heterogeneous systems by means of relatively simple models. 
 
12.2.8 Select Computational Code or Algorithm 
 
Select a suitable computational code or algorithm to represent the conceptual-mathematical 
model. 
 
A computational code is a tool rather than a model. However, selecting a particular code implies 
identifying specific processes that may govern flow and transport at a site, their symbolic 
mathematical representation, and their numerical approximation. Selecting the space-time 
dimensions and size of a computational grid determines the dimensions and scale of the system 
being modeled. Choosing the sizes of space-time discretization intervals defines the scales at 
which flow and transport processes are resolved. Specifying the location and type of sources, 
initial and boundary conditions identifies the forcings. Both material properties and forcing terms 
are associated with parameters that must eventually be assigned numerical values. Choosing the 
modes of their representation (parameterization) defines the resolution scales of these parameters 
(and thus of material properties and forcing terms) in space-time. Once this has been 
accomplished in a way that is supported by all relevant regional and site data, the code has been 
transformed from a mere tool to a bona fide conceptual-mathematical model of site 
hydrogeology. 
 
12.2.9 Define Prior Statistics 
 
Associate objective or subjective prior statistics with all input parameters and forcing terms that 
are considered to be uncertain. Provide a detailed rationale for considering any of these inputs 
to be known with certainty. 
 
Since hydrogeologic medium properties and forcing functions are always uncertain, so are the 
model input variables. In other words, the input parameters of groundwater flow and transport 
models are inherently uncertain regardless of whether the model is deterministic or stochastic. 
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The difference is that whereas in deterministic models the input parameters are viewed as 
imperfectly known deterministic quantities, in stochastic models they are viewed as correlated 
random fields or processes that may be perfectly or imperfectly known at discrete sampling 
locations in space-time. In both cases, imperfect knowledge is characterized by random errors 
that may, but often are not, considered to be mutually correlated. This renders the input 
parameters of deterministic models correlated or uncorrelated random variables, and those of 
stochastic models correlated random fields or processes conditional on either exact or random 
measurements, which may themselves be correlated or uncorrelated among themselves. Whereas 
the second moment of uncorrelated random variables is a diagonal matrix of their respective 
variances, that of correlated random variables is a full square symmetric and positive definite 
matrix of their respective covariances. 
 
Estimating input parameters for a model (deterministic or stochastic) on the basis of incomplete 
and/or uncertain data is equivalent to inferring their mean values from these data. If the mean 
values are based on site characterization data, they represent prior parameter estimates. If they 
are based on site monitoring data, they represent posterior parameter estimates. Here we consider 
only prior inference of model input parameters. 
 
If the inferred parameter estimates vary in space and/or time in a way which reflects similar 
variations in the underlying site characterization data, they are said to be conditional on these 
data. If the inferred mean values do not reflect such spatial and/or temporal variability, they are 
said to be unconditional. Unconditional inference may take place when the data are too few or 
too clustered to allow defining their variability in space-time. 
 
Assume that a set of site specific measurements are available, which represent the same 
hydrogeologic variable (say permeability or porosity) as a corresponding set of model input 
parameters. Such measurements are considered to be "hard." Ideally, the data would include 
probabilistic information about errors of measurement and test interpretation that suffer from a 
known amount (ideally zero) of statistical bias. If one has a statistically significant set of such 
data, one should be able to estimate a prior set of model input parameters on their basis. One 
should also be able to postulate a probabilistic model of prior parameter uncertainty based on 
statistics derived from these data. Such a probabilistic model is known to be of Type A. 
 
A key measure of parameter uncertainty is the second statistical moment, or variance-covariance, 
of their estimation errors. Since input variables into both deterministic and stochastic 
computational models are specified in terms of a discrete set of input parameters, the 
corresponding variance-covariance forms a matrix. In the conditional case, the off-diagonal 
covariance terms of the matrix may reflect spatial and/or temporal correlation between 
parameters of a given type (say permeability or porosity) as well as cross-correlations between 
parameters of different types (say permeability and porosity). In the unconditional case, there is 
no inferred space-time variability and the covariance terms represent at most cross-correlations 
between different types of parameters. 
 
Prior parameter estimates can be obtained from clustered data by means of common statistical 
methods, and from spatially distributed data by means of standard geostatistical techniques. This 
is true regardless of whether the parameters are intended for a deterministic or a stochastic 
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model. The main difference is that in the deterministic case, there may be a need to upscale the 
parameters whereas in the stochastic case, this may not be necessary. The simplest and most 
practical form of geostatistical inference with upscaling is block kriging. While this may not 
always be the most accurate and sophisticated way to proceed, it is quite adequate for many 
purposes. This is especially true in situations where enough site monitoring data are available to 
later modify the parameter estimates through model calibration. 
To characterize prior estimation uncertainty one should, as a minimum, infer from the data a 
variance-covariance matrix of prior estimation errors. Only in rare circumstances would there be 
enough data to permit inferring from them higher statistical moments of these errors. 
 
Standard geostatistical analysis consists of identifying the spatial autocovariance structure of 
each variable being analyzed (in terms of an autocovariance or variogram function) and 
providing a smooth (kriged) conditional estimate of this variable on a two- or three-dimensional 
grid, as well as the associated estimation (kriging) variance at each grid point. A more advanced 
analysis may also yield an autocovariance matrix for the estimate across the grid. Another level 
of sophistication may be achieved by identifying cross-covariance functions or cross-variograms 
for two or more variables, estimating them simultaneously by cokriging, and computing their co- 
and cross-covariances across the grid. Both kriging and cokriging may be used to estimate 
average values of the variables over finite blocks or subdomains of a two- or three-dimensional 
grid. 
 
If there are insufficient hard data of a given hydrogeologic variable to conduct a meaningful 
statistical or geostatistical analysis, then the use of “soft” (qualitative) data coupled with 
indicator geostatistical analysis are recommended. This yields an uncertainty model for the prior 
parameters that is intermediate between Type A and Type B (defined below). Soft or indirect 
information about the parameters may include (a) off-site measurements of the parameters proper 
(quite often on scales other than those corresponding to the intended scale of model resolution) 
and/or (b) surrogate measurements on site that are known to correlate with the parameters of 
interest (for example, porosities or geophysical signatures that correlate in known ways with 
permeabilities, water contents or fracture densities). Statistics derived from off-site data must be 
considered potentially biased (due to a lack of site-specific information about mean parameter 
values and incompatibility of geology and scale). The associated variance may be too small or 
too large, depending on the quantity and quality of such data. Statistics derived from surrogate 
data may suffer from poorly defined correlations and incompatibility of scale. 
 
An example of soft data use is that of pedotransfer functions, which allow one to estimate soil 
hydraulic characteristics on the basis of soil textural data. 
 
Indicator geostatistics yields indicator variograms for various classes of the variable, a smooth 
(kriged) estimate of this variable on a two- or three-dimensional grid, and the probability that the 
variable is larger (or smaller) than specified at each grid point. Most geostatistical software 
packages include an indicator option and allow one to generate random realizations of the 
variable on a grid by means of indicator Monte Carlo simulation. 
 
If the available hard and soft data are not amenable to geostatistical analysis (due to insufficient 
information about their spatial location, an inappropriate spatial pattern, insufficient number 
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and/or poor quality of data), an alternative is to rely on generic and/or subjective probabilities 
and statistics. Doing so is equivalent to postulating a Type B statistical model of prior parameter 
uncertainty. Such a model should always be suspected of suffering from an unknown amount of 
statistical and personal bias. Statistical bias is introduced due to lack of site-specific information 
about mean values of the parameters in question. A personal bias tends to manifest itself in the 
form of assigned uncertainty measures (most importantly bias and error variance) that are either 
too small or too large. The first is a manifestation of over-confidence in the model parameters, 
the second of unduly low confidence in their values. 
 
Methods are available to update generic statistics on the basis of site-specific data using a 
Bayesian approach. 
 
12.2.10 Perform Preliminary Test of Conceptual-Mathematical Model 
 
Test the conceptual-mathematical model for qualitative consistency with the available data 
through computational exploration and visualization in at least two spatial dimensions, within a 
plausible range of input parameters and forcing terms. If inconsistent, repeat the previous steps 
in modified form (by altering and/or refining the hydrogeologic scheme and mathematical 
description of flow and/or transport) or discard the underlying conceptual model and select an 
alternative. 
 
Having associated a deterministic and/or stochastic mathematical structure with each hypothesis 
that had been postulated for a site, the next step is to explore them quantitatively and graphically. 
The aim of this initial exploration is qualitative: To identify the potential ability of each 
conceptual-mathematical model to explain observed system behavior and predict it under future 
scenarios. For this, it is useful to run the model with a plausible range of input parameters and 
study its output in light of the available site information. This may reveal ambiguities and 
uncertainties that may prompt a reexamination of the data and/or a revision of the model (which 
may, but need not, render the model more complex). It may also reveal differences between the 
various conceptual-mathematical models that may help eliminate some of them and rank the rest 
in the order of their apparent ability to explain and predict system behavior. 
 
The initial exploration of alternative conceptual-mathematical models can often be done in the 
two-dimensional horizontal and/or vertical planes. This is so because two-dimensional analyses 
differ from their three-dimensional counterparts to a much lesser extent than do one-dimensional 
analyses, yet are much less demanding than three-dimensional analyses. Two-dimensional 
scoping analyses should yield contour and/or color representations of hydrogeologic parameter 
distributions; system states (hydraulic head, pressure, saturation, density, temperature, solute 
concentration); flowlines (streamlines, pathlines, streaklines); and vectors of fluid and solute 
fluxes and velocities. If the conceptual-mathematical model involves transients, the analyses 
should consider variations of hydrogeologic variables with time. Some three-dimensional 
exploratory analyses may also be possible at this stage, including the preliminary quantification 
of fluid, solute and energy balances. Three-dimensional analyses may also be required if the two-
dimensional results are insufficient to provide insight into relevant processes or fail to resolve 
key ambiguities and uncertainties. 
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Once an initial set of conceptual-mathematical models have been formulated and explored in a 
preliminary fashion, once has the option of postulating and exploring less complex alternatives to 
each. There is no reason to contemplate more complex alternatives at this stage of the modeling 
process.  
 
12.2.11 Calibrate Model 
 
Use an inverse (preferably Maximum Likelihood) approach to calibrate the computational model 
against observational (monitoring) data. This should yield posterior estimates of the model 
parameters, statistical measures of their estimation errors and associated model quality criteria. 
If the model cannot be properly calibrated against reliable data, repeat the previous steps in 
modified form (by altering and/or refining the hydrogeologic scheme and mathematical 
description of flow and/or transport) or discard the underlying conceptual model and select an 
alternative. 

 
If monitoring data are available to allow comparing model predictions with observed system 
behavior, there usually is no reason to avoid calibrating the model against these data. The 
strategy strongly suggests that this be done. 
 
The traditional approach to hydrogeologic modeling has been to postulate a deterministic model 
structure and treat its parameters as being imperfectly known. One would then derive prior 
estimates of these parameters from site characterization data (if available) and modify them so as 
to achieve an acceptable fit between model outputs and available monitoring data (if such exist). 
The process is known as model calibration, parameter estimation, history matching or inverse 
modeling. The parameters that yield the best match between observed and recorded system 
behavior form posterior estimates. It is common to consider the latter to be more suitable for 
predictive purposes than prior parameter estimates. 
 
Though this is not always done, it is generally advisable to start the model calibration process by 
postulating a prior parameter uncertainty model. We explained how to do this and mentioned that 
it may lead to a Type A probability model when prior parameter uncertainty is characterized on 
the basis of a statistically significant set of site specific measurements that represent the 
parameter; a Type B model when the uncertainty is characterized by generic and/or subjective 
probabilities; and an intermediate type model when parameter uncertainty is inferred from 
indirect information about the parameters. We noted that a Type B model should always be 
suspected of an unknown amount of statistical and personal bias. A model that is intermediate 
between Type A and Type B must also be considered potentially biased, with variances that may 
be too small or too large, poorly defined correlations, and incompatibility of scale. 
 
Improper upscaling may render the prior parameter estimates biased and their uncertainty 
mischaracterized, regardless of what type probability model one adopts. It is generally believed 
that model calibration tends to reduce both the bias and the uncertainty in prior parameter 
estimates by insuring that it reproduces adequately observed system behavior. This should render 
a calibrated model more reliable as a predictor than an uncalibrated model. 
 



 

217 
 
 

Calibrating a traditional deterministic flow model against measured values of head and flux is 
tantamount to conditioning it on such measurements. As the model hydraulic parameters are by 
nature conditional, the very act of adding measured heads and fluxes to the database alter their 
values. This inherent nonuniqueness persists regardless of whether the inverse problem is well-
posed or ill-determined. It explains why model parameter estimates tend to change each time one 
redefines the underlying database. 
 
Our guidelines stipulate that one use "statistical" model calibration algorithms which include 
analyses of parameter estimation uncertainty. Such analyses typically accept, but do not 
necessarily require, information about prior parameter statistics as input. The output includes 
posterior statistics of parameter estimation errors, which tend to be less biased and smaller than 
the prior estimation errors. Several public domain or commercial codes are available for this 
purpose (see section 7.4.2). 
 
Differences between values of model simulated system states (most commonly hydraulic head, 
pressure or concentration) at discrete points in space-time, and observed values of these same 
state variables, are termed "residuals" in model calibration parlance. The residuals are considered 
to represent errors that are distributed randomly about the simulated model output. An 
underlying (often tacit) assumption is that the conceptual-mathematical model is exact and 
associated with an unknown set of "true" parameters. If these parameters were known, the model 
(structure plus parameters) would be exact. To the extent that it would produce nonzero 
residuals, this would be entirely due to errors in the monitoring record. These data errors (or their 
logarithmic transform, as is usually done with permeability and transmissivity) are typically 
taken to have zero mean and be normally distributed. Hence ideally (in the theoretical event that 
the true parameters were known), the residuals would exhibit a multivariate Gaussian 
distribution with zero mean (i.e., they would be unbiased) and a variance-covariance identical to 
that of the monitoring data. 
 
Model calibration is seen as the process of estimating the model true parameters without bias and 
as closely as possible. This is accomplished by defining an appropriate calibration criterion (or 
objective function) in terms of the residuals, and "optimizing" the parameters in a way which 
comes closest to satisfying this criterion (achieving the objective). The extent to which the 
criterion is satisfied (the objective achieved) becomes a measure of model fit. Theoretically, the 
optimized parameters are associated with estimation errors that have zero mean and minimum 
variance.  
 
The most commonly used measure of model fit is the weighted sum of squared residuals. This is 
meaningful in the above statistical sense provided the monitoring data errors are mutually 
uncorrelated and each weight is inversely proportional to the corresponding error variance. 
Model calibration then reduces to a weighted least squares fit of the model to the data (or 
regression of the parameters on the data). Since groundwater model parameters are usually 
related to state variables in a nonlinear fashion, the weighted least squares fit is nonlinear. This is 
why model calibration must usually be done iteratively. 
 
If all the weights (and variances) are equal, the model fit criterion can be normalized to form a 
simple sum of squared residuals. Model calibration then reduces to an ordinary nonlinear least 
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squares fitting process (or nonlinear regression). A detailed set of guidelines for the effective 
calibration of such nonlinear regression models has been prepared by Hill (1998). 
 
A less common but still widely used measure of model fit is the generalized sum of squared 
residuals. Whereas in the previous cases the weights formed a diagonal matrix proportional to 
the inverse of a diagonal matrix of observational error variances, here the weights form a full 
matrix proportional to the inverse of a (usually full) variance-covariance matrix. This is 
statistically meaningful in the previous sense when the errors are mutually correlated. Calibration 
now becomes a generalized nonlinear least squares or regression process. 
 
If some of the statistical parameters that define the observational errors are unknown, they may 
sometimes be estimated jointly with the other model parameters by the maximum likelihood 
method. This entails a likelihood function, which is the likelihood of the parameters given a set 
of (conditional on) observational data. The latter is the probability density of the (error corrupted 
and so random) data given (conditional on) the parameters. The objective would be to maximize 
the likelihood function. 
 
Since the data (or their log transform) are assumed to be normally distributed, the likelihood 
function is multivariate Gaussian. As such, it includes an exponential term whose negative 
logarithm is equal to half the weighted (by the inverse covariance matrix) sum of theoretical 
square residuals. Parameters are estimated by minimizing the negative logarithm of the 
likelihood function. In the special case where all statistical parameters are known, the negative 
log likelihood function reduces to the standard generalized least squares criterion. 
 
The strategy in this report favors a maximum likelihood approach to model calibration, which 
incorporates information about prior parameter statistics into the statement of the inverse 
problem (see section 7.4.3). This approach yields a negative log likelihood criterion that includes 
two weighted square residual terms instead of one. The first is the usual generalized sum of 
squared differences between simulated and observed state variables. The second is a generalized 
sum of squared differences between posterior and prior parameter estimates. The corresponding 
weight matrix is proportional to the inverse covariance matrix of prior parameter estimation 
errors. The constant of proportionality, λ, is treated as a free statistical parameter that may be 
estimated jointly with the remaining parameters by maximum likelihood. This can be done most 
easily by calibrating the model for various values of λ, plotting the negative log likelihood (S) 
against λ, and finding graphically the value of λ that minimizes S. Allowing λ to be initially 
unspecified means that neither the covariance matrix of the observational data nor that of the 
prior parameters need be fully specified; it is enough to specify each of them up to its own 
constant of multiplication. It is then possible to estimate these constants of multiplication on the 
basis of λ. 
 
Including prior information in the calibration criterion allows one to condition the parameter 
estimates not only on site monitoring (observational) data but also on site characterization data 
from which prior parameter estimates are usually derived. When both sets of data are considered 
to be statistically meaningful, the posterior parameter estimates are compatible with a wider 
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array of measurements than they would be otherwise and are therefore better constrained 
(potentially rendering the model a better predictor). 
 
When either set of data is too small, clustered or otherwise unsuitable for a meaningful 
assessment of prior statistics, it may still be possible to come up with prior parameter estimates 
and weigh them subjectively relative to each other, based on their perceived reliability. Similar 
weights may be assigned to site monitoring data. One can then adopt a calibration criterion 
J λ+  equal to a weighted sum (J) of squared residuals (differences between simulated and 
observed state variables), plus the product of λ with a weighted sum (P) of squared differences 
between posterior and prior parameter estimates. One can then calibrate the model for various 
choices of λ and plot the weighted sum of squared residuals versus 1/λ to see how the latter 
affects the former. One would typically find that the sum of squared residuals is largest when 1/λ 
= 0 and decreases more-or-less monotonically to an asymptote as 1/λ increases. This is clear 
considering that 1/λ = 0 corresponds to λ = ∞ , which is equivalent to giving infinite weight to 
the prior parameter estimates and forcing the posterior estimates to coincide with them. As 1/λ is 
allowed to increase, the weight placed on the prior parameters decreases and their constraining 
effect on the posterior estimates gradually diminishes. Eventually 1/λ  becomes large enough to 
virtually eliminate any effect of the prior on the posterior estimates. The calibration is now 
unconstrained by site characterization data and relies entirely on site monitoring data.  
 
Rather than a single calibration criterion one now has two, the weighted sum of squared residuals 
(J) and the weighted sum of squared differences between posterior and prior parameter estimates 
(P). These two criteria are mutually incompatible in that to satisfy one, it is necessary to sacrifice 
the other. In most cases, the optimum solution to this multiobjective or Pareto problem is not to 
minimize either objective but to find an acceptable tradeoff between them on the basis of 
subjective value judgment (see section 7.4.4). 
 
Methods to calibrate stochastic models have also been developed and are discussed in the report. 
 
In the absence of sufficient or reliable site monitoring data, the model must rely entirely on prior 
parameter estimates and is only as good as are the latter. The model remains uncalibrated, 
untested and unconfirmed. 
 
The statistical approach to deterministic model calibration allows one to quantify the uncertainty 
associated with posterior parameter estimates. One measure of posterior parameter estimation 
errors is the Cramer-Rao lower bound on their covariance matrix. This lower bound is given by 
the inverse Fisher information matrix. Each term in the Fisher information matrix is one half the 
ensemble average of the second derivative of the negative log likelihood criterion with respect to 
a pair of parameters. It thus measures the average rate at which model sensitivity to one 
parameter is affected by changes in another parameter. From it, one can obtain a corresponding 
lower bound on the correlation matrix of the estimates. Ideally, the parameter estimates should 
be uncorrelated. 
 
The Fisher information matrix is usually approximated by linearizing the relationship between 
system states and parameters when the latter are optimal. It is then expressed as a function of the 
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calibration weights (inverse covariance matrices of observed and prior input data) and a Jacobian 
matrix, whose terms represent sensitivities of system states to the parameters. It is thus clear that 
an analysis of parameter uncertainty includes in it a sensitivity analysis of the model and its 
output. 
 
A large variance associated with a given parameter indicates a high level of uncertainty in its 
estimate. A high degree of correlation between estimates implies that they are linearly related in 
a statistical sense. This means that they cannot be estimated individually with the available data, 
and should either be lumped into one parameter or estimated anew when more data become 
available. 
 
Linearization implies that if the prior (observation and parameter) errors are multivariate 
Gaussian (as one generally assumes), so are the posterior parameter (or log parameter) estimation 
errors. This allows one to associate them with linear confidence intervals, which can be viewed 
as corresponding error bounds. 
 
12.2.12 Confirm Model 
 
If feasible, confirm aspects of the model by predicting system behavior under conditions other 
than those used for calibration and comparing with observed system behavior. Quantify model 
predictive uncertainty and check the extent to which the observations lie within corresponding 
uncertainty bounds. If not, repeat the previous steps in modified form (by altering and/or refining 
the hydrogeologic scheme and mathematical description of flow and/or transport) or discard the 
underlying conceptual model and select an alternative. 
 
In rare situations where enough observational data are available to allow using only some of 
them for model calibration, it may be possible to use the remaining data for purposes of model 
verification or confirmation. For this to be valid, the data used for confirmation must represent a 
different mode of system behavior that those used for calibration.  
Otherwise, the confirmation data are merely an extension of the calibration data and being able 
to reproduce them does not constitute a meaningful test of model predictive capability. As both 
the model and the data are generally uncertain, model confirmation must be cast in a suitable 
probabilistic and/or stochastic framework. 
 
12.2.13 Compare Calibrated Models 
 
Compare all retained calibrated models on the basis of suitable model quality criteria. Discard 
models that are clearly inferior to others. 
 
Alternative conceptual-mathematical models that have been successfully calibrated can be 
compared on the basis of quality criteria such as model fit and posterior parameter uncertainty. 
Examples include: 
 

Likelihood or negative log likelihood of posterior parameter estimates, given the available 
data;  
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Inverse variance-covariance weighted sums of squared residuals, which measure the overall 
lack of fit between model generated and observed system states; 
Various statistics of the residuals, which measure how closely they satisfy the assumptions of 
Gaussianity, unbiasedness, and similarity of their variance-covariance to that of the 
observational data; 
Consistent measures of systematic differences between contours, time records, peaks and 
trends exhibited by observed and simulated state variables; 
Invariant properties of the Cramer-Rao lower bound on the posterior covariance matrix of 
parameter estimation errors, such as— 

Trace, also known as A-optimality criterion (which measures the cumulative variance of 
all estimation errors); 
Determinant, also known as D-optimality criterion (which provides an overall measure of 
the estimation error variance-covariance matrix); 
Eigenvectors (the components of which represent relative contributions by the various 
parameter estimates, implying that parameters associated with a single eigenvector have 
uncorrelated estimation errors, and those associated with multiple eigenvectors have 
cross-correlated estimation errors, rendering them less amenable to discrimination); and  
Eigenvalues (parameters associated with eigenvectors that have small eigenvalues being 
less uncertain than those associated with eigenvectors that have large eigenvalues); the 
maximum absolute eigenvalue is known as E-optimality criterion; 

Linear confidence intervals; 
Invariant properties of the Jacobian sensitivity matrix (of system states to the parameters); 
etc.  

 
Models that have not been compared with monitoring data have indeterminate quality in that 
nothing is known about their ability to reproduce real system behavior. Calibrated models rank 
higher than uncalibrated models in terms of parameter quality criteria because (posterior) 
estimates tend to be less biased and uncertain than prior estimates, on which uncalibrated models 
are based.  
 
If all models remain uncalibrated, their only comparative quality criteria are those that pertain to 
prior parameter uncertainty.  
 
These include— 

The variance-covariance of prior parameter estimation errors; 
Various invariant properties thereof; and 
Corresponding linear confidence intervals. 

 
All models can be compared on the basis of model complexity criteria such as— 
 

Dimensionality; 
Number of simulated processes; 
Degree of nonlinearity; 
Number of parameters; and 
Number or size of grid cells. 
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To help identify a set of models which represent acceptable tradeoffs between quality and 
complexity, it is helpful to employ a multiobjective approach as described in section 8.2.2. To 
further discriminate between these models, it is useful to gauge and rank them in terms of 
likelihood based model discrimination criteria, which account for both model fit and complexity. 
This applies only to calibrated models because uncalibrated models are associated with zero 
likelihood. Several such criteria are discussed in section 8.2.3. The model testing and selection 
process ends with the final ranking of models on the basis of likelihood based discrimination 
criteria, and the optional elimination of low ranking models from further consideration. 
 
12.2.14 Render Predictions Using Individual Models 
 
Use each retained calibrated model to predict system behavior as well as relevant hydrogeologic 
performance measures under various scenarios of relevance to the problem, and quantify the 
corresponding predictive uncertainty. 
Monte Carlo is by far the most common method of assessing the predictive uncertainty of a 
model. The method is conceptually straight forward and has the advantage of applying to a very 
broad range of both linear and nonlinear flow and transport models. Given information about the 
statistical properties of the model input parameters (including those that represent forcing terms) 
or their log transformed values, one generates numerous equally likely realizations of the 
parameters (or log parameters, as in the case of permeability and transmissivity). If the model 
has been calibrated, the input statistics correspond to the posterior parameter estimates. If the 
model is uncalibrated, they correspond to the prior estimates. In both cases, the estimates are 
generally associated with a full variance-covariance matrix. Upon assuming that the estimation 
errors are multivariate Gaussian, one has all the information one needs to produce random 
realizations of the parameters. 
 
One way to produce random realizations of a multivariate Gaussian vector (of parameters) is by 
Cholesky decomposition of its variance-covariance matrix. This method is well suited for full 
matrices and highly efficient when the latter are not too large. Its efficiency stems from the fact 
that only one decomposition is required for an unlimited number of realizations. 
 
Once a parameter realization has been generated, one runs the model under a given scenario to 
generate a corresponding random prediction of system states. Upon averaging the predictions 
over all realizations, one obtains a sample mean prediction. As the number of such Monte Carlo 
runs increases, one hopes that the sample mean converges to a theoretical ensemble mean. While 
such convergence can neither be insured nor verified in most cases, it is important to at least plot 
a representative measure of the sample mean versus the number of runs to verify that it has 
reached a stable value. The stable sample mean is then taken to constitute the best prediction the 
model can produce. 
 
In addition to computing the sample mean, one typically also computes the sample variance of 
the predictions and generates a corresponding frequency histogram. Both converge more slowly 
to their theoretical ensemble equivalents than does the sample mean. It is therefore very 
important to verify that both have stabilized with the number of runs. Since most groundwater 
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models are nonlinear, one need not expect the histogram of the predictions to resemble either a 
normal or a log normal distribution.  
 
Linearizing the flow and transport models allows one to establish approximate error bounds, or 
confidence limits, for model predictions based on linear regression theory, without Monte Carlo 
simulation. Linearization expresses each observed value of a state variable as a linear 
combination of unknown "true" parameters plus a random error ( )ε . As the model is considered 
exact and its parameters true, the latter implies that ε  represents an error of observation. For 
regression (calibration) purposes, ε  is replaced by a corresponding residual and an optimum 
(posterior) estimate of the unknown parameters is obtained by minimizing a suitably weighted 
sum of squared residuals. This sum thus becomes a measure of the error (variance) with which 
observed state variables are represented by the calibrated model. The corresponding variance is 
generally larger than that of ε  because the model is based on estimated rather than true 
parameters. 
 
The weighted sum of squared residuals does not, however, measure the error with which state 
variables that have not yet been observed (or have not been considered for calibration) would be 
predicted by the model. This is so because future predictions would be done with parameter 
estimates that are themselves corrupted by an estimation error. Linearization expresses each 
predicted value of a state variable as a linear combination of unknown parameters plus a random 
error ( )ε . Each unknown parameter is the sum of a known posterior parameter estimate and an 
associated estimation error. Hence the error in predicted system states is the sum of two errors: 
one due to replacing the true parameters by their posterior (calibrated) estimates (proportional to 
the weighted sum of residuals), and the other due to rendering a prediction with the aid of 
uncertain posterior parameters (the uncertainty being characterized by the estimation variance-
covariance of the parameters).  Hill (1998) explains how one can establish linearized confidence 
limits, or error bounds, for predictions rendered by models calibrated using nonlinear least 
squares with a diagonal weight matrix. 
 
Assessing uncertainty in the output of a calibrated deterministic model, as just described, fails to 
account for the stochastic component of prediction error. Evaluating the uncertainty of standard 
deterministic model parameter estimates may allow one to quantify the uncertainty in computed 
conditional mean system state predictors (mean head, concentration, flux etc.). This, however, 
says nothing about how actual (random and unknown) system states fluctuate about their 
predictors; such information is provided only by stochastic models that treat hydraulic 
parameters as random fields. 
 
To do so, one must adopt a stochastic model.  High-resolution Monte Carlo simulation is by far 
the most common method to assess predictive uncertainty stochastically. It entails generating 
multiple random realizations of flow and transport parameters on a fine grid, solving standard 
deterministic flow and transport equations with these parameters on the same grid under 
scenarios of interest, averaging the results and analyzing them statistically. If based on prior 
parameter estimates, the Monte Carlo results honor measured values of the parameters at discrete 
points in space. If based additionally on a suitable inverse method, they also honor parameter 
observed values of state variables. 
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In all other respects, the analysis of predictive uncertainty by the stochastic Monte Carlo method 
is similar to that described previously in connection with deterministic models. 
 
It is important to be aware that forward and inverse algorithms based on the moment equation 
approach are presently under development by our group. The algorithms yield directly (without 
Monte Carlo simulation) optimized unbiased predictors of groundwater flow and transport 
variables for randomly heterogeneous hydrogeologic environments, under the action of uncertain 
source and boundary terms. They also yield the variance-covariance of associated estimation and 
prediction errors. The algorithms do so while accounting explicitly for the multiscale (e.g., 
fractal) nature of hydrogeologic heterogeneity. They allow optimum use of field information 
through joint conditioning on measured values of hydraulic parameters, hydraulic heads and 
solute concentrations. We expect these algorithms to be available for general use in the near 
future. 
 
12.2.15 Render Joint Predictions by All Models 
 
Use Maximum Likelihood Bayesian Model Averaging to render joint predictions by all the 
retained calibrated models, and to assess their joint predictive uncertainty. Acknowledge the 
conditional nature of the predictions and their corresponding uncertainty measures. 
 
Alternative models that have been tested, compared, ranked and retained for further 
consideration are considered to constitute potentially valid simulators and predictors of site 
hydrogeology. There is no valid basis to prefer one of these models over another, and one must 
therefore use them in tandem. To render joint predictions using multiple models and assess their 
joint predictive uncertainty, we recommend adopting the Maximum Likelihood Bayesian Model 
Averaging (MLBMA) approach described in section 9.4. This novel approach relies on 
probabilistic maximum likelihood concepts to (a) calibrate each model against observed space-
time variations in system states (pressure, water content, concentration), considering prior 
information about relevant soil properties; (b) eliminate models that cannot be so calibrated with 
acceptable fidelity; (c) predict future system behavior or performance measures (travel times, 
concentrations, mass rates), and assess corresponding predictive uncertainty, using each model; 
and (d) average the results using posterior model probabilities as weights. MLBMA supports the 
principle of parsimony in that among models that have similar predictive capabilities, it favors 
those having fewer parameters and being therefore simpler.  Regulatory hydrogeologic performance 
of a site, under a given scenario, is evaluated in terms of corresponding performance measures. 
These in turn are computed on the basis of system states (such as travel time and concentration) 
that are predicted using groundwater flow and transport models.  This implies that the same 
models and methods that one uses to predict system states, and to assess their predictive 
uncertainty, can also be used to predict performance measures and their uncertainty. No special 
methodology is needed for this purpose. 
 
It is important to recognize implicitly that the set of predictions one produces with any given 
choice of alternative structural models and parameter sets, by whatever method, is conditional on 
the choice of models and the data used to support them. As such, these predictions do not 
represent all possibilities but only a limited range of such possibilities, associated with these 
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models and data. Any change in the latter would generally lead to a different assessment of 
predictive model uncertainty. There thus appears to be no way to assess the uncertainty of 
hydrologic predictions in an absolute sense, only in a conditional or relative sense. 
 
12.2.16 Identify Additional Data Needs 
 
If none of the models are deemed acceptable, perform a sensitivity analysis to help identify the 
type and quantity of additional site data that might materially enhance their reliability and 
credibility. Decide based on the potential benefit (in terms of bias and uncertainty reduction) 
and cost (in terms of time, effort and money) of such data whether or not to collect them and 
how. 
 
To help evaluate what if any additional data might be worth collecting so as to materially reduce 
model uncertainty (by further constraining the range of alternative model structures and 
parameters), one may conduct a sensitivity analysis to indicate what system behavior appears to 
be most sensitive to which parameters at what locations. The next step is to consider performing 
additional site characterization where existing parameter estimates are least certain and the 
model is relatively insensitive to their values, and monitoring system behavior where it is most 
sensitive to model parameters while prediction errors appear to be relatively large and 
consequential. This may indicate the type and quantity of additional site data that might 
materially enhance model reliability and credibility. 
 
The question how much and what kind of data are enough for model development and evaluation 
is one of economics and policy, not of hydrogeologic analysis or modeling. It is therefore the 
responsibility of managers and decision-makers to answer, not hydrogeologists or modelers. The 
strategy in this report is designed to help one address the question by how much would additional 
site characterization and monitoring improve the prediction of performance measures derived 
from the hydrogeologic analysis. In other words, the strategy addresses the worth of data in 
terms of their contributions to the potential enhancement of model reliability and credibility, not 
in terms of their marginal cost-benefit. Its aim is to allow managers and decision-makers to make 
informed decisions about the time, manpower and budget that they deem worth allocating to 
these activities in light of such enhancement under existing administrative, budgetary and policy 
constraints. 
 
12.2.17 Repeat Iterative Process with New Data 
 
If and when new data of significant weight are obtained, repeat the iterative process till its cost-
benefit ratio reaches a value that is not considered worth exceeding. 
 

This final guideline requires no further elaboration.
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APPENDIX A: PERFORMANCE MEASURES AND HYDROLOGY ISSUES 
PERTAINING TO GROUNDWATER FLOW AND TRANSPORT MODELS  

OF LICENSED NUCLEAR SITES 
 

This note was prepared by the licensing staff 
in the Office of Nuclear Material Safety and 
Safeguards (NMSS) for the benefit of the 
research staff in connection with an ongoing 
generic research that is being conducted for 
NRC’s Office of Nuclear Regulatory 
Research (RES) by the University of 
Arizona. The main purpose of the research is 
to develop strategy for formulation, 
development, and application of 
representative groundwater flow and 
transport models for licensed sites. More 
specifically, this information is provided to 
ensure that the ongoing research efforts 
identify methods and techniques that can be 
used by the licensing staff to better analyze 
uncertainties arid improve the decision-
making procedures with regard to the 
selection and application of site-specific 
groundwater flow and transport models for 
licensed sites.  
 
The note provides the following information 
concerning licensed nuclear facilities, 
including processing and waste disposal 
sites: (1) performance measures based on 
regulatory standards; (2) pertinent 
hydrology/groundwater issues that are 
related to performance; and (3) uncertainties 
commonly encountered in groundwater flow 
and transport modeling.  
 
The performance measures and pertinent 
hydrology issues and uncertainties are 
provided for licensed sites in the following 
NMSS programs: low-level radioactive 
waste, decommissioning, high-level 
radioactive waste, and uranium recovery.  
 
Although a variety of derivative hydrologic 
measures and hydrologic issues are stated, 

RES staff and their contractors should keep 
in mind that the end point of the analysis is 
the performance measure for the licensed 
facility obtained through a performance 
assessment. The hydrologic measures and 
issues need only be explored and dealt with 
to the extent required to have confidence in 
the technical basis supporting licensing 
decisions, taking into account the significant 
uncertainties and the hazard involved (note: 
some uncertainties may be satisfactorily 
addressed through bounding analyses).  
 
Low-Level Waste Disposal Sites 
 
The performance measure in the current 
regulations for low-level radioactive waste 
(LLW) disposal sites is provided by a 
standard for protection of the population and 
the environment in 10 CFR 61.41. 
According to this standard, concentrations of 
radioactive material which may be released 
to the general environment in groundwater, 
surface water, air, soil, plants, or animals 
must not result in an annual exceeding an 
equivalent of 25 millirems (mrem) to the 
whole body, 75 mrem to the thyroid, and 25 
mrem to any other organ of any member of 
the public. In addition, the standard indicates 
that reasonable effort should be made to 
maintain releases of radioactivity in 
effluents to the general environment as low 
as reasonably is reasonably achievable 
(ALARA).  
 
Staff views on performance assessment 
approaches for LLW sites is provided in 
NUREG-1573.  As stated in NUREG-1573 
(p. 3-57), the objective of the groundwater 
flow and transport analyses (including 
groundwater models) is to assess 
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concentrations of radionuclides released in 
the ground water at receptor locations so as 
to assess the potential annual dose.  Staff 
recommended in NUREG-1573 that the 
groundwater transport analysis provide 
concentrations in well water at the site 
boundary representative of composite 
concentration of radionuclides for the 
average member of the critical group 
(critical group is defined as the group of 
individuals reasonably expected to receive 
the greatest dose from radioactive releases 
from the disposal facility over time, given 
the circumstances under which the analysis 
would be carried out - NUREG-1537, page 
3-76).  
 
Analysis of radionuclide concentrations in 
the groundwater at specific sites is carried 
out usually involves addressing such site-
specific hydrologic issues as infiltration 
through the disposal site cover, release of 
radionuclides from the waste, and flow and 
radionuclide transport in the unsaturated 
zone and in the saturated zone to the 
receptor points.  
 
Uncertainties commonly encountered in the 
hydrologic analysis of LLW disposal sites 
include both data as well as conceptual 
uncertainties. Data uncertainties include the 
hydraulic properties of the cover (mainly 
permeability/hydraulic conductivity, service 
life); the hydraulic properties of the 
formations beneath the site (mainly 
permeability/hydraulic conductivity, 
anisotropy and inhomogeneity, effective 
porosity); retardation properties and 
coefficients; and pH values. Conceptual 
uncertainties may include lateral flow versus 
vertical flow and possible development of 
perched water conditions in the unsaturated 
zone below the disposal facility; matrix 
versus fracture flow; structural controls on 
flow and radionuclide transport; inter-

aquifer flow; and uncertainty related to 
changes in time-dependent variables (such 
as the water levels, concentrations, and pH). 
Data-related uncertainties are sometimes 
addressed by bounding analyses.  
 
Decommissioning of Licensed Sites 
 
The performance measure in the current 
regulations for decommissioning of licensed 
sites is provided by the standards in 10 CFR 
20.1402 (for license termination including 
unrestricted use of the decommissioned site) 
and 10 CFR 20.1403 (license termination 
under restricted conditions for use of the 
decommissioned site).  According to the 
standards in 10 CFR 20.1402, a site will be 
considered acceptable for unrestricted use if 
the residual radioactivity that is 
distinguishable from background radiation 
results in a Total Effective Dose Equivalent 
(TEDE) to an average member of the critical 
group at receptor locations or human access 
points that does not exceed 25 mrem per 
year, including that from groundwater 
sources of drinking water, and the residual 
radioactivity has been reduced to levels that 
are ALARA.  
 
The standards in 10 CFR 20.1403 provide 
that a site will be considered acceptable for 
license termination under restricted 
conditions by satisfying certain provisions 
specified in the regulations. These include 
provisions pertaining to meeting the 
ALARA provision; legally enforceable 
institutional controls that provide reasonable 
assurance that the TEDE from the residual 
radioactivity will not exceed 25 mrem per 
year; financial assurance to assume and 
carry out any necessary control and 
maintenance of the site; submittal of a 
decommissioning or a license termination 
plan indicating intent to decommission in 
accordance with the regulations in IO CFR 
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Subparts 30.36(d), 40.42(d), 50.82(a) and 
(b), 70.38(d), or 72.54; and that if the 
institutional controls were no longer in 
effect, there is reasonable assurance that the 
residual activity to the average member of 
the critical group is ALARA, and would not 
exceed either 100 mrem per year, or 500 
mrem per year provided that the licensee: 
(1) demonstrates that further reductions in 
residual radioactivity necessary to comply 
with the 100 mrem per year are not 
technically achievable, would be 
prohibitively expensive, or would result in 
net public or environmental harm; (2) makes 
provisions for durable institutional controls; 
and (3) provides sufficient financial 
assurance to enable a responsible 
government entity or independent third 
party, both to carry out periodic rechecks of 
the site to assure that the institutional 
controls remain in place as necessary to 
provide reasonable assurance that the TEDE 
from the residual radioactivity will not 
exceed 25 mrem per year.  
 
Guidance for demonstrating compliance 
with the current regulations for 
decommissioning sites is provided in 
NUREG-1549.  This guidance does not 
explicitly address how the groundwater 
analysis should be performed.  However, 
guidance is provided for assessment of the 
dose for an individual located on site (e.g., 
using water extracted from a well located on 
the site with an intake point directly beneath 
the waste area), an individual located off site 
(e.g., using water extracted from a well 
located at the site boundary), or both. It 
should be pointed out, as reflected in 
NUREG-1549, the NRC recommended dose 
modeling approach is an iterative approach 
that involves a screening analysis initially, 
but eventually includes more site-specific 
analyses as warranted by the site conditions. 
The screening approach recommended in 

another NRC staff document, NUREG-5512 
(vol. 1), has a predefined ground-water 
conceptual model.  
 
Operational environmental monitoring of 
groundwater, although adequate for its 
intended purpose, may not be adequate for 
site characterization and to support dose 
assessments for decommissioning.  As noted 
in NUREG-1727, "NMSS Decommissioning 
Standard Review Plan," Section 4.6,  
"Groundwater," "[T]he information supplied 
by the licensee should be sufficient to allow 
the staff to fully understand the types and 
movement of radioactive material 
contamination in groundwater at the facility, 
as well as the extent of this contamination." 
The actual number, location, and design of 
monitoring wells depend on the size of the 
contaminated area, the type and extent of 
contamination, the background quality, 
hydrogeologic system, and the objectives of 
the monitoring program.    
 
As part of the guidance consolidation 
efforts, NUREG-1556, Vol. 1-20, staff is 
currently working on the consolidation of 
Decommissioning License Termination 
Guidance.  As part of this effort, the 
guidance is being updated to risk inform.  
This guidance consolidation for 
decommissioning is planned to be 
completed within approximately 2 years and 
will be contained in NUREG-1757. 
   
On October 9, 2002, NRC and EPA signed 
an MOU which outlined consultation and 
finality on decommissioning and 
decontamination of contaminated sites.  The 
MOU requires NRC to seek EPA’s expertise 
when NRC determines that there is 
radioactive groundwater contamination in 
excess of EPA’s MCLs or for which 
restricted release or the use of alternate 
criteria for license termination is contemplated.      
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Uncertainties commonly encountered in the 
hydrologic analysis for decommissioning of 
licensed sites include both data as well as 
conceptual uncertainties that are similar to 
those encountered at LLW sites (see LLW 
Disposal Sites above).  
 
High-Level Waste Disposal Sites 
 
The performance measures for the potential 
high-level waste (HLW) repository at Yucca 
Mountain, Nevada in NRC’s regulations at 
10 CFR Part 63 are based on the EPA 
standards (40 CFR 197) which provide: (1) 
an overall performance measure (annual, 
individual dose limit of 15 mrem TEDE to a 
reasonably, maximally exposed individual); 
(2) a performance measure for a specified 
human intrusion scenario (annual, individual 
dose limit of 15 mrem TEDE to a 
reasonably, maximally exposed individual); 
and (3) separate limits for the protection of 
ground water (5 pCi/l for radium-226 and 
radium-228, 15 pCi/liter for gross alpha 
activity, and 4 mrem/year to the whole body 
or any organ from combined beta and 
photon emitting radionulcides).  Compliance 
with these performance measures is 
demonstrated with a performance 
assessment using a compliance location of 
approximately 18 kilometers downgradient 
from the repository footprint and over a 
compliance period of 10,000 years.  
Additionally, the performance assessment is 
limited to certain conditions (e.g., features, 
events, and processes estimated to have less 
than one chance in 10,000 of occurring over 
10,000 years are not to be considered in the 
performance assessment). 
 
Hydrologic processes and flow and transport 
issues that may need to be considered for the 
Yucca Mountain site include: infiltration 
from the ground surface under present and 
future climates; deep percolation from the 

root zone into the waste emplacement drift 
(an unsaturated, fractured and anisotropic 
zone above the repository); thermal effects 
on the flow regime, hydraulic and transport 
properties of formations in the unsaturated 
zone; flow and transport of radionuclides in 
the unsaturated zone below the repository; 
and flow and transport of radionuclides in 
the saturated zone between the repository 
and the receptor group location.  
 
Consideration of these complex these issues 
over the 10,000 year regulatory period is 
expected to require the evaluation of 
hydrologic uncertainties through the use of 
groundwater and transport models of Yucca 
Mountain. 
 
Uranium Recovery/Tailings Disposal Sites  
 
The performance measure for reviewing 
uranium mill and tailings sites can be 
divided into three areas: Title I dealing with 
DOE-remedial action programs of former 
mill tailings sites; Title II dealing with non-
DOE mill tailings sites; and in situ leach 
(ISL) uranium solution mining sites. In all 
three areas, concentration limits of specified 
chemical and radionuclide constituents in 
groundwater are determined.  
 
Title I 
 
For Title I sites, the performance measures 
are covered in 40 CFR 192. Specifically 
Subparts A, B and C of Part 192 provide the 
regulatory requirements for water resources 
protection.  Guidance for implementing 
performance of groundwater standards is 
covered in NUREG-1724 entitled “Draft 
Standard Review Plan for the Review of 
DOE Plans for Achieving Regulatory 
Compliance at Sites With Contaminated 
Ground Water Under Title I of the Uranium 
Mill Tailings Radiation Control Act.”  
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Protection of water resources at Title I sites 
is a process that encompasses two strategies.  
The first strategy is to prevent or contain the 
spread of contaminants in the groundwater, 
surface water, and surrounding lands.  The 
second strategy is to mitigate the threat to 
public health an the environment from 
contaminants that have already been 
mobilized.  Performance of these strategies 
is maintained through groundwater 
monitoring programs and corrective action.  
Groundwater models are utilized to predict 
the fate and transport of the constituents and 
to design remedial systems.  NRC staff 
utilize NUREG-1724 for specific guidance 
criteria in site characterization, groundwater 
monitoring, corrective action of 
groundwater contamination at Title I 
uranium mill tailings sites.    
 
The hydrogeologic model plays a role in 
groundwater monitoring to demonstrate 
compliance with standards and in detection 
of contamination, site characterization of 
contamination, and corrective action.  For 
example, in estimating the risk of a potential 
receptor (i.e. water supply well, stream) 
from groundwater contamination as a result 
of mill activities, models must be 
sufficiently detailed to provide a technical 
basis for regulatory decisions and assure the 
protection of human health and the 
environment.  Factors such as contaminant 
velocity in groundwater through the 
geologic media, geochemical conditions, 
and potential preferential pathways must be 
factored into the transport of radionuclides 
and other constituents. 
 
Title II 
 
Regulations for the performance measures 
and standards for groundwater at Title II 
uranium mill and tailings sites is covered in 
10 CFR Part 40, Appendix A Criterion 5, 7, 

and 13.  Guidance for demonstrating 
performance for Title II uranium mill and 
tailings sites can be found in NUREG-1620 
entitled “Draft, Rev. 1, Standard Review 
Plan for the Review of a Reclamation Plan 
for Uranium Mill Tailings Sites Under Title 
II of the Uranium Mill Tailings Radiation 
Control Act.”  The strategies with Title II 
sites are similar to Title I.  The first strategy 
is to prevent or contain the spread of 
contaminants in the groundwater, surface 
water, and surrounding lands.  The second 
strategy is to mitigate the threat to public 
health an the environment from 
contaminants that have already been 
mobilized.  Groundwater protection 
standards are either: (1) Commission 
approved background of a constituent in the 
groundwater, (2) respective values given in 
10 CFR Part 40, Appendix A, paragraph 5C 
[maximum concentration limits] if the 
constituent is listed in the table and if the 
background level of the constituent is below 
the value listed, or (3) an alternate 
concentration limit established by the 
Commission.  Alternate concentration limits 
may be approved by the Commission if they 
do not present a significant hazard to human 
health or the environment, are as low as 
reasonably achievable, after considering 
practicable corrective actions.  Groundwater 
detection programs are used to demonstrate 
compliance.  If groundwater protection 
standards are exceeded, a corrective action 
program must be put into operation pursuant 
to 10 CFR Part 40, Appendix A, Criterion 
5D.  The objective of the program is to 
return the hazardous constituent 
concentration levels in groundwater to the 
standards. 
 
In proposals for alternate concentration 
limits, licensee’s often use groundwater fate 
and transport models to demonstrate that a 
concentration at the point of compliance will 
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not present a significant hazard at the point 
of exposure.  The licensee can account for 
degradation of that constituent through the 
geologic media over time and distance.  
Staff criteria for reviewing these models can 
be found in NUREG-1620.  Sufficient site 
characterization is paramount in building a 
technically adequate model.  Uncertainties 
are encountered in the site characterization 
process and in the assumption that 
conditions, as they were characterized, will 
remain constant for 1000 years 
(performance period).  Extended 
groundwater monitoring programs are 
implemented to lower uncertainty and to 
assure continued protection of human health 
and the environment.  
 
Once a license for a Title II site is 
terminated, pursuant to 10 CFR Part 40.28, 
the site is transferred under general license 
to the Department of Energy, another 
Federal agency designated by the President, 
or a State where the disposal site is located.  
Groundwater monitoring is detailed in the 
Long-Term Surveillance Plan.    
 
In Situ Leach (ISL) Uranium Extraction  
 
Guidance for demonstrating compliance for 
in situ leach (ISL) uranium extraction 
license applications is provided in NUREG-
1569. This guidance explicitly addresses the 
groundwater information and analysis that is 
specified in Regulatory Guide 3.46 
"Standard Format and Content of License 
Applications, Including Environmental 
Report, for In Situ Uranium Solution 
Mining. NUREG-1569 identifies the NRC 
reviewer's proposed activities in reviewing a 
licensee submittal, specifically the areas of 
review, review procedures, acceptance 
criteria, evaluation findings and references. 
The ground-water issues in NUREG-1569 
relate to ground- water quality restoration. 

The monitoring programs needed to assure 
ground-water quality restoration are 
discussed. The acceptance criteria for the 
ground-water quality are established based 
upon the background water quality prior to 
ISL mining.  
 
NUREG-1569 states that restoration goals 
are established in the application for each of 
the monitored constituents.  The applicant 
has the option of determining restoration 
goals for each constituent on a well-by-well 
basis, or on a well field average basis. 
Restoration goals should be established for 
the ore zone and for any overlying or 
underlying aquifer that remains affected by 
ISL solutions. Performance measures for 
ISL sites can be classified into two groups; 
primary restoration goals, and secondary 
restoration goals. For primary restoration 
standards, the primary goal for a restoration 
program is to return the water quality of the 
ore zone and affected aquifers to pre-
operational (baseline) water quality.  It is 
unlikely that after restoration activities the 
ground-water quality will be returned to the 
exact water quality that existed at every 
location in the aquifer before ISL 
operations. Therefore, it is acceptable to use 
standard statistical methods to set the 
primary restoration goal and to determine 
compliance with it.  It is also acceptable for 
the applicant to propose that the baseline 
conditions for each chemical species be 
represented by a range of concentrations.  
The reviewer shall ensure that statistical 
methods used to determine such confidence 
intervals are properly applied.  
For secondary restoration standards, since 
the ISL process requires changing the 
chemistry of the ore zone, it is reasonable to 
expect that ISL may cause permanent 
changes in water quality.  For this reason, it 
is acceptable for the applicant to propose, as 
a secondary restoration standard, returning 
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the water quality to its pre-ISL class of use 
(e.g., drinking water, livestock, agricultural, 
or limited use).  Applications should state 
that secondary standards will not be applied 
so long as restoration continues to result in 
significant improvement in ground-water 
quality.  It is acceptable to the staff if, on a 
constituent-by-constituent basis, secondary 
goals are determined by applying the lower 
of the State or EPA secondary and primary 
drinking water standards.  
 
If a ground-water parameter could not be 
restored to its secondary goal, an applicant 
could demonstrate to NRC that leaving the 
parameter at the higher concentration would 
not be a threat to public health and safety 
nor the environment, and that, on a 
parameter-by-parameter basis, water use 
would not be significantly degraded.  Such 
proposed alternatives must be evaluated as a 
license amendment request only after 

restoration to the primary or secondary 
standard is shown not to be practical. This 
approach is consistent with the ALARA 
philosophy that is used broadly within NRC.  
 
Uncertainties commonly encountered in the 
hydrologic analysis for Title I, Title II, and 
ISL sites include both data, as well as, 
conceptual model uncertainties. The data 
uncertainties are similar to those 
encountered in ground-water quality 
monitoring programs (e.g., sampling 
methods, well screen location, and 
laboratory analysis). The uncertainties in the 
conceptual models are those encountered in 
the site characterization process, as well as, 
the process for determining model 
assumptions used in estimating input 
parameters, and data analysis of field tests 
(e.g., pump and pilot study tests) and 
compliance monitoring.
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APPENDIX B: VERTICAL AVERAGING OF WATER-TABLE EQUATION 
 

Transient groundwater flow in a saturated 
porous medium is governed by the three-
dimensional continuity equation 

3 s
hS
t

∂
−∇ ⋅ =

∂
q  

subject to Darcy's law  where 3h= − ∇q K

( )3 / , / , / Tx y z∇ = ∂ ∂ ∂ ∂ ∂ ∂  is the three-
dimensional gradient operator (the 
superscript T indicating transpose), q is flux 
vector, Ss is specific storage, h is hydraulic 
head, t is time, and K is a 3 x 3 hydraulic 
conductivity tensor. The same equation 
applies at any point within a water-table 
aquifer. Let the bottom of this aquifer be at 
elevation , and the water table at 

elevation 
( ,oz x y)

)( , ,x y tξ , above some horizontal 
datum. The same datum serves to define the 
three-dimensional head function 

. ( ), , ,h x y z t
 
Flow in unconfined aquifers is commonly 
described by a two-dimensional (rather than 
three-dimensional) flow equation in the 
horizontal plane. Here we derive this two-
dimensional equation from its more 
comprehensive three-dimensional counterpart 
by formally averaging the above continuity 
expression over the vertical, 

3 0
o

s
z

hS dz
t

ξ ⎛ ⎞∂
∇ ⋅ =⎜ ⎟∂⎝ ⎠

∫ q +  

From Leibnitz’s rule for the differentiation 
of integrals it follows that 

( ) ( )
0o

x o
x x x o

z z

q zdz q dz q q z
x x x

ξ ξ ξξ∂ ∂∂ ∂
= − +
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ξ ξ
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This allows us to rewrite the vertically-
integrated water balance equation as 

( ) ( ), , |
o

x y x y z
z

q q dz q q
ξ

ξ ξ=∇ ⋅ −∫ ⋅∇  

( ), |
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z
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qq q z dz
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∂
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( ) 0
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s z
S h dz h

t t
ξ ξξ

⎡ ⎤∂ ∂
+ − =⎢ ⎥∂ ∂⎣ ⎦

∫  

where now ( )/ , / Tx y∇ = ∂ ∂ ∂ ∂  is a two-
dimensional gradient operator in the 
horizontal plane, and Ss is considered to be 
independent of time. We define the 
vertically-averaged head h  and horizontal 
flux ( ),

T

x yq qq = as 
1
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h h
z
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ξ
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−
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( )1 ,
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x yz
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q q dz
z

ξ
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Next, we adopt the well-known Dupuit 
assumption that flow in the aquifer is 
virtually horizontal. This assumption 
implies that head does not vary much in the 
vertical direction and therefore 

( ) ( )oh h zξ h≈ ≈ . We can therefore write 
the vertically-integrated continuity equation as 

( ) ( ), |o x y zz q q ξξ ξ=∇ ⋅ − − ⋅∇⎡ ⎤⎣ ⎦q   

( ), | | |
o ox y z z o z z z z zq q z q qξ= = =+ ⋅∇ + −  

( ) 0s o
hS z
t

ξ ∂
− ≈

∂
 

where the last term follows from 
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We treat the water table as a free moving 
upper boundary of the saturated flow region, 
at which gauge pressure is zero 
(atmospheric) and therefore head h at the 
water table is equal to the elevation z. From 
the Lagrangian viewpoint of a fluid particle 
that moves with the water table, the quantity 
h - z remains fixed at zero. In other words, 
the Lagrangian derivative of h - z is zero,  

( ) |z
D h z
Dt ξ=−  

1sx sy sz

z

h h h hq q q
t x y z

ξ=

⎡ ⎤
⎥
⎦

⎛ ⎞∂ ∂ ∂ ∂
≡ + + + −⎢ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣

 

0=  
where sq  is the (seepage) velocity of the 
water table. By virtue of the Dupuit 
assumption, we can disregard  in this 
expression and replace h in all the remaining 
terms by 

/h z∂ ∂

ξ  to yield 

0sx sy sz
z

q q q
t x y ξ

ξ ξ ξ
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⎛ ⎞∂ ∂ ∂
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Water balance at the water table requires 
that ( )  where r is a vector 
representing recharge from above, and S

y sS− ⋅ = ⋅q r n q n
y is 

specific yield or drainable porosity. It is 
common to assume that recharge is strictly 
vertical so that ( )0,0, I−r = ate 

ce at 

S q , y y syq S q  and szI S q= . 
Multiplying t hout 

 where I the r
of net vertical infiltration. Water balan
the free boundary then implies that 

xq = =  zq +
he above equation throug

by S

y sx y

y therefore yields 
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t x y ξ

ξ ξ ξ

=

⎡ ⎤∂ ∂ ∂
+ + − + =⎢ ⎥∂ ∂ ∂⎣ ⎦

 

which can be rewritten as 

( ), | |x y z z z yq q q I S
tξ ξ
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∂
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∂
 

Substituting this into the vertically-averaged 
continuity equation and rearranging yields 

( ) ( ), |
oo x y z z oz q q zξ = I−∇⋅ − + ⋅∇ +⎡ ⎤⎣ ⎦q  

( )|
oz z z s o y

hq S z S
t

ξ=
∂⎡ ⎤+ ≈ − +⎣ ⎦ ∂

 

So far the vertical averaging has not affected 
the three-dimensional Darcy equation 

3h= − ∇q K . It is important to note that 
setting h h≈ in accord with the Dupuit 
assumption eliminates the vertical derivative 
of head, but does not eliminate the vertical 
component of flux. For the vertical flux to 
vanish we must assume that K has a 
principal direction parallel to z. Then the 
vertical averaging of  yields a 
two-dimensional form of Darcy's law,  

3h= − ∇q K

H h− ∇q = K  
where KH is an equivalent hydraulic 
conductivity tensor given by 

1
o

H z
o

dz
z

ξ

ξ
=

− ∫K K  

Note that KH is a 2 x 2 tensor defined in the 
horizontal plane, which does not depend on 
z but may vary with the horizontal 
coordinates x and y. Note further that KH is 
the arithmetic average of K over the 
saturated thickness ozξ − of the aquifer. As 
the saturated thickness may vary with time, 
so can KH, even if K is a constant. The 
variability of KH with saturated thickness is 
commonly ignored, even though it may be 
significant in heterogeneous (and especially 
stratified) aquifers. 
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If the principal values of K in the horizontal 
plane do not vary strongly with elevation, 
then the Dupuit assumption implies that 

( ), |
o

T

x y z zq q = ≈ q . The vertically-averaged 
continuity equation can therefore be written 
as 

( )s o yS z S
t
ξξ ∂⎡ ⎤≈ − +⎣ ⎦ ∂

 

The quantity ( )o Hh z− K  or (  is 
commonly referred to as transmissivity. 

)o Hzξ − K

 
It is common to set zo ≡ 0 and disregard 
artesian storage. Then one obtains the well-
known Boussinesq equation either in terms 
of average head, 

( ) |
oo oz z I qξ =−∇⋅ − ⋅∇ + +⎡ ⎤⎣ ⎦q + q z z z  

( )s o y
hS z S
t

ξ ∂⎡ ⎤≈ − +⎣ ⎦ ∂
 

( ) |
oH z z z

hh h I q S
t=

∂
∇ ⋅ ∇ + + ≈

∂
K y  Here ( )ozξ − q  is horizontal flow rate 

across the entire saturated thickness of the 
aquifer per unit transverse horizontal 
distance, oz⋅∇q  is a term that accounts for 
variations in the elevation of the aquifer 
bottom, I is net vertical recharge at the water 
table,   is rate of leakage across the 
aquifer bottom, 

|
oz z zq =

( )s oS zξ −  is an internal 
(artesian) storage coefficient or storativity 
that depends on saturated thickness, and the 
specific yield Sy is storativity due to 
imbibition or drainage at the water as the 
latter rises or falls. 

or in terms of water-table elevation, 

( ) |
oH z z zI q S

ty
ξξ ξ =

∂
∇ ⋅ ∇ + + ≈

∂
K  

Our formal averaging of flow in an 
unconfined aquifer was accompanied by a 
number of simplifying assumptions. These 
state that 
1. Flow in the aquifer is essentially 

horizontal. 
2. Recharge above the water table is 

essentially vertical. 
3. One principal direction of the three-

dimensional hydraulic conductivity 
tensor K is vertical. 

 
Introducing the vertically-averaged form of 
Darcy's law into the above expression, and 
replacingξ  by h , yields the vertically-
averaged flow equation 

4. The horizontal components of K vary 
weakly with elevation (this is needed 
only if the aquifer bottom is uneven 
and/or one treats KH as being 
independent of saturated thickness). 

 
( ) |

oo H H o z z zh z h h z I q =
⎡ ⎤∇ ⋅ − ∇ ∇ ⋅∇ + +⎣ ⎦K - K

 
The standard form of the Boussinesq 
equation assumes additionally that ( )s o y

hS h z S
t

∂⎡ ⎤≈ − +⎣ ⎦ ∂
 

5. The aquifer bottom is horizontal and flat. 
which is seen to be nonlinear in the 
vertically-averaged head h . Alternatively, 
one can replace h  byξ  to obtain a similar 
equation in terms of water-table elevation, 

6. Artesian storage is negligible. 
 

( ) |
oo H H o z z zz zξ ξ ξ I q =∇ ⋅ − ∇ ∇ ⋅∇ + +⎡ ⎤⎣ ⎦K - K

 

When these assumptions are violated, a two-
dimensional description of flow in an 
unconfined aquifer in the horizontal plane 
may lead to a systematic bias in predicted 
heads and fluxes. 
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APPENDIX C: AVERAGING OF GROUNDWATER FLOW IN PROBABILITY SPACE 
 

A new look at traditional deterministic flow models and their calibration  
in the context of randomly heterogeneous media 
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Abstract We examine the tradition of modelling subsurface flow deterministically from a 
stochastic viewpoint. In particular, we show that traditional deterministic flow equations 
do apply to randomly heterogeneous media, albeit in an approximate manner, provided 
they are interpreted in a non-traditional manner. Our paper explains why parameter 
estimates obtained by traditional inverse methods tend to vary as one modifies the 
database. It also makes clear that the traditional Monte Carlo method of assessing 
uncertainty in the output of a calibrated deterministic model generally overestimates the 
predictive capabilities of the model. The only valid way to assess predictive uncertainty is 
by means of a stochastic model. 

 
INTRODUCTION  
 
Parameters such as hydraulic conductivity have been traditionally viewed as well-defined local 
quantities that can be assigned unique values at each point in space. Yet in practice they are 
deduced from measurements at selected well locations and depth intervals where their values 
depend on the scale and mode of measurement. Quite often, the support of the measurements is 
uncertain and the data are corrupted by experimental and interpretative errors. Estimating the 
parameters at points where measurements are not available entails an additional random error. It 
is therefore appropriate to think of the subsurface as being randomly heterogeneous and to 
describe fluid flow in geologic media by means of stochastic equations. 
 

Yet, the tradition has been to model subsurface flow deterministically. In this paper we 
examine this tradition from a stochastic viewpoint and comment on its validity and meaning. 
More specifically, we ask what is the meaning of hydrogeologic variables that enter into 
traditional deterministic groundwater flow models when the latter are applied to randomly 
heterogeneous media? What is the significance of parameters obtained by calibrating a 
deterministic flow model against randomly varying data? What do corresponding parameter 
estimation errors imply about predictive uncertainty? 
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To address these questions, we consider steady state flow of groundwater in a randomly 
nonuniform domain, Ω. The flux q(x) and the hydraulic head h(x) obey the continuity equation 
and Darcy’s law, subject to appropriate boundary conditions. All parameters and state variables 
are defined on a consistent nonzero support volume, ω, which is small in comparison to Ω, but 
sufficiently large for Darcy’s law to be locally valid. It has been shown (Neuman & Orr, 1993; 
Neuman et al., 1996; Guadagnini £ Neuman, 1999a, b; Tartakovsky & Neuman, 1998, 1999) that 
it is theoretically possible, and computationally feasible, to render optimum unbiased predictions 
of h(x) and q(x) under ubiquitously nonuniform and uncertain field conditions by means of their 
first ensemble (statistical) moments (expected or mean values), 〈h(x)〉c and 〈q(x)〉c, conditioned 
on measurements of K(x). The predictors 〈h(x)〉c and 〈q(x)〉c satisfy the equations 
 

− 〈q(x)〉c + 〈f(x)〉 = 0 x ∈ Ω (1) 
 
〈q(x)〉c = − 〈K(x)〉c∇〈h(x)〉c + rc(x) rc(x) = − 〈K’(x) ∇h’(x)〉c (2) 

 
subject to the boundary conditions 
 

〈h(x)〉c = 〈H(x)〉; x ∈ ΓD   − 〈q(x)〉c ⋅ n(x) = 〈Q(x)〉; x ∈ ΓN (3) 
 
where the subscript c implies “conditional”; primed quantities represent random fluctuations 
about (conditional) mean values; K(x) is a random field of scalar hydraulic conductivities; rc(x) 
is a residual flux; 〈f(x)〉, 〈H(x)〉, 〈Q(x)〉 are prescribed unconditional first moments of the 
statistically independent random source and boundary forcing terms f(x), H(x), Q(x); and n(x) is 
a unit outward normal to Γ = ΓD ∪ ΓN where ΓD and ΓN are Dirichlet and Neumann boundaries, 
respectively. The residual flux rc(x) is given implicitly by (Neuman et al., 1996) 
 

∫∫
ΩΩ

+∇= yyrxydyyxyaxr cccc d,dh,
cy )()()()()(   (4) 

where the kernels 
 

cyx ,GKK, >∇∇=< )()(')(')( T xyyxxyac   (5) 
 

cyx ,GK, >∇∇=< )()(')( T xyxxydc  (6) 
 
form a symmetric and a non-symmetric tensor, respectively. Here G is a random Green’s 
function, or the solution of the random flow equations for the case where f(x) is a point source of 
unit strength at point y, subject to homogeneous boundary conditions H(x) ≡ Q(x) ≡ 0. 
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     Due to the integro-differential nature of rc(x), our conditional moment equations include 
nonlocal parameters that depend on more than one point in space (hence the equations are 
referred to as nonlocal). The traditional concept of an REV (representative elementary volume) is 
neither necessary nor relevant for their validity or application. The corresponding parameters are 
nonunique in that they depend not only on medium properties but also on the information one 
has about these properties (scale, location, quantity, and quality of data). It is clear that the flux 
predictor is generally nonlocal and non-Darcian, in that it depends on the residual flux rc(x). 
 
      Guadagnini & Neuman (1999a, b) have developed corresponding integro-differential 
equations for the conditional variance-covariance of associated prediction errors in head and 
flux, and have shown how to solve both sets of equations by finite elements.  Their solution 
entails expansion of the otherwise exact nonlocal moment equations in terms of a small 
parameter, σY, which represents a measure of the standard deviation of natural log hydraulic 
conductivity, Y(x) = ln K(x). 
 

Since the flux predictors rc(x) and 〈q(x)〉c are generally nonlocal and non-Darcian, the 
traditional notion of effective conductivity looses meaning in the context of flow prediction by 
means of conditional ensemble mean quantities. In the following section we show how these 
quantities can be localised in an approximate manner, so as to render them Darcian.  

 
LOCALIZATION OF CONDITIONAL MEAN FLUXES 

 
If one treats the conditional mean hydraulic gradient ∇〈h(y)〉c, and residual flux rc(y), in (4) as if 
they were locally uniform, one can take them outside the corresponding integrals and express 
them as functions of x. One can then express the residual flux in localised, Darcian form as 

 
rc(x) ≈ − κc(x) ∇〈h(x)〉c  (7) 
 

-   (8) ∫∫
Ω

−

Ω ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= yxyayxydx ccc d,d, )()(1)(

1

κ

 
This leads to a familiar looking Darcian form for the mean flow predictor 
 

〈q(x)〉c ≈ − Kc(x) ∇〈h(x)〉c Kc(x) = 〈K(x)〉c I + κc(x) (9) 
 
where I is the identity tensor and Kc(x) is a spatially-varying conditional effective hydraulic 
conductivity tensor. The latter is either symmetric positive definite or nonsymmetric, depending 
on whether κc(x) is symmetric or nonsymmetric (as ac in (5) is symmetric while dc in (6) is 
nonsymmetric, κc is symmetric only when dc ≡ 0). 
 



 
 

 
 

 

Since Kc(x) is defined on the support scale ω, it is a local rather than an upscaled effective 
parameter and does not depend in any way on a grid of any kind. It constitutes a biased estimate 
of the actual ω-scale hydraulic conductivity, K(x), which is represented more faithfully by its 
unbiased conditional mean value, 〈K(x)〉c. Nevertheless, it is Kc(x) rather than 〈K(x)〉c that renders 
(more-or-less) unbiased predictions of head and flux, provided that the assumptions of local 
uniformity of ∇〈h〉c and rc are approximately satisfied. 

 
We see that the localisation of flow in a randomly nonuniform medium, under the influence 

of uncertain source and boundary terms, yields a deterministic system of differential equations, 
which is identical in form to traditional flow equations commonly written for fully deterministic 
systems.  We can therefore comment about the widespread practice of applying such traditional 
equations to groundwater flow under ubiquitously nonuniform and uncertain field conditions. 
First, such applications are valid at best as an approximation, since it is clear that localisation of 
the mean flux introduces a modelling (localisation) error. Second, they are valid only provided 
one interprets the traditional equations (and associated analytical or numerical models of 
groundwater flow) in a non-traditional way. Whereas traditionally the hydraulic conductivity in 
deterministic flow equations has been considered to be a material property, we see that it is 
instead a nonunique effective parameter which depends on how closely the underlying property 
K (which enters into the stochastic, but not the deterministic, flow equations) has been defined 
on the basis of available measurements (i.e., on their quantity, quality and scale ω).  Whereas 
traditionally the hydraulic head and flux in deterministic flow equations have been considered to 
represent real system states, we see that they are in fact conditional predictors of these states. As 
such, they are data-dependent and therefore nonunique, relatively smooth, and differ generally 
from their true random counterparts. Calibrating a deterministic groundwater flow model against 
measured values of system states is tantamount to conditioning the model on such measurements. 
It is therefore easy to understand why the resulting parameters tend to vary continuously as more 
and more data are incorporated into the (calibration, inverse or parameter estimation) process: 

 very act of expanding the database alters the (data-dependent, and thus inherently nonunique 
ective) parameters which the process is designed to estimate. While nonlocal moment 

equations provide information about predictive uncertainty, localisation does not. 
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CONDITIONING ON HYDRAULIC CONDUCTIVITY DATA 
 
Our nonlocal theory assumes that one has at his/her disposal a conditional unbiased estimate, 
〈K(x)〉c, of the randomly varying hydraulic conductivity function, K(x), together with the second 
conditional moment of associated estimation errors of log hydraulic conductivities, CYc(x, y).  
When conditioning is performed on the basis of existing ω-scale measurements of K at a set of 
discrete points, 〈K(x)〉c and CYc(x, y) can be obtained (in principle) by means of geostatistical 
methods (e.g., Deutsch & Journel, 1998). Geostatistical techniques can also be used to generate 
multiple conditional realisations of K(x), which honour the measured data. Solving the stochastic 
flow equations for each of these realisations by conditional Monte Carlo simulation (CMS) 
allows one to calculate ∇〈h(x)〉c and 〈q(x)〉c. Based on these, one can use the localised equation 
(9) to evaluate Kc(x). The latter can also be evaluated directly by considering K(x) to be 
multivariate log-normal and using stochastically derived formulae to approximate Kc(x). For 
example, if one treats K(x) in a two-dimensional domain as if it was log-normal as well as 
statistically homogeneous and isotropic in the neighbourhood of x, and the conditional mean 
flow as if it was locally uniform, one can use existing stochastic theory for flow in an infinite 
domain to deduce that Kc(x) ≈ KG(x)I where KG(x) is the (conditional) geometric mean of K at x. 
In addition to localisation error, this introduces another modelling error due to the analytical 
approximation of Kc. 
 
     We illustrate below the effect that these two modelling errors have on the flow predictors 
〈h(x)〉c and 〈q(x)〉c in a two-dimensional square domain, under superimposed mean uniform and 
convergent flows, subject to deterministic boundary conditions. For comparison purpose, we 
compute these conditional first moments by three methods: (a) CMS, which we consider to be 
the most reliable and accurate among the three methods; (b) recursive nonlocal finite elements, 
as proposed by Guadagnini & Neuman (1999a, b), which provide a direct solution to the 
stochastic flow problem to second order of approximation in σY; and (c) localisation, by setting 
Kc(x) ≈ KG(x)I. The flow domain measures L1 = L2 = 10 in arbitrary consistent length units. It is 
discretized into 50 x 50 rows and columns of M = 2500 square elements with sides 
∆x1 = ∆x2 = 0.2. Deterministic no-flow boundary conditions are imposed at the bottom along 
x2 = 0, and at the top along x2 = 10. A uniform deterministic head HL = 10 is prescribed on the 
left boundary along x1  = 0, and HR = 0 on the right boundary along x1 = 10. We consider three 
test problems: TP1 without conditioning on hydraulic conductivity data, and TP2 and TP3 that 
involve conditioning on two different sets of K measurements. In all three test problems, the 
underlying (unconditional) log hydraulic conductivity field Y(x) is multivariate Gaussian, 
statistically homogeneous and isotropic with an exponential spatial autocovariance. 
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Fig. 1 Images (a) and (c) of 〈Y(x)〉c, (b) and (d) of (x), obtained with NMC=2,000 for TP2 in (a) and (b), TP3 in 

(c) and (d). 

2
Yσ

-1.5             0.0                       2.5   0.0                   0.5                  1.0 

 
Overall, the flow is uniform in the mean from left to right. We superimpose convergent flow on 
this mean uniform background by placing a well (point sink) at the centre (x1 = 5, x2 = 5) of the 
grid, which pumps at a volumetric flow rate of Q = 5 (measured in arbitrary consistent time 
units). 
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Unconditional random Y(x) fields are generated by means of the simulator SGSIM (Deutsch 
& Journel, 1998), with unit log conductivity variance  and autocorrelation scale λ. Figure 1 
shows images of the conditional sample mean, 〈Y(x)〉

2
Yσ

c, and variance, (x), obtained with NMC 
= 2000 Monte Carlo simulations for TP2 and TP3. The “measured” hydraulic conductivities for 
these test problems are extracted from a single unconditional random realisation of Y(x). For 
purposes of flow analysis by CMS, we assign to each element in the grid a constant Y value, 
corresponding to the point value generated at the element centre. This is justified considering 
that our grid includes a minimum of five such cells per autocorrelation scale. The conditional 
K

2
Yσ

G(x) field, which plays the role of an effective parameter field for the localised mean flow 
equations, is obtained by averaging all conditionally generated Y realisation for each test 
problem. 
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Fig. 2 (a) Nonlocal (solid, same as CMS) and localised (dashed) solutions for 〈h(x)〉c along longitudinal section (x2 = 

5) through well; (b) second-order component, 〈h2(x)〉c, of nonlocal 〈h(x)〉c solution along same section. 

 
 

Fig. 3 Nonlocal (solid, same as CMS) and localised (dashed) solutions for longitudinal mean flux along longitudinal 
section (x2 = 4.9). 
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Figure 2(a) depicts the conditional mean head, 〈h(x)〉c, along a longitudinal section through 
the well for the three test problems. Values obtained by CMS and the nonlocal approach are 
virtually indistinguishable from each other, hence only nonlocal results are shown. Figure 2(b) 
shows the second-order (in σY) component, 〈h(2)(x)〉c, of the nonlocal 〈h(x)〉c solution along the 
same section for the three test problems. 

 
Figure 3 compares values of longitudinal mean flux, as obtained by the nonlocal and 

localised methods, along a longitudinal section passing through elements sharing the well node. 
Values obtained by the nonlocal and CMS approaches are virtually indistinguishable from each 
other, hence only nonlocal results are shown. 

 
Both the nonlocal and localised conditional mean head solutions agree very well with those 

obtained by CMS. The localised results are slightly less accurate, especially at the well in the 
unconditional case, due to errors introduced through localisation and the approximation of Kc(x) 
by KG(x)I. 

 
The incorporation of second-order terms in our nonlocal solution adds to its accuracy in all 

test problems.  Figure 2(a) shows that the second-order head correction is negative at the well in 
the unconditional case (TP1), but remains positive in TP2 and TP3, in both of which the well 
acts as a conditioning point.  It is worth noting that the “measured” K at the well is somehow 
larger than the unconditional mean conductivity 〈K(x)〉. Though both the nonlocal and localised 
solutions compare well with CMS results in all test problems, the nonlocal results do so 
uniformly better than the localised ones. 
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CONDITIONING ON HEAD DATA THROUGH MODEL CALIBRATION 
 
Kc(x) in our localised equations can, in principle, be estimated by means of standard inverse 
methods. This is analogous to the common groundwater modelling practice of taking the 
standard deterministic flow equations for granted, and estimating the associated hydraulic 
conductivities by model calibration against measured head and (possibly) fluxes data. Such 
calibration is tantamount to conditioning the localised equations not only on measured values of 
hydraulic conductivity, as we did previously, but also on those of head and (possibly) flux. A 
typical goal of inverse modelling in this context would be to obtain a suitably parameterised 
estimate, (x), of KcK̂ c(x) so as to minimise, in some sense, the difference between computed and 

actual head values, 〈 ĥ (xi)〉c nd h(xi), at a discrete set of measurement points, xi. If measurement 
of flux, q(yj), are available at discrete points yj, an equally important goal should be to minimise 
the difference between q(yj) and their computed counterparts, 〈 q̂ (xj)〉c  = - cK̂ (xj)∇〈 ˆ (xh j)〉c. Yet 

ther go l could be to keep the parameter estimate, cK̂ (x), close in some sense to a prior 
estimate, *

cK (x), of Kc(x). In the examples considered earlier, a suitable prior might be KG(x)I. 
One way to accomplish this is to use the maximum likelihood method of Carrera & Neuman 
(1986a,b). This, and other related methods of parameter estimation, have been recently reviewed 
and compared by Zimmerman et al. (1998). By satisfying all three goals, one would end up with 
a localised model that is conditioned on a combination of hydraulic conductivity, head and flux 
data. Consider now the error, 
 
     εh(x) ≡ h(x) − 〈 (x)〉ĥ c  (10) 
 
introduced upon using such a calibrated model to predict the actual head, h(x), at any point x in 
the domain by means of 〈 (x)〉ĥ c. This error can be expressed as 
 
      εh(x) = ε〈h〉(x) + ε〈 ~h 〉(x) + ε〈 〉$h (x)                                                          (11)  
 
where  
 

ε〈h〉(x) ≡ h(x) − 〈h(x)〉c  (12) 
 
ε〈 〉~h (x) ≡ 〈h(x)〉c − 〈 h~ (x)〉c  (13) 
ε〈 〉$h (x) ≡ 〈 h~ (x)〉c − 〈 (x)〉ĥ c                (14) 

 



 
 

C-10 
 
 

 

Here 〈h(x)〉c is the (generally) unknown true conditional mean head, 〈 h~ (x)〉c is conditional mean 
head corrupted by localisation and other modelling errors, 〈 (x)〉ĥ c is mean head corrupted by 
both localisation and parameter estimation errors, ε〈h〉(x) is the error introduced by using the 
conditional mean 〈h(x)〉c to predict the unknown random variable h(x), ε〈 ~h 〉(x) is a modelling 
error due primarily to localisation, and ε〈 〉$h (x) is an additional error due to parameter estimation. 
Note that in our previous examples, the latter error was zero, and the modelling error was 
relatively small (except at the well). 
 
     Statistical analyses of parameter estimation errors, such as ε $ ( ) $ ( )

K c c≡ −K x K x  where  

is some consistent norm, typically yield a lower bound for the error (c.f., Carrera & Neuman, 
1996a, b). The corresponding error estimate is then commonly used to assess uncertainties in 
model output, by varying its parameters (in our case Kc) randomly about their calibrated values 
(in our case ), and conducting Monte Carlo simulations of corresponding heads and fluxes. 
The approach yields at best information about errors such as ε

cK̂
〈 〉$h (x), which in our case stems 

from the parameter estimation error ε〈 〉$K (x). It provides no information about modelling errors 
such as ε〈 ~h 〉(x), or prediction errors such as either ε〈h〉(x) or εh(x). As such, it underestimates the 
prediction error εh(x), the only type of error that ultimately matters, and overestimates the 
predictive capabilities of the model. The reason is that Kc(x) relates conditional mean hydraulic 
gradient to conditional mean flux, and so ε〈 〉$K (x) affects only uncertainties associated with the 
evaluation of these conditional mean quantities. It contains no information about how actual 
heads and fluxes fluctuate about their conditional mean predictors; for that, one needs to evaluate 
higher conditional moments of head and flux, with the aid of stochastic methods that treat 
hydraulic parameters (in our case K or Y) as random fields. For a novel way of doing so, the 
reader is referred to Guadagnini & Neuman (1999a, b). Their work clearly demonstrates that the 
stochastic component, ε〈h〉(x), of the total prediction error, εh(x), can be very large in strongly 
heterogeneous media. 
 
CONCLUSIONS 
 
     1. Applying traditional deterministic flow models to nonuniform media is valid at best as an 
approximation. Whereas traditionally the hydraulic conductivity in such models was considered 
to be a unique material property, in reality it is a nonunique, data-dependent, spatially-varying 
effective hydraulic conductivity tensor. 
 
     2. Whereas traditionally the hydraulic head and flux in deterministic flow equations have 
been considered to represent real system states, they must in fact be viewed at best as conditional 
predictors of these states, which differ from their unknown counterparts by random errors of 
prediction. Since standard deterministic flow models provide no information about such 
prediction errors, they yield solutions of indeterminate quality. 
 
     3. Calibrating a traditional deterministic flow model against measured values of head and flux 
is tantamount to conditioning it on such measurements. As the model hydraulic parameters are 
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by nature conditional, the very act of adding measured heads and fluxes to the database alters 
their values. This inherent nonuniqueness persists regardless of whether the inverse problem is 
well-posed or ill-posed.  
 
      4. Assessing the uncertainty of deterministic model parameters may allow one to quantify the 
uncertainty in computed head and flux predictors. This, however, says nothing about how actual 
heads and fluxes fluctuate about their predictors; such information is provided only by stochastic 
models that treat hydraulic parameters as random fields. The traditional Monte Carlo method of 
assessing uncertainty in the output of a calibrated deterministic model accounts neither for 
modelling errors nor for the stochastic component of the prediction error. As the latter error can 
be very large in strongly heterogeneous media, the traditional method may seriously 
overestimate the predictive capabilities of the calibrated groundwater flow model. The same 
holds for transport. 
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APPENDIX D: MIXING, DILUTION, AND DISPERSION  
IN HYDROGEOLOGIC ENVIRONMENTS 

 
The concepts of mixing, dilution and 
dispersion of dissolved contaminants are 
central to the assessment of groundwater 
pollution hazards. Yet there appears to be 
considerable confusion in the literature 
about the meaning of these concepts and 
their proper representation in contaminant 
transport models. Most notable is a lack of 
appreciation for the intimate link between 
dispersion and hydrogeologic uncertainty. 
The purpose of this section is to help shed 
light on these concepts and issues. A 
mathematical treatment of this topic can be 
found in Neuman (1993), Zhang and 
Neuman (1996) and Guadagnini and 
Neuman (2001). 
  
It is common to assume for purposes of 
environmental impact and performance 
assessments of nuclear facilities and sites 
that when radionuclides exiting the base of 
the unsaturated zone and enter into the 
saturated, they rapidly (in fact 
instantaneously) mix with a body of 
groundwater that is many meters, even tens 
of meters, deep. Additional dilution is 
sometimes assumed to occur by mixing of 
different groundwater sources, either 
naturally along the flow path between the 
source of radionuclides and a user, or by the 
user tapping alternative sources of water as 
in the slotting of a well over different units. 
Some believe dilution to occur by the 
mixing of groundwaters from adjacent 
sub-basins due to water withdrawal in the 
vicinity of their mutual boundary and lateral 
as well as vertical dispersion. The issue of 
mixing, dilution and dispersion in 
hydrogeologic environments is clearly of 
major significance to performance 
assessment. 
 

Yet, in reality, the only mechanisms by 
which dilution can actually take place in the 
absence of groundwater withdrawal for 
sampling or use are molecular diffusion, 
advective dispersion caused by space-time 
meandering of pathlines and variations in 
velocity along as well as among 
streamtubes, and turbulent eddies which are 
not likely to occur at most nuclear facilities 
and sites. Otherwise, dilution can occur 
when water is drawn into samplers or wells 
from multiple horizons and/or directions, 
and when waters in samplers or wells mix 
by diffusion and turbulence caused by 
shaking, stirring or rapid flow. Density 
effects due to space-time variations in 
solution chemistry, temperature and pressure 
may either enhance or prevent mixing (as in 
buoyant or gravity segregation of fluids 
having different densities). Another factor 
which may contribute to mixing is instability 
of fluid interfaces and resultant fingering. 
  
There appears to be no scientific basis for 
the "stirred tank" model according to which 
contaminated waters from the unsaturated 
zone mix rapidly with pristine waters in the 
saturated zone down to some specified 
"mixing depth." Quite the contrary, small 
vertical dispersivity commonly observed in 
stratified materials will usually keep the 
incoming plume of radionuclides at shallow 
depth except where it is intercepted by 
major vertical fractures or faults within 
which there is significant downward flow. 
One must likewise question the scientific 
basis for the notion that waters from 
neighboring sub-basins mix naturally along 
a flow path; only where flow paths from the 
two sub-basins converge will their waters 
mix by dispersion under natural conditions. 
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Mixing by dispersion may occur, but it is 
important to recognize that dispersion 
cannot be interpreted as dilution except in 
special cases to be described later. On the 
laboratory scale, dispersion coefficients 
compensate for our inability to resolve the 
intricacies of advective transport and 
diffusion in the pore space, about which we 
thus have no direct information. On the field 
scale, dispersion coefficients compensate 
additionally for our inability to resolve the 
intricacies of advective transport and local-
scale dispersion in a heterogeneous porous 
and/or fractured rock, about which we have 
only partial information. As space-time 
fluctuations in advective velocity are 
generally greater in the field than in the 
laboratory, the amount of information we 
generally lose through inadequate resolution 
of flow in the field tends to be greater than 
that which we lose through inadequate 
resolution of flow in a laboratory sample of 
rock. It follows that the coefficient of 
dispersion, which compensates for this loss 
of information, is generally 
larger on the field scale than on the 
laboratory scale. In fact, longitudinal 
dispersivities appear to increase consistently 
with the scale of field observations, a 
phenomenon we attribute today to a 
corresponding increases in the scale of 
medium heterogeneity, which our 
groundwater flow and transport models fail 
to resolve (Neuman, 1990, 1995; Di 
Federico and Neuman, 1997, 1998a,b; 
Neuman and Di Federico, 1998). Clearly, 
lack of resolution does not necessarily imply 
mixing and dilution; only if we sample on a 
scale comparable to that of unresolved 
heterogeneities should we expect dispersion 
to imply mixing and dilution. Hence 
confusing dispersion with mixing and 
dilution is generally inappropriate. 
  

Given that field-scale dispersion is 
associated with incomplete resolution of 
medium heterogeneities, one can reduce it 
by including in the groundwater flow and 
transport models a greater amount of detail 
about the spatial variability of medium 
properties. Since one never has exhaustive 
information about all small-scale details of 
medium heterogeneity, the only hope one 
has to resolve such details is by means of 
statistical and geostatistical methods. A 
geostatistical description of medium 
heterogeneity introduces uncertainty into 
groundwater flow and transport models 
which renders these models stochastic. 
Hence stochastic approaches provide an 
appropriate framework for the analysis of 
flow and transport in heterogeneous media 
(Dagan and Neuman, 1997). 
  
Briefly, the stochastic view of field-scale 
dispersion proposed here is as follows. 
Given a sufficiently large sample of local-
scale medium properties at a site, it is often 
possible to generate by conditional Monte 
Carlo simulation random but potentially 
realistic spatial distributions or images 
(called realizations) of these properties 
which are equally likely and honor the data. 
Here local scale means any scale that (a) is 
much smaller than the rock volume under 
investigation and (b) allows measuring 
many if not all requisite flow and transport 
parameters (permeability, porosity, 
dispersivity) and state variables (heads, 
concentrations) by means of standard field 
techniques; the corresponding length scale is 
typically on the order of meters to tens of 
meters. 
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Given adequate computer resources, it is 
then also possible to perform random but 
equally likely, and potentially realistic, high-
resolution flow and transport simulations on 
a computational grid with local-scale cells, 
using local-scale medium properties such as 
permeability, porosity and dispersivity. 
Since local-scale dispersivities are much 
smaller than their larger-scale counterparts, 
these simulations indicate much lesser (but 
more realistic) degrees of mixing and 
dilution than would simulations conducted 
on coarser grids with lesser spatial 
resolution. 
 
Hence for purposes of investigating mixing 
and dilution, we propose that analysts follow 
the above approach of high-resolution, 
statistically-based conditional flow and 
transport simulations. Even a small number 
of corresponding realizations may be more 
telling with regard to dilution and mixing 
than would deterministic or stochastic 
simulations which do not achieve a 
comparable degree of resolution. 
  
In the same context, it is important to 
recognize that local-scale dispersivities 
increase with their scale of definition; a 
crude rule of thumb (which does not 
consider numerical dispersion) is to set the 
longitudinal dispersivity equal to one tenth 
the length of a local-scale grid cell, and the 
transverse dispersivity a fraction thereof 
(one tenth to one third). 
  
If a statistically significant number of 
conditional Monte Carlo flow and transport 
simulations are performed, their results can 
be averaged to yield conditional mean 
values of head, groundwater flux, 
groundwater velocity, solute concentration 
and solute mass flux at each grid point at 
many discrete time steps. These conditional 
mean values are deterministic (sure, certain) 

and vary much more smoothly in space-time 
than do their random (uncertain) 
counterparts (as represented by individual 
realizations). Most importantly, they 
constitute optimum unbiased predictors of 
the actual but unknown local-scale values of 
head, flux, velocity, concentration and mass 
flux at each point in space-time. The 
variance of the conditional Monte Carlo 
realizations provides a measure of the 
uncertainty associated with these 
predictions, which can in turn be translated 
into optimum predictions and uncertainties 
of performance measures. Even a small 
sample of realizations may yield 
meaningful, though probably not accurate, 
insight into the uncertainty associated with 
simulating flow and transport at a site, and 
assessing the corresponding system 
performance. 
  
There is only one proper way to avoid 
running many high-resolution conditional 
Monte Carlo simulations of flow and 
transport: solve numerically, on a coarser 
computational grid than required for such 
simulations, a single set of deterministic 
flow and transport equations which control 
the space-time evolution of smooth 
conditional mean heads, fluxes, velocities, 
concentrations and mass fluxes (it is the 
relative smoothness of these deterministic 
functions which allows, in principle, 
computing them deterministically on a 
relatively coarse grid).  Unfortunately, as 
was stated earlier, the corresponding 
conditional mean flow and transport 
equations are not differential but integro-
differential. Fortunately, they can sometimes 
be approximated by differential equations 
which look like the familiar flow and 
transport equations (the same equations one 
would use, among others, for high-
resolution conditional Monte Carlo 
simulations) but their coefficients and 
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variables now have different meanings and 
values. In particular, the conditional mean 
advection-dispersion equation now contains 
a conditional mean velocity vector which is 
much smoother, and a dispersion tensor 
which grows with time to become rapidly 
much larger, than their local counterparts. 
The large dispersion compensates for 
resolution lost in smoothing the velocity and 
concentration fields (recall that solving the 
conditional mean equation is analogous to 
averaging the results of many conditional 
Monte Carlo simulations, each one of which 
is associated with nonsmooth velocity and 
concentration fields, which however become 
smooth upon averaging). The more 
information about local-scale medium 
properties one builds into the model (i.e., the 
more strongly one conditions the model on 
local-scale data), the less smooth is the 
corresponding conditional mean velocity (as 
well as concentration) field and the smaller 
is the corresponding dispersion tensor. 
Clearly, building information into a model 
does not affect mixing and dilution, hence it 
is evident that the dispersion tensor does not 
generally reflect these phenomena. 
  
Since there is always uncertainty about 
local-scale medium heterogeneities, a 
deterministic analysis of transport is never 
warranted unless the advection-dispersion 
model is viewed and interpreted in the 
manner just described. This means that the 
computed concentration and mass flux are 
recognized to represent not actual but 
smooth predicted values with which there is 
associated a quantifiable error of prediction 
and smoothing, and that the computed 
concentrations are recognized to potentially 
spread, or disperse, to a much greater extent 
than do their real but unknown counterparts 
(one can view this enhanced spread, or 
dispersion, not as that of real solute mass but 

that of information about the space-time 
distribution of this mass). 
  
Only in special, so-called quasi-ergodic 
situations can such enhanced dispersion be 
interpreted to imply mixing and dilution. 
These situations arise as the mean travel 
distance becomes large enough for a plume 
to encounter (sample) heterogeneities of all 
relevant scales in the longitudinal direction 
of flow, and when the source of 
contamination is wide enough so that the 
plume can sample all such heterogeneities in 
the transverse direction. An extreme 
example of nonergodic transport is that of an 
imaginary solute "particle" of infinitesimal 
volume which never diffuses, disperses or 
dilutes. If the particle has unit mass 
normalized by porosity then its 
concentration, predicted deterministically 
with a relatively large "field-scale" 
dispersion coefficient, merely represents the 
probability of finding this particle in the 
immediate vicinity of any given point in 
space-time. 
  
Despite significant advances in stochastic 
flow and transport theories over the last two 
decades as reflected in the recent book of 
Dagan and Neuman (1997), stochastically 
derived field-scale dispersivities are known 
to overpredict the vertical spread of solutes 
in stratified media under seemingly quasi-
ergodic conditions. 
  
Model abstraction through reduction of 
dimensionality (as when three-dimensional 
transport is represented by a network of one-
dimensional flow tubes) is associated with a 
loss of spatial resolution which should be 
compensated for by a corresponding 
increase in dispersivities (Domenico and 
Robbins, 1984). Once again, such an 
increase must not be interpreted to imply 
enhanced dilution. 
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Accounting for conceptual model uncertainty 
Via maximum likelihood Bayesian model averaging 
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Abstract Analyses of groundwater flow and transport typically rely on a single 
conceptual model of site hydrogeology. Yet hydrogeologic environments are open and 
complex, rendering them prone to multiple interpretations. Adopting only one of these 
may lead to statistical bias and underestimation of uncertainty. A comprehensive strategy 
for constructing alternative conceptual-mathematical models, selecting the best among 
them, and using them jointly to render optimum predictions under uncertainty is being 
developed by the author. This paper proposes a Maximum Likelihood Bayesian Model 
Averaging approach, MLBMA, to rendering optimum predictions by means of several 
competing models and assessing their joint predictive uncertainty. 
Key words conceptual models; model uncertainty; predictive uncertainty; Bayesian; maximum likelihood 

 
 
INTRODUCTION 
 
Analyses of groundwater flow and transport typically rely on a single conceptual model of site 
hydrogeology. Yet hydrogeologic environments are open and complex, rendering them prone to 
multiple interpretations. This is true regardless of the quantity and quality of available site data. 
Focusing on only one site interpretation may lead to Type I model errors, which arise when one 
rejects (by omission) valid alternative models. It may also result in a Type II model error, which 
arises when one adopts (fails to reject) an invalid conceptual framework. Indeed, critiques of 
hydrogeologic analyses, and legal challenges to such analyses, typically focus on the validity of 
the underlying conceptual model. If severe, these may damage one's professional credibility; 
result in the loss of a legal contest; and lead to adverse environmental, economic and political 
impacts. 
 

Analyses of model uncertainty based on a single hydrogeologic concept are prone to 
statistical bias (by committing a Type II error through reliance on an invalid model) and 
underestimation of uncertainty (by committing a Type I error through under sampling of the 
relevant model space). The bias and uncertainty that result from reliance on an inadequate 
conceptual model are typically much larger than those introduced through an inadequate choice 
of model parameter values. Yet most uncertainty analyses of flow and transport ignore the 
former and focus exclusively on the latter. This often leads to overconfidence in the predictive 
capabilities of the model, which the available site data do not justify. 
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It is argued by Beven and Freer (2001) “that, given current levels of understanding and 
measurement technologies, it may be endemic to mechanistic modeling of complex 
environmental systems that there are many different model structures and many different 
parameter sets within a chosen model structure that may be behavioural or acceptable in 
reproducing the observed behaviour of that system.” They attribute to Hornberger and Speer 
(1981) the notion that this is not simply a problem of identifying a correct or optimal model 
given limited data. Instead, this is a generic problem which Beven (1993) calls equifinality and 
attributes to (Beven, 2000) limitations of current model structures in representing heterogeneous 
surface and subsurface flow systems, limitations of measurement techniques and scales in 
defining system characteristics including initial and boundary conditions for a model, and the 
uniqueness of individual sites. He points out that to do detailed measurements throughout a site 
is both impractical and unfeasibly expensive. The unique characteristics of a site are therefore 
inherently unknowable. All that can be done is to constrain the model representations of the site 
to those that are acceptably realistic, usually in the sense of being consistent with the data. 

 
There is no established literature on ways to construct alternative conceptual models of site 

hydrogeology, select the best among them, use them jointly to render optimum predictions of 
groundwater flow and transport, and assess the uncertainty of such predictions. A comprehensive 
strategy for doing so is being developed by the author. This paper focuses on one aspect of the 
strategy, which addresses the question how to render optimum predictions by means of several 
competing deterministic or stochastic models and how to assess their joint predictive uncertainty. 
 
 
PREDICTION AND UNCERTAINTY ANALYSIS BASED ON SINGLE MODEL 
 
Deterministic model 
 
The traditional approach to hydrologic prediction and uncertainty analysis has been to postulate a 
deterministic model structure and treat its parameters as being imperfectly known. To quantify 
this imperfect knowledge, one must postulate a prior parameter uncertainty model. When 
sufficient site parameter values are available, one could postulate a Type A probabilistic model 
of prior parameter uncertainty based on statistics derived from these data. When no such data are 
available in statistically significant quantities, one has the option of postulating a Type B model 
of prior parameter uncertainty on the basis of subjective probabilities. Such a model should 
always be suspected of suffering from an unknown amount of statistical and personal bias. 
Intermediate between Type A and Type B parameter uncertainty models is the case where 
indirect information about the parameters is available, from which relevant prior statistics can be 
derived formally. Such information may include off-site parameter measurements and/or 
surrogate data. Statistics derived from off-site data are potentially biased due to a lack of site-
specific information about mean parameter values and incompatibility of geology and scale. The 
associated variance may be too small or too large, depending on the quantity and quality of such 
data. Statistics derived from surrogate data may suffer from poorly defined correlations and 
incompatibility of scale. 
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 The traditional approach to reduce parameter bias and uncertainty has been to calibrate the 
model against observed system behavior by means of a suitable inverse method. The last thirty 
years have seen major advances in the development of theories and algorithms for the estimation 
of deterministic model parameters. Many (though not all) of these theories and algorithms are 
"statistical" in that they include analyses of parameter estimation uncertainty. Such analyses 
typically accept, but do not necessarily require, information about prior parameter statistics as 
input. The output includes posterior statistics of parameter estimation errors, which are generally 
less biased and smaller than the prior estimation errors. A recent summary and comparison of 
various statistical inverse methods for groundwater flow models has been published by 
Zimmerman et al. (1998). A detailed set of guidelines for the effective calibration of 
deterministic groundwater flow models has been prepared by Hill (1998). 
 
 The most common way to propagate input errors through an otherwise deterministic model is 
by means of Monte Carlo simulations. This is done by generating multiple, equally likely sets of 
randomized inputs; computing deterministically a set of corresponding model outputs for each; 
and analyzing the resultant multiple, equally likely random output sets statistically. Another 
approach is to associate the predictions with approximate error bounds, or confidence limits, 
computed on the basis of linear regression theory applied to the (typically nonlinear) 
groundwater inverse model (Hill, 1998). 
 
Stochastic model 
 
Hydrogeologic medium properties exhibit both systematic and random spatial variations on a 
multiplicity of scales. Traditional deterministic models capture at best the larger-scale, 
systematic components of these variations. They however fail to resolve smaller scale variations 
or account for their uncertain nature. The emphasis is therefore shifting from deterministic to 
probabilistic methods that are better suited for these needs. The trend has become to describe the 
spatial variability and scaling of hydrogeologic medium properties geostatistically, and to 
analyze subsurface fluid flow and solute transport stochastically. This trend has been 
documented in a number of recent books including those by Dagan and Neuman (1997) and 
Zhang (2001). 
 

The most common method of stochastic analysis is high-resolution computational Monte 
Carlo simulation that produces a large number of equally likely results. These nonunique results 
are summarized in terms of statistically averaged quantities, their variance-covariance, and 
perhaps higher moments of the corresponding sample probability distributions. Results that 
honor measured values of medium properties are said to be conditioned on these data. Upon 
conditioning the simulations on measured values of parameters in space, one obtains (among 
others) conditional mean flow and transport variables that constitute optimum unbiased 
predictors of these unknown random quantities. One also obtains conditional second moments 
(variance-covariance) that provide a measure of the associated prediction errors. To condition the 
predictions on system monitoring data, one must either discard random simulations that do not 
reproduce the observations, or employ an inverse procedure of the kind developed for this 
purpose by G\mez-Hern<ndez et al. (1997). 
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Monte Carlo analysis requires knowing the multivariate probability distribution of relevant 
hydrogeologic properties, which is difficult to infer from commonly available data. To achieve a 
high space-time resolution of relevant stochastic phenomena, it requires the use of large space-
time grids with very small discretization intervals. To yield sample statistics that converge to 
their theoretical (ensemble) counterparts requires numerous repetitions (realizations). The net 
result is a large amount of computational time and storage, which are considered uneconomical 
for many practical applications. 

 
This has given impetus to the development of alternative stochastic methods that allow one to 

compute the conditional mean, variance and covariance of groundwater flow and transport 
variables directly, without Monte Carlo simulation. This is done on the basis of moment 
equations conditional on hydraulic parameter measurements as illustrated for example by 
Guadagnini and Neuman (1999) and Ye et al. (2002). Conditioning additionally on observed 
hydraulic head values requires an inverse procedure (Hernandez et al., 2002). 
 
 
PREDICTION AND UNCERTAINTY ANALYSIS BASED ON MULTIPLE MODELS 
 
Previous hydrologic approaches 
 
Carrera and Neuman (1986b) have noted that an inadequate model structure (conceptualization) 
is far more detrimental to its predictive ability than is a suboptimal set of model parameters. This 
helps explain why the National Research Council (1999) has listed as second among four 
recommended research directions in subsurface science the development of tools and 
methodologies for conceptual modeling with emphasis on heterogeneity, scale and uncertainty 
bounds on the basis of field experimental data. 
 
 Recently, a panel was convened by the National Research Council (2001) to describe the 
process through which conceptual models of flow and transport in the fractured vadose zone are 
developed, tested, refined and reviewed. The panel concluded that development of the 
conceptual model is the most important part of the modeling process. The conceptual model is 
the foundation of the quantitative mathematical representation of the field site (i.e., the 
mathematical model), which in turn is the basis for the computer code used for simulation. 
Reasonable alternative conceptualizations and hypotheses should be developed and evaluated. In 
some cases, the early part of a study might involve multiple conceptual models until alternatives 
are eliminated by field results. 
 
 According to the panel, it is important to recognize that model predictions require 
assumptions about future events or scenarios, and are subject to uncertainty. Meaningful 
quantification of uncertainty should be considered an integral part of any modeling endeavor, as 
it establishes confidence bands on predictions given the current state of knowledge about the 
system. A suite of predictions for a range of different assumptions and future scenarios is more 
useful than a single prediction. 
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 We have noted earlier that there is uncertainty not only about the parameter values that 
should enter into a given model (as characterized by its structure), but also about the very 
structure (conceptual and mathematical) of the model that should represent the hydrologic 
system of interest. The traditional approach to model uncertainty analysis, which considers only 
a single deterministic model structure, fails to adequately sample the complete space of plausible 
hydrologic models. As such, it is prone to modeling bias and underestimation of model 
uncertainty. 
 
 An example of how one could account quantitatively for structural model uncertainties was 
given by James and Oldenburg (1997). They investigated the uncertainty of simulated TCE 
concentrations, at the point of potential human exposure, due to uncertainty in the parameters 
(permeability, porosity, diffusivity, solubility, adsorption) and variations in the conceptual-
mathematical model (injection rate of TCE source; initial TCE source saturation; regional 
groundwater flow; heterogeneity of permeability). The authors used the three-dimensional code 
T2VOC to simulate three-phase (gas, aqueous, NAPL), three-component (air, water, VOC) 
nonisothermal flow based on an actual site with a 25 m thick vadose zone and a saturated zone. 
To assess parameter uncertainty associated with a given model, they used the inverse code 
ITOUGH2. Their final step was to assess the range of outcomes that one obtains with the entire 
set of alternative conceptual-mathematical models. James and Oldenburg found that uncertainties 
in their model outcomes span orders of magnitude, and that both parameter and model 
uncertainty contribute significantly to this wide range of outcomes. They concluded that "risk 
assessment and remediation selection ... is meaningful only if analysis includes quantitative 
estimates of ... uncertainty" in both the parameters and the conceptual-mathematical models. 
 
 A similar approach has been advocated more recently by Samper and Molinero (2000). The 
authors consider the main uncertainties in predicting groundwater flow and transport to be those 
associated with the selection of future scenarios, choice of model structure and assignment of 
model parameters. The authors consider parameter uncertainty to be minor in comparison to 
structural (i.e. conceptual) model errors. They suggest to evaluate model predictive uncertainty 
by calibrating a number of conceptual-mathematical models against available monitoring data, to 
retain those calibrated models that can adequately reproduce past observations, to assess the 
predictive uncertainty of each model due to the uncertainty of its parameters, to treat the 
predictive uncertainty of each model as being equally likely, and to produce a single combined 
range of predictive uncertainties. 
 
 Rather than relying on model calibration and treating the outcomes of different structural 
models as being equally likely, Beven and Binley (1992) have proposed a strategy to which they 
refer as GLUE (Generalized Likelihood Uncertainty Estimation). The strategy calls for the 
identification of several alternative structural models and the postulation of a prior probabilistic 
model of parameter uncertainty for each. Each structural model, coupled with its corresponding 
parameter uncertainty model, is used to generate Monte Carlo realizations of past hydrologic 
behaviors and to compare the results with monitored system behavior during the same period. 
Likelihood measures are defined to gauge the degree of correspondence between each simulated 
and observed record of system behavior. If a likelihood measure falls below a subjectively 
defined "rejection criterion," the corresponding combination of model structure and parameter 
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set are discarded. Those combinations which pass this test are retained to provide predictions of 
system behavior under selected future scenarios. Each prediction is weighted by a corresponding 
normalized likelihood measure (so as to render the sum of all likelihood measures equal to one), 
to produce a likelihood-weighted cumulative distribution of all available predictions. For recent 
discussions of GLUE and its applications the reader is referred to Beven (2000) and Beven and 
Freer (2001). 
 
 A Bayesian approach to the quantification of errors in a single groundwater model was 
recently proposed by Gaganis and Smith (2001). Like GLUE, it relies on Monte Carlo 
simulations without model calibration and on subjective criteria of “model correctness.”  
 
 It must be understood that the set of predictions one produces with any given choice of 
alternative structural models and parameter sets, by whatever method, is conditional on the 
choice of models and the data used to support them. As such, these predictions do not represent 
all possibilities but only a limited range of such possibilities, associated with these models and 
data. Any change in the latter would generally lead to a different assessment of predictive model 
uncertainty. There thus appears to be no way to assess the uncertainty of hydrologic predictions 
in an absolute sense, only in a conditional or relative sense. 
 
Proposed approach 
 
Bayesian model averaging 
At the heart of the approach we propose is the concept of Bayesian Model Averaging (BMA), 
described with clarity in a recent tutorial by Hoeting et al. (1999). According to these authors, 
“standard statistical practice ignores model uncertainty … leading to over-confident inferences 
and decisions that are more risky than one thinks they are. … (BMA) provides a coherent 
mechanism for accounting for this model uncertainty.” They introduce BMA by noting that if ∆  
is a quantity one wants to predict, then its posterior distribution given a discrete set of data D is 
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posterior probability for model kM  is given by Bayes’ rule, 
 

( ) ( ) ( )

( ) ( )
1

k k
k K

l l
l

p M p M
p M

p M p M
=

=

∑

D
D

D
 (2) 

 



 
 

E-7 
 
 

 

where 
 

( ) ( ) ( ),k k k k k kp M p M p M d= ∫D D θ θ θ  (3) 
 

is the integrated likelihood of model kM , kθ  is the vector of parameters associated with model 

kM , ( k k )p Mθ  is the prior density of kθ  under model kM , ( ),k kp MD θ  is the joint likelihood 

of model kM  and its parameters kθ , and ( )kp M  is the prior probability that kM  is the correct 
model. All probabilities are implicitly conditional on M. 

The posterior mean and variance of ∆  are (Draper, 1995) 
 

(
1

,
K

l l
l

E E M p M
=

⎡∆ ⎤ = ⎡∆ ⎤⎣ ⎦ ⎣ ⎦∑ )D D D  (4) 

 

{ } ( )2

1
, ,

K

l l l
l

Var Var M E M p M E
=

⎡∆ ⎤ = ⎡∆ ⎤ + ⎡∆ ⎤ − ⎡∆ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ 2
D D D D D . (5) 

 
According to Hoeting et al. (1999), there is considerable empirical evidence that averaging 

over all models in this fashion provides better average predictive ability than relying on a single 
model, kM , conditional on M. However, they list a number of factors that render the application 
of BMA to complex systems (such as those encountered in hydrology) difficult: (a) The number 
of potentially feasible models may be exceedingly large, rendering their exhaustive inclusion in 
(1) infeasible; (b) integrals of form (3) may be hard to compute; and (c) the specification of prior 
model probabilities ( )kp M  is challenging, having received little attention. 

 
A practical way to eliminate the first difficulty is to average over a manageable subset of 

models that are supported by the data. The strategy being developed by the author promotes the 
idea of Occam’s window (Madigan and Raftery, 1994) according to which averaging is limited 
to a relatively small set of the most parsimonious models that are most strongly supported by the 
data while remaining hydrologically plausible. 
 
Maximum likelihood Bayesian model averaging 

To render BMA computationally feasible, we adopt a suggestion by Taplin (1993) that 

( ,kp M∆ )D  in (1) be approximated by ( )ˆ, ,k kp M∆ Dθ  where k̂θ  is the maximum likelihood 

estimate of kθ  based on the likelihood ( ),k kp MD θ . Hoeting et al. (1999) note that Draper 
(1995), Raftery et al. (1996) and Volinsky et al. (1997) have shown this to be useful in the BMA 
context. 
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Methods to evaluate k̂θ  by calibrating a deterministic model kM  against hydrogeologic data 
D, which may include prior information about the parameters, are described by Carrera and 
Neuman (1986a,b) and Carrera et al. (1997). The same can be done with a stochastic model 
based on moment equations in a manner similar to that of Hernandez et al. (2002). These 
methods also yield an approximate covariance matrix for the estimation errors of k̂θ . Upon 
considering the parameter estimation errors of a calibrated deterministic model kM  to be 

Gaussian or log Gaussian, one easily determines ( )ˆ, ,k kp M∆ Dθ  by Monte Carlo simulation of 

 through random perturbation of the parameters. The simulation also yields corresponding 
approximations 
∆

ˆ, ,k kE M⎡ ⎤∆⎣ ⎦Dθ  of ,kE M⎡∆ ⎤⎣ ⎦D , and ˆ, ,k kVar M⎡ ⎤∆⎣ ⎦Dθ  of ,kVar M⎡∆ ⎤⎣ ⎦D , in 

(4) and (5). If kM  is a stochastic model based on moment equations, it can yield 
ˆ, ,k kE M⎡ ⎤∆⎣ ⎦Dθ  and ˆ, ,k kVar M⎡∆⎣

⎤
⎦Dθ  directly without Monte Carlo simulation (Hernandez et 

al., 2002). 
 
To eliminate the need for computer intensive integration according to (3), I propose to 

evaluate the weights ( )lp M D  in (1) and (4) – (5) based on a result due to Kashyap (1982). The 

author considers a set 1,..., KM M  of mutually exclusive models so that any set of observational 
data could have originated from only one of them. I interpret this to mean that only one of the 
models is correct even in the event that some yield similar predictions for a given set of data (in 
which event the degeneracy could be resolved by prior information about which model “makes 
most sense,” parsimony, and/or additional data for which the predictions would differ). The 
models may be linear or nonlinear, Gaussian or non-Gaussian. Kashyap proves that, under some 
fairly standard conditions, 

 

( ) ( ) ( ) 2ˆ ˆln ln ln , ln ln
2

k
k k k k k k

Np M C p M p M
N
π⎛ ⎞= + + + ⎜ ⎟

⎝ ⎠
D D θ θ  

( ) ( )1 ˆln ,
2 k k kM R N− F D θ +

)

 (6) 

 
where , ( )k kC cp M= ( kp M  being the prior probability of model kM  and c a constant that can 
be evaluated from 
 

( )
1

1
K

l
l

p M
=

=∑ D , (7) 
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kN  is the dimension of kθ , N is the dimension of D, kF  is the normalized (by N) observed (as 
opposed to ensemble mean) Fisher information matrix having components 
 

( )2

,

ln ,1 k k
k ij

i j

p M
F

N θ θ
∂

= −
∂ ∂

D θ
 (8) 

 
and  tends to a constant almost surely as . ( )NR N N → ∞
 

Kashayp (1982) suggests that, in the absence of any contrary information, the models be 
assigned equal prior probabilities, yielding kC C= = constant for all k. The assumption that all 
models are a priori equally likely is considered by Hoeting et al. (1999) to be a “reasonable 
‘neutral’ choice” when there is insufficient prior reason to prefer one model over another. Draper 
(1999) and George (1999) express concern that if two models are near equivalent as concerns 
predictions, treating them as separate equally likely models amounts to giving double weight to a 
single model of which there are two slightly different versions, thereby “diluting” the predictive 
power of BMA. One way to minimize this effect is to eliminate at the outset models that are 
deemed potentially inferior. Another is to retain only models that are structurally distinct and 
non-collinear. Otherwise, one should consider reducing (diluting) the prior probabilities assigned 
to models that are deemed closely related. 

 
Kashyap’s (1982) purpose in developing (6) was to derive an optimum decision rule for 

selecting one among several competing models, unrelated to BMA. Since the first term on the 
right hand side is constant and the last is asymptotically zero, Kashyap proposed to select that 
model which minimizes the criterion 

  

( ) ( ) ( )2 1ˆ ˆ ˆ ˆln , ln ln ln ,
2 2

k
k k k k k k k

Nd p M p M M
N
π⎛ ⎞= − − − +⎜ ⎟

⎝ ⎠
D Fθ θ θ kD  (9) 

 
Increasing the number of parameters Nk allows ( )ˆln ,k kp M− D θ  to decrease and  to 

increase. When N

lnkN N

k is large, the rate of decrease does not compensate for the rate of increase and 
 grows while ˆ

kd ( kp M )D  in (6) diminishes. This means that a more parsimonious model with 
fewer parameters is preferred by (9) and assigned a higher probability by (6). On the other hand 

( ˆln ,k k )p M− D θ  diminishes with N at a rate higher than linear so that as the latter grows, there 

may be an advantage to a more complex model with larger Nk. 
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The last term in (9) reduces the relative emphasis on model fit as the information content of 
the data diminishes. As illustrated by Carrera and Neuman (1986b), it may cause one to prefer a 
simpler model that leads to a poorer fit with the data over a more complex model that fits the 
data better. The term tends to a constant as N becomes large, so that becomes asymptotically 
equivalent to the Bayes information criterion BIC derived by Akaike (1977), Rissanen (1978) 
and Schwarz (1978) on the basis of different considerations. Raftery (1993) proposed adopting 
the asymptotic BIC approximation 

ˆ
kd

 

( ) ( )ˆln ln , ln
2

k
k k k

Np M p M≈ −D D θ N  (10) 

 
for BMA (see also Raftery et al. 1996; Volinsky et al. 1997; Hoeting et al. 1999). 
 

To my knowledge, the nonasymptotic expression (6) has not been previously incorporated 
into BMA. I propose to do so because environmental models seldom satisfy the assumption that 
N is large. To render the use of (6) in BMA computationally feasible, I propose to follow the 
approach of Carrera and Neuman (1986a) who incorporate in D both observational data such as 
head and prior estimates of the parameters, and treat the two sets as being mutually uncorrelated 
while allowing internal correlations between members of each set. This allows them to 
incorporate ( ˆln k k )p Mθ  into the log likelihood function ( )ˆln ,k kp MD θ  and to compute 

( ˆ ,k k )kMF D θ  in a straightforward manner (also Carrera et al. 1997). 

 
CONCLUSION 
 
Bayesian model averaging provides an optimal way to combine the predictions of several 
competing conceptual-mathematical models and to assess their joint predictive uncertainty. It can 
be made computationally feasible by basing it on a maximum likelihood approximation due to 
Kashyap (1982) and the parameter estimation method of Carrera and Neuman (1986a). 
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