Summary of the Resolution of the Key Technical Issue on Container Life and Source Term | Subissue # | Subissue Title | <u>Status</u> | NRC/DOE Agreements | |------------|----------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | The effects of corrosion processes on the lifetime of the containers | Closed-Pending | Provide the documentation for Alloy 22 and titanium for the path forward items listed on slide 8. DOE will provide the documentation in a revision to AMR "Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier" by LA. Provide the documentation for the path forward items listed on slide 12. DOE will provide the documentation in a revision to AMR "General and Localized Corrosion of Waste Package Outer Barrier" by LA. Provide documentation that confirms the linear polarization resistance measurements with corrosion rate measurements using other techniques. DOE will provide the documentation in a revision to AMR "General and Localized Corrosion of Waste Package Outer Barrier" by LA. Provide the documentation for Alloy 22 and titanium for the path forward items listed on slide 14. DOE will provide the documentation in a revision to AMR "ANL-EBS-MD-000003 and ANL-EBS-MD-000004" by LA. | -1- Attachment 1 | 1 | | |---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | 5) Provide additional details on sensitivities, resolution of measurements, limitations, and deposition of silica for the high sensitivity probes. DOE will document the results of the sensitivity probes including limitation and resolution of measurements as affected by silica deposition in the Alloy 22 AMR and Ti Corrosion AMR (ANL-EBS-MD-000003 and ANL-EBS-MD-000004) prior to LA. 6) Provide the documentation on testing showing corrosion rates in the absence of silica deposition. DOE will document the results of testing in the absence of silica deposits in the revision of Alloy 22 AMR (ANL-EBS-MD-000003) prior to LA. 7) Provide the documentation for the alternative methods to measure the corrosion rate of the waste package material (e.g., ASTM G-102 testing) or provide justification for the current approach. DOE will document the alternative methods of corrosion measurement in the revision of Alloy 22 AMR (ANL-EBS-MD-000003), prior to LA. 8) Provide the documentation for Alloy 22 and titanium for the path forward items listed on slide 16 and 17. DOE will provide the documentation in the revision to AMRs (ANL-EBS-MD-000003 and ANL-EBS-MD-000004) prior to LA. | | | , . | | | 9) Provide the data that characterizes the passive film stability, including the welded and thermally aged specimens. DOE will provide the documentation in a revision to AMRs (ANL-EBS-MD-000003 and ANL-EBS-MD-000004) prior to LA. | | | | | 10) Provide the documentation for Alloy 22 and titanium for the path forward items listed on slide 21 and 22. DOE will provide the documentation in a revision to AMRs (ANL-EBS-MD-000003 and ANL-EBS-MD-000004) prior to LA. | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 11) Provide the technical basis for the selection of the critical potentials as bounding parameters for localized corrosion, taking into account MIC. DOE will provide the documentation in a revision to AMRs (ANL-EBS-MD-000003 and ANL-EBS-MD-000004) prior to LA. | | 12) Provide the documentation for Alloy 22 and titanium for the path forward items listed on slides 34 and 35. DOE will provide the documentation in a revision to AMRs (ANL-EBS-MD-000005 and ANL-EBS-MD-000006) prior to LA. | | 13) Provide the data that characterizes the distribution of stresses due to laser peening and induction annealing of Alloy 22. DOE will provide the documentation in a revision to AMR (ANL-EBS-MD-000005) prior to LA. | 14) Provide the justification for not including the rockfall effect and deadload from drift collapse on SCC of the waste package and drip shield. DOE will provide the documentation for the rockfall and deadweight effects in the next revision of the SCC AMR (ANL-EBS-MD-000005) prior to LA. 15) Provide the documentation for Alloy 22 and titanium for the path forward items listed on slide 39. DOE will provide documentation for Alloy 22 and Ti path forward items on slide 39 in a revision to the SCC and general and localized corrosion AMRs (ANL-EBS-MD-000003, ANL-EBS-MD-000004, ANL-EBS-MD-000005) by LA. 16) Provide the documentation on the measured thermal profile of the waste package material due to induction annealing. DOE stated that the thermal profiles will be measured during induction annealing, and the results will be reported in the next SCC AMR (ANL-EBS-MD-000005) prior to LA. 17) Provide additional detail on quality assurance acceptance testing. DOE stated that it would provide guidance and criteria in the next revision of the Technical Guidance Document (TGD) for LA. The development of the LA sections and associated programs and process controls for the procurement and fabrication of waste package materials and components will be included. This will include consideration of the controls for compositional variations in Alloy 22. The TGD revision will be issued by June 2001, contingent upon NRC publication of the final 10 CFR 63 and the Yucca Mountain Review Plan. | 2 | The effects of phase instability and initial defects on the mechanical failure and lifetime of the containers | Closed-Pending | 1) Either provide documentation using solid element formulation, or provide justification for not using it, for the drip shield - rockfall analysis. DOE stated that shell elements include normal stresses and transverse stresses in the calculations and provide more accurate results for thin plates and use far fewer elements. Therefore, shell elements will be used instead of solid elements. This justification will be documented in the next revision of AMR ANL-XCS-ME-000001, Design Analysis for the Ex-Container Components, prior to LA. 2) Provide the documentation for the point loading rockfall analysis. DOE stated that point loading rock fall calculations will be documented in the next revisions of AMRs ANL-XCS-ME-000001, Design Analysis for the Ex-Container Components, and ANL-UDC-MD-000001, Design Analysis for UCF Waste Packages, both to be completed prior to LA. 3) Demonstrate how the Tresca failure criterion bounds a fracture mechanics approach to calculating the mechanical failure of the drip shield. DOE stated that it believes its current approach of using ASME Code is appropriate for this application. Additional justification for this conclusion will be included in the next revision of AMR ANL-XCS-ME-000001, Design Analysis for the Ex-Container Components, to be completed prior to LA. | |---|---------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |---|---------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | 4) Provide information on the effect of the entire fabrication sequence on phase instability of Alloy 22, including the effect of welding thick sections using multiple weld passes and the proposed induction annealing process. DOE stated that the aging studies will be expanded to include solution annealed and induction annealed Alloy 22 weld and base metal samples from the mock-ups as well as laser peened thick, multi-pass welds. This information will be included in revisions of the AMR "Aging and Phase Stability of the Waste Package Outer Barrier," ANL-EBS-MD-000002, before LA. 5) Provide the "Aging and Phase Stability of Waste Package Outer Barrier," AMR, including the documentation of the path forward items listed in the "Subissue 2: Effects of Phase Instability of Materials and Initial Defects on the Mechanical Failure and Lifetime of the Containers" presentation, slides 5 & 6. DOE stated that the "Aging and Phase Stability of the Waste Package Outer Barrier" AMR, ANL-EBS-MD-000002, Rev. 00 was issued 3/20/00. This AMR will be revised to include the results of the path forward items before LA. | |--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | 6) Provide the technical basis for the mechanical integrity of the inner overpack closure weld. DOE will provide the documentation in AMR, ANL-UDC-MD-000001, Rev. 00, Design Analysis for UFC | | | Waste Packages in the next revision, prior to LA. | - 7) Provide documentation for the fabrication process, controls, and implementation of the phases which affect the TSPA model assumptions for the waste package (e.g., filler metal, composition range). DOE stated that updates of the documentation on the fabrication processes and controls (TDR-EBS-ND-000003, Waste Package Operations Fabrication Process Report and TDP-EBS-ND-000005, Waste Package Operations FY-00 Closure Weld Technical Guidelines Document) will be available to the NRC in January 2001. - in the "Subissue 2: Effects of Phase Instability of Materials and Initial Defects on the Mechanical Failure and Lifetime of the Containers" presentation, slide 16. DOE stated that the rockfall calculations addressing potential embrittlement of the waste package closure weld and rock falls of multiple rock blocks will be included in the next revision of the AMR ANL-UDC-MD-000001, Design Analysis for UCF Waste Packages, to be completed prior to LA. Rock fall calculations addressing drip shield wall thinning due to corrosion, hydrogen embrittlement of titanium, and rock falls of multiple rock blocks will be included in the next revision of the AMR ANL-XCS-ME-000001, Design Analysis for the Ex-Container Components, to be completed prior to LA. Seismic calculations addressing the load of fallen rock on the drip shield will be included in the next revision of the AMR ANL-XCS-ME-000001, Design Analysis for the Ex-Container Components, to be completed prior to LA. | | - | | , | |---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | 9) Demonstrate the drip shield and waste package mechanical analysis addressing seismic excitation is consistent with the design basis earthquake covered in the SDS KTI. DOE stated that the same seismic evaluations of waste packages and drip shield (revision of AMRs ANL-UDC-MD-000001 and ANL-XCS-ME-000001) will support both the SDS KTI and the CLST KTI, therefore consistency is ensured. These revisions will be completed prior to LA. | | 3 | The rate at which radionuclides in spent nuclear fuel are released from the engineered barrier subsystem through the oxidation and dissolution of spent nuclear fuel | Closed-Pending | The agreements below address both subissues 3 & 4 1) In the revision to the "Summary of In-Package Chemistry for Waste Forms," AMR, the NRC needs to know whether and how initial failures are included in the in-package chemistry modeling, taking into account the multiple barrier analysis. DOE stated that the Summary of In-Package Chemistry for Waste Forms ANL-EBS-MD-000050 deals with time since waste package breach, instead of time of waste package failures. The model is appropriate for the current implementation in the TSPA scenarios because breaches do not occur until after aqueous films may be sustained. Multiple barrier analyses are discussed in the TSPAI IRSR, and therefore will be discussed in the TSPA KTI Technical Exchange. | - 2) In the revision to the "Summary of In-Package Chemistry for Waste Forms," AMR, address specific NRC questions regarding radiolysis, incoming water, localized corrosion, corrosion products, transient effects, and a sensitivity study on differing dissolution rates of components. DOE stated that these specific questions are currently being addressed in the revision of the Summary of In-Package Chemistry for Waste Forms AMR, ANL-EBS-MD-000050 and related AMRs and calculations. To be available in January 2001. - 3) Provide a more detailed calculation on the inpackage chemistry effects of radiolysis. DOE stated that the calculations recently performed as discussed at the 9/12/00 Technical Exchange and preceeding teleconferences are being documented. These calculations will be referenced and justified in the revision of the Summary of In-Package Chemistry for Waste Forms AMR, ANL-EBS-MD-000050 and will be available in January 2001. - 4) Need consistency between abstractions for incoming water and sensitivity studies conducted for in-package calculations, in particular, taking into account the interaction of engineered materials on the chemistry of water used for input to in-package abstractions. DOE stated that the revision of the Summary of In-Package Chemistry for Waste Forms AMR, ANL-EBS-MD-000050 will discuss the applicability of abstractions for incoming water, taking into account the revised Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier AMR. The revision will be available in January 2001. 5) Provide the plan for experiments demonstrating in-package chemistry, and take into account subsequent NRC comments, if any. DOE stated that the current planning provides for the analysis of additional in-package chemistry model support. This analysis will determine which parts of the model are amenable to additional support by testing, and which parts are more amenable to sensitivity analysis, or use of analogues. Based on these results, longer range testing will be considered. If testing is determined to be appropriate, test plans will be written in FY01 and made available to the NRC. 6) Provide additional technical basis for the failure rate and how the rate is affected by localized corrosion. DOE stated that the technical basis for local corrosion conditions will be added to by additional discussion of local chemistry in the Summary of In-package Chemistry for Waste Forms revision ANL-EBS-MD-000050 which will be available in January 2001. Current Clad Degradation Summary Abstraction AMR Section 6.3, ANL-WIS-MD-000007 and Clad Degradation - Local Corrosion of Zirconium and its Alloys Under Repository Conditions AMR, ANL-EBS-MD-000012 contain the overall technical basis. 7) Provide data to address chloride induced localized corrosion and SCC under the environment predicted by in-package chemistry modeling. DOE by LA. stated that the technical basis for the models used for localized corrosion and SCC will be expanded in future revisions of the Clad Degradation Summary Abstraction AMR, ANL-WIS-MD-000007, available 8) Provide the documentation on the distribution for cladding temperature and stress used for hydride embrittlement. DOE stated that the stresses are documented in the Initial Cladding Conditions AMR, ANL-EBS-MD-000048. CAL-UDC-ME-000001 contains the waste package internal temperatures. Waste package surface temperatures were provided within the TSPA model (ANL-EBS-HS-000003, Rev 00, ICN 01 and ANL-EBS-MD-000049). The updated versions of these documents will be available in January 2001. 9) Provide a technical basis for critical stress that is relevant for the environment in which external SCC takes place. DOE stated that critical stress from SCC experiments under more aggressive conditions will be cited in the Revision of the Cladding Degradation Summary Abstraction AMR, ANL-WIS-MD-000007, which will be available in January 2001. 10) Provide analysis of the rockfall and vibratory loading effects on the mechanical failure of cladding, as appropriate. DOE stated that the vibratory effects are documented in Sanders et. al. 1992 SAND90-2406, A Method For Determining The Spent-Fuel Contribution To Transport Cask Containment Requirements. This will be discussed in the SDS KTI meeting. The analysis of the rockfall effects on the mechanical failure of cladding will be addressed if the agreed to updated rockfall analysis in Subissue #2, Item 8 and Subissue #1, Item 14 demonstrate that the rock will penetrate the drip shield and damage the waste package. | 4 | The rate at which radionuclides in high-level waste glass are released from the engineered barrier subsystem | Closed-Pending | See agreements above, in addition: 1) In the revision to the "Defense High Level Waste Glass Degradation," AMR, address specific NRC questions regarding (a) the inconsistency of the rates in acid leg for glasses, (b) the technical basis for use of boron versus silica in the radionuclide release from glass, and (c) clarification of the definition of long term rates of glass dissolution. DOE stated that these questions will be addressed in the Defense High Level Waste AMR revision and will be available in January 2001. | |---|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 5 | The effects of in-package criticality on waste package and engineered barrier subsystem performance | Open - See
Note 1 | TBD - See Note 1 | | 6 | The effects of alternate engineered barrier subsystem design features on container lifetime and radionuclide release from the engineered barrier subsystem | Closed-Pending | 1) Provide documentation for the path forward items in the "Subissue 6: Alternate EBS Design Features - Effect on Container Lifetime" presentation, slides 7 & 8. DOE stated that the documentation of the path forward items will be completed and as results become available, they will documented in the revisions of AMRs (ANL-EBS-MD-000005, Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier and the Stainless Structural Material, and ANL-EBS-MD-000004, General Corrosion and Localized Corrosion of the Drip Shield), to be completed by LA. | | 2) Provide additional justification for the use of a 400 ppm hydrogen criterion or perform a sensitivity analysis using a lower value. DOE stated that additional justification will be found in the report "Review of Expected Behaviour of Alpha Titanium Alloys under Yucca Mountain Condition" TDR-EBS-MD-000015, which is in preparation and will be available in January 2001. | |--| | 3) Provide the technical basis for the assumed fraction of hydrogen absorbed into titanium as a result of corrosion. DOE stated that additional justification will be found in the report "Review of Expected Behaviour of Alpha Titanium Alloys under Yucca Mountain Condition" TDR-EBS-MD-000015, which is in preparation and will be available in January 2001. | | 4) Provide temperature distribution (CCDF) of the drip shield as a function of time under the current EBS design. DOE stated that the temperature distribution will be provided in the next revision of the AMR, ANL-EBS-MD-000049, Rev 00, ICN 01, which will be available in January 2001. | Note 1 - Subissue #5, "The effects of in-package criticality on waste package and engineered barrier subsystem performance" were not addressed at this meeting and will be addressed in a future meeting.