Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Digital Instrumentation and Control Systems Subcommittee

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Wednesday, June 15, 2005

Work Order No.: NRC-461

Pages 1-195

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	DIGITAL INSTRUMENTATION AND
6	CONTROL SYSTEMS SUBCOMMITTEE
7	+ $+$ $+$ $+$
8	WEDNESDAY, JUNE 15, 2005
9	ROCKVILLE, MARYLAND
10	+ $+$ $+$ $+$
11	The Subcommittee met at the Nuclear
12	Regulatory Commission, Two White Flint North, Room
13	T2B1, 11545 Rockville Pike, at 1:30 p.m., George E.
14	Apostolakis, Chairman, presiding.
15	<u>COMMITTEE MEMBERS</u> :
16	GEORGE E. APOSTOLAKIS, Chairman
17	MARIO V. BONACA, Member
18	THOMAS S. KRESS, Member
19	<u>ACRS STAFF PRESENT</u> :
20	MICHAEL R. SNODDERLY
21	ERIC A. THORNSBURY
22	
23	
24	
25	
	I

	2
1	<u>NRC STAFF PRESENT</u> :
2	STEVEN A. ARNDT, RES
3	HOSSEIN HAMZEHEE, RES
4	TODD HILSMEIER, RES
5	WILLIAM E. KEMPER, RES
6	MICHAEL E. WATERMAN, SR., RES
7	
8	<u>ALSO PRESENT</u> :
9	TUNC ALDEMIR, Ohio State University
10	TSONG-LUN CHU, Brookhaven National Laboratory
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
Į	

	3
1	AGENDA ITEM PAGE
2	OPENING REMARKS:
3	George Apostolakis 4
4	SOFTWARE QUALITY ASSURANCE:
5	William Kemper 5
6	Steve Arndt
7	Hossein Hamzehee 7
8	Todd Hilsmeier
9	AUDIENCE COMMENTS:
10	INVESTIGATION OF DIGITAL SYSTEM FAILURE/ASSESSMENT
11	METHODS/RISK CHARACTERISTICS & RELIABILITY ASSESSMENT:
12	Steve Arndt
13	Tunc Aldemir
14	NSIR:
15	Scott Morris
16	BOARD MEMBER COMMENTS:
17	ADJOURN:
18	George Apostolakis
19	
20	
21	
22	
23	
24	
25	
ļ	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	1:31 p.m.
3	CHAIRMAN APOSTOLAKIS: This is the second
4	day of the meeting of the Advisory Committee on
5	Reactor Safeguards on Digital Instrumentation and
6	Control Systems. I'm George Apostolakis, Chairman of
7	the Subcommittee. Members in attendance are Mario
8	Bonaca and Tom Kress.
9	The purpose of this meeting is to discuss
10	the NRC staff's draft Digital Systems Research Plan
11	and two specific research programs discussed in the
12	plan: Software Quality Assurance and the Risk
13	Assessment of Digital Systems. The Subcommittee will
14	gather information, analyze relevant issues and facts
15	and formulate proposed positions and actions, as
16	appropriate, for deliberation by the full Committee.
17	Mike Snodderly is the designated federal
18	official for this meeting and Eric Thornsbury is the
19	cognizant staff engineer.
20	The rules for participation in today's
21	meeting have been announced as part of the notice of
22	this meeting previously published in the <u>Federal</u>
23	<u>Register</u> on May 31, 2005. A transcript of the meeting
24	is being kept and will be made available as stated in
25	the <u>Federal Register</u> notice. It is requested that
	I

(202) 234-4433

	5
1	speakers, first, identify themselves and speak with
2	sufficient clarity and volume, so that they can be
3	readily heard.
4	We have received no written comments or
5	requests for time to make oral statements from members
6	of the public regarding today's meeting. Now, we will
7	proceed and Mr. William Kemper will start us off.
8	MR. KEMPER: Yes, as you said, we
9	concluded our discussions yesterday on Software
10	Quality Assurance. Today, we're going to continue on
11	where Steve Arndt left off with his overview of our
12	Digital System Risk Assessment Project. This is a
13	project that has been collaborated with our PRA Branch
14	for the research. Hossein, he is here to speak on
15	behalf of the section. So basically, we're going to
16	give you more details on each of the initiatives
17	associated with that effort.
18	So, Steve, do you want to make a few
19	comments before we get started?
20	CHAIRMAN APOSTOLAKIS: So is the first
21	topic development and analysis of digital system
22	failure data?
23	MR. ARNDT: Yes, I'll explain that in a
24	second.
25	MR. KEMPER: Yes.
I	I

(202) 234-4433

MR. ARNDT: Just to clarify the agenda and 2 to remind you of where we left off last night, I gave 3 a brief overview of the program plan as a whole. The program plan, as you remember, that diagram we had included both analysis and data, evaluation of models, separate programs to look at whether or not it is 6 feasible to do digital system modeling, both from a 8 traditional fault tree of entry aspect as well as 9 using more dynamic methodologies.

10 So today what we have scheduled is three presentations. The first two will be together. Those 11 12 will go over the data project as well as the first part of the effort for the traditional fault tree of 13 14 entry modeling analysis. The third presentation will be from the difference perspective looking at the 15 dynamic modeling methodologies. So without further 16 17 ado, let me turn it over to our colleagues from the PRAB. 18

19 CHAIRMAN APOSTOLAKIS: So all these three 20 presentations are done jointly with a PRA group? 21 MR. ARNDT: The first two presentations 22 will be led by the PRA group. The third presentation 23 will be led by myself and Professor Aldemir. 24 CHAIRMAN APOSTOLAKIS: Thank you. 25 The whole program is a joint MR. ARNDT:

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

4

5

7

(202) 234-4433

6

	7
1	program. We're just leading it.
2	CHAIRMAN APOSTOLAKIS: Are we ready?
3	MR. HAMZEHEE: Well, again, my name is
4	Hossein Hamzehee. I am the section chief with the PRA
5	Branch, Office of
6	UNIDENTIFIED SPEAKER: This one here?
7	MR. HAMZEHEE: Nuclear Regulatory
8	Research. With me is Todd Hilsmeier. He is the
9	reliability and risk engineer and also we have Louis
10	Chu from Brookhaven National Lab. And all three of us
11	are going to help each other today to go over our
12	effort in the PRA Branch.
13	CHAIRMAN APOSTOLAKIS: Where are the
14	slides?
15	MR. HAMZEHEE: I'm sorry?
16	CHAIRMAN APOSTOLAKIS: Any questions?
17	CHAIRMAN APOSTOLAKIS: Why are the slides
18	this way, Hossein?
19	MR. HAMZEHEE: I have no control.
20	CHAIRMAN APOSTOLAKIS: Okay.
21	MR. HAMZEHEE: Sorry. The purpose of this
22	presentation is to describe our Digital Systems PRA
23	Project Plan and also provide you with the status of
24	our activities and have some discussions of some of
25	the work that has been completed or is in the progress
I	I

(202) 234-4433

	8
1	to be completed. We plan to quickly I will try to
2	speak no more than 15 to 20 minutes to provide some
3	background and then the objective of our work and talk
4	about our overall integrated project plan.
5	And then Todd will talk in more detail
6	about each element will pass in our overall program
7	plan. And then we have Louis Chu here if there are
8	some more detailed questions and status of what will
9	be done and some more technical issues. So I believe
10	all three of us together will provide a reasonable
11	overview of the work that has been going on for some
12	time now.
13	With that, I am sure you may have already
14	heard that as we speak some nuclear power plants have
15	expressed interest in replacing some of their analog
16	I&C systems with digital. And as you may know, the
17	advance reactors are already using digital or are
18	planning to use digital I&C systems. And we have
19	heard that right now Oconee, Callaway, Wolf Creek and
20	Comanche Peak have shown some interest in operating
21	their RPS system with a digital RPS.
22	And also, when these utilities submit
23	their studies, then the NRR has to review and provide
24	some technical evaluation and that would require some
25	further research. And for us to provide the risk-
	I

(202) 234-4433

	9
1	informed approach to evaluate these submittals, we
2	need to better understand how to model and quantify
3	the reliability of these digital I&C systems.
4	And as you may also know, EPRI has
5	completed a document. You may have talked about it
6	earlier today or yesterday, so they are with me if you
7	already know this, that they have provided report
8	entitled "Guideline for Performing Defense-in-Depth
9	and Diversity Assessments for Digital I&C Upgrades."
10	Now, currently, we are working with NRR to do an
11	acceptance review to see if the package as is is
12	adequate for us to review. And if it is, then NRR
13	will usually provide the schedule and perform the
14	review and then give some comments.
15	CHAIRMAN APOSTOLAKIS: What criteria do
16	you use in your acceptance review?
17	MR. HAMZEHEE: Well, I need to have NRR to
18	talk about that. Is anybody from NRR here that can
19	help us with that question? Is Matt here? Matt, do
20	you know what that may entitle? Because I am not
21	sure. They usually have some criteria that they make
22	sure that when utility or EPRI provides a technical
23	document, does it have enough information in certain
24	areas, does it provide adequate details so somebody
25	can review and see if it is acceptable. So usually,
l	1

(202) 234-4433

10 1 first, they do that performance and then if they find 2 it adequate, then they do the detailed review. And 3 what the exact criteria are, I'm not sure. 4 CHAIRMAN APOSTOLAKIS: Okay. Thank you. But ultimately, if the staff reviews this document, 5 there will be an SER? 6 7 MR. HAMZEHEE: Correct. 8 CHAIRMAN APOSTOLAKIS: And then it would 9 come back to us? 10 MR. HAMZEHEE: Right. MR. SNODDERLY: We would review the 11 staff's SER. 12 13 CHAIRMAN APOSTOLAKIS: Yes, okay. 14 MR. HAMZEHEE: But usually before we spend 15 time and resources, we want to make sure that that 16 document is acceptable. 17 CHAIRMAN APOSTOLAKIS: Sure. MR. HAMZEHEE: For review. And then Todd 18 will talk about we have a task associated with this 19 20 for two different purposes and we'll talk about it 21 more later on during this presentation. 22 Now, the objective of our work here is to 23 -- our goal is to develop a probabilistic method for 24 modeling the potential failures of a digital I&C 25 integrated with system that later be the can

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

probabilistic risk assessment using some of the traditional methods, such as long event trees and fault trees. And based on what we have seen so far at our work, it's obvious that currently the digital systems have not been treated uniformly and adequately in the PRAs.

7 And in some cases when they did do some 8 modeling, they used like black-box approach with some 9 point estimate for failure of probability. And the data and current methods that are available don't seem 10 to be adequate and that's what's driving our work 11 Now, we skipped a lot this one, because we 12 here. talked about this and if need be, we'll come back to 13 14 But let's go back to the next flow chart. this.

15 Now, I am going to spend no more than 10 16 minutes to explain how we put our program and task 17 plan together. And as I said, then Todd will talk about each of those tasks and elements in more detail. 18 19 For us to have a risk-informed approach, we have to be 20 able to model the digital I&C and PRAs and be able to 21 tell or quantify the reliability of a digital I&C. In 22 order to be able to quantify the reliability of a 23 digital I&C, we have to have models and we have to 24 have data.

So these are the two elements then first

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

	12
1	we see in our work. We have to see if they are
2	available, fine. If not, then we need to develop
3	them. As we looked at the digital I&C, then we
4	realized that they are different from other mechanical
5	systems or other mod systems that we model and
6	evaluate in PRAs, in the sense that they are hardware
7	and software, and each has different characteristics.
8	Right now, we need to have models and data
9	to hardware and software and then when we put the
10	program plan together, if we look at the two blocks on
11	the right and left and ignore anything to the top and
12	bottom, for the time being, then you see that we broke
13	our work, broke it down into two parts. On the left
14	side, you see the hardware block that we have and the
15	task plan the numbers represent the task in our task
16	plan.
17	The first block is block number 5. If I
18	can read it from here. And that is to gather and
19	evaluate the reliability data. This is one of our
20	tasks. And once we gather and evaluate data,
21	hopefully, at some point, we feel like we have
22	adequate data. Then we have to go back and see what
23	kind of models and methods are available.
24	If there isn't sufficient methods, then
25	we're going to develop and evaluate appropriate
ļ	

(202) 234-4433

(202) 234-4433

Í	13
1	methods, such as George's favorite model, Markov, or
2	others, fault trees or some others that can be
3	adequate. We will use them and then at the end of
4	this task, we will be able to at least recommend what
5	method is appropriate for digital I&C.
6	CHAIRMAN APOSTOLAKIS: But why is Box 5
7	MR. HAMZEHEE: Yes, the first box
8	CHAIRMAN APOSTOLAKIS: gathering an
9	analysis of reliability data? Can you use the cursor
10	to point to the box?
11	MR. HAMZEHEE: Yes.
12	CHAIRMAN APOSTOLAKIS: The cursor, the
13	cursor.
14	MR. HAMZEHEE: The cursor?
15	CHAIRMAN APOSTOLAKIS: Yes, you can do
16	that. Yes, that's the one. That's the one. That's
17	the one. Why is that under hardware? I mean, do we
18	don't you need data on the software failures?
19	MR. HAMZEHEE: Yes.
20	CHAIRMAN APOSTOLAKIS: It should be a
21	common box feeding into both.
22	MR. HAMZEHEE: Correct. Now, what we're
23	seeing is when it comes to data, we need two types of
24	data. One is for hardware, one is for software.
25	CHAIRMAN APOSTOLAKIS: But that's not what
	I

(202) 234-4433

	14
1	the figure says.
2	MR. HAMZEHEE: But it does. If you look
3	at the right block, the counterpart of that block on
4	the right says software on the top and then it has a
5	similar block.
6	CHAIRMAN APOSTOLAKIS: No, it doesn't.
7	MR. HAMZEHEE: If you want to look at the
8	one that Todd has pointed to.
9	CHAIRMAN APOSTOLAKIS: No, it says develop
10	software failure probabilities.
11	MR. HAMZEHEE: Yes, that is common.
12	CHAIRMAN APOSTOLAKIS: The Box 5, it seems
13	to me, should be in the middle feeding both hardware
14	and software. That's what you told us and that's what
15	it is. It's just misplaced there.
16	MR. HAMZEHEE: Let me go over it and then
17	when we talk about the detail, you'll see how they
18	fall into the it doesn't matter how we put it here.
19	But the reason we put it here is because we want to
20	make sure if there are some more availability or
21	products in one area, that doesn't impact the other
22	one.
23	CHAIRMAN APOSTOLAKIS: It seems to me
24	MR. HAMZEHEE: But technically it doesn't
25	matter where you put those boxes.
I	

(202) 234-4433

	15
1	CHAIRMAN APOSTOLAKIS: As long as you do
2	it right, yes.
3	MR. HAMZEHEE: Yes.
4	CHAIRMAN APOSTOLAKIS: But the point is
5	that we can't really claim that we understand the
6	failure modes of software.
7	MR. HAMZEHEE: That's correct.
8	CHAIRMAN APOSTOLAKIS: So you know,
9	collecting as much data as we can is probably a good
10	idea.
11	MR. HAMZEHEE: Yes.
12	CHAIRMAN APOSTOLAKIS: Yes.
13	MR. HAMZEHEE: And that is what the Block
14	8. Would you put the cursor on Block 8? If you put
15	the cursor on Block 8, the one running parallel is
16	we're going to look at the hardware failure data,
17	evaluate, analyze, gather and do the same thing for
18	software. So technically, we're doing what you're
19	saying, but we simply need to do hardware and
20	software.
21	CHAIRMAN APOSTOLAKIS: Anyway, I suggest
22	that Box 5 be moved to the middle. That's all.
23	MR. HAMZEHEE: All right.
24	CHAIRMAN APOSTOLAKIS: And that is the
25	same way you are blocking for with two arrows? One
I	

(202) 234-4433

	16
1	leading to hardware and one to software, that's all.
2	MR. HAMZEHEE: That's right. That can be
3	done, too.
4	CHAIRMAN APOSTOLAKIS: But will it?
5	MR. HAMZEHEE: Yes.
6	CHAIRMAN APOSTOLAKIS: It's a big deal.
7	It's not a big deal, Hossein.
8	MR. HAMZEHEE: Yes, we'll do that if it's
9	not a big deal. And then Block 6 is looking at the
10	modeling techniques and what methods to apply. And
11	then the next block, Block 7 is then to combine the
12	two and try to quantify the reliability of the
13	hardware. Now, again, you may say why do this
14	separately? As we make progress, we may find out that
15	we can combine them in the earlier stage. So this is
16	just for presentation purposes, not done logically.
17	It has to be separated.
18	And then if you move to the right drop
19	under software, the Block A talks about developing,
20	analyzing data for software. And then try to develop
21	some methods for modeling the software. And then at
22	the end, Block 9 is the software model quantification.
23	And then you provide these two in a proper logical
24	manner. Then you do the overall digital system
25	reliability quantification.
	I

(202) 234-4433

	17
1	CHAIRMAN APOSTOLAKIS: Now, hardware model
2	quantification. You mean the hardware of the
3	computer, not the pumps of it?
4	MR. HAMZEHEE: Of the RPS digital system.
5	Of the digital system.
6	CHAIRMAN APOSTOLAKIS: The digital system?
7	MR. HAMZEHEE: Yes. Not the pumps.
8	CHAIRMAN APOSTOLAKIS: Oh, is it
9	MR. HAMZEHEE: Not the
10	CHAIRMAN APOSTOLAKIS: Is this only for
11	RPS protection?
12	MR. HAMZEHEE: Well, as an example, it's
13	for RPS, but you can have the
14	CHAIRMAN APOSTOLAKIS: Yes, so it's
15	MR. HAMZEHEE: control for monitor.
16	The digital I&C systems utilities plan to operate to.
17	CHAIRMAN APOSTOLAKIS: Because they are
18	the ones saying that is again box number 9 may be
19	mislabeled, in the sense that there is a school of
20	thought that says you will not have a software model
21	quantification, because you are amending the software
22	in the box system.
23	MR. HAMZEHEE: That's why I said we don't
24	know right now how logically the boxes are connected.
25	CHAIRMAN APOSTOLAKIS: Yes.
ļ	I

(202) 234-4433

	18
1	MR. HAMZEHEE: But that's a good point
2	though. You are right. So data Block 10, we try to,
3	if it makes sense, combine it and come up with the
4	overall system reliability quantification. And then
5	Block 11 will make an attempt to integrate it with the
6	PRA, so that we can come up with the risk contribution
7	and risk assessment of a digital system with respect
8	to planned risk, such as CDF and other risk matrix.
9	And then finally, our goal is at some
10	point in time, and Todd will talk about schedule,
11	we'll try to document all these things in the NUREG
12	report. Now, let's go
13	CHAIRMAN APOSTOLAKIS: I would expect
14	I mean, this is a big task. I would expect that you
15	will publish reports before NUREG.
16	MR. HAMZEHEE: I'm sorry?
17	CHAIRMAN APOSTOLAKIS: Wouldn't you be
18	publishing reports say after you finish the data
19	evaluation?
20	MR. HAMZEHEE: Probably not
21	CHAIRMAN APOSTOLAKIS: Really?
22	MR. HAMZEHEE: public report. But we
23	may have some intermediate technical reports, yes.
24	CHAIRMAN APOSTOLAKIS: Hum.
25	MR. HAMZEHEE: But at the end, we want to
I	

(202) 234-4433

	19
1	put them all into a NUREG report.
2	CHAIRMAN APOSTOLAKIS: But wouldn't you
3	like to have some comments from the public on your
4	data collection and conclusions that you draw from it?
5	I mean, why do you want to have to wait until the very
6	end?
7	MR. HAMZEHEE: That can be that's an
8	option, yes.
9	CHAIRMAN APOSTOLAKIS: That's a good idea,
10	I think.
11	MR. HAMZEHEE: Bill?
12	MR. KEMPER: This is Bill Kemper. We do
13	have plans to convene a public meeting, at some point.
14	We're not exactly sure exactly where perhaps we're
15	going to do it. But we do intend to engage the
16	public.
17	CHAIRMAN APOSTOLAKIS: Okay.
18	MR. KEMPER: We just have reason for it.
19	CHAIRMAN APOSTOLAKIS: Okay.
20	MR. HAMZEHEE: But hopefully before it
21	becomes a NUREG report it has to go through public
22	review and comment, more interactions with ACRS and
23	others, before we can call it a NUREG report. And so
24	now let's go back to the top of the block. If you
25	look at Block 1, when we started this project it was
l	I

(202) 234-4433

	20
1	about a year ago and again Todd will talk about it,
2	but quickly, there was a draft EPRI report and we
3	wanted to review that and gain some insight to see if
4	that can help us with the work we are doing. So that
5	was the purpose of that Block 1.
6	And then Todd, he will tell you where we
7	are and the documentation that we have. And then
8	Block 2, we also wanted to make sure we don't reinvent
9	the wheel. So we went ahead and tried under that task
10	to look at available data from other agencies, such as
11	NASA, find out what else is going on, who has done
12	what and then use them as applicable. So that was the
13	purpose of Block 2, and then Todd again will tell you
14	where we are and what we have done with those two.
15	And Block 3 is basically trying to figure
16	out then how we would put all these things into a
17	report. And now go back down to the all the way to
18	the right. And those are again sensitive research.
19	We try to envision what else can happen or the work
20	that we may have to do. We haven't planned for the
21	last block that says future activities yet in our
22	current plan, but we have defined some potentials. So
23	as the interest and the need arises and if the budget
24	allows, then what we want to do is the first one is to
25	support NRR when they do review the EPRI report.
Į	I

(202) 234-4433

	21
1	And that actually when we put this block
2	together was a year ago, and we were not sure if that
3	was going to happen, but today when we're talking
4	about it, it did happen. So most likely that future
5	work is going to happen earlier. And then below it is
6	once this work is complete, then we like to provide
7	some guidance, because most likely even if we come up
8	with one or two methods once the licensees start
9	operating their systems to digital, they are going to
10	come up with other methods.
11	So we want to be able to provide some
12	guidance on acceptable methods, so that others can
13	apply those guidance and develop their own models.
14	CHAIRMAN APOSTOLAKIS: So what is the time
15	frame of all of this?
16	MR. HAMZEHEE: Todd is going to tell you.
17	He is going to go over all of them. And then the last
18	one is again as time goes on and we get more real
19	applications from licensees, we're going to learn more
20	and as we learn more, we may come up with new methods
21	and applications. And that's again in the future
22	activities. Now, this is all I'm going to say. If
23	there aren't any questions, I'm going to turn it to
24	Todd. If you have any questions?
25	MR. HILSMEIER: Am I registering okay? My
I	

(202) 234-4433

name is Todd Hilsmeier from research and I work in the PRA Department. And a little background on myself. I've spent 6 years in consulting business doing PRA and then 6 years at plants Salem, Hope Creek, Diablo Canyon working in PRA. Then I joined NRC last September and the first project was the Digital Systems PRA Project.

And I'm going to continue where Hossein 8 9 left off at. And the first task that we are working on is Task 1, which is review of the EPRI 1002835 10 report. And the purpose of reviewing this report is 11 to obtain insights on the reliability methods for 12 modeling digital systems. Our focus was not revealing 13 14 the report for review and approval by NRC, but to gain 15 insights on how we can use the report to develop 16 reliability models.

And some observations that we observed 17 from the reports is that the EPRI Technical report 18 19 advocates risk-informing digital I&C systems by proposing the use of a simplified and a standard risk-20 21 informed method as it turns to current deterministic 22 methods. And also we observed that the simplified 23 risk-informed method should be clarified and 24 demonstrated with examples.

I should note that we reviewed an earlier

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

version of EPRI guide, it's final version, the current version does provide examples of a simplified method. And so this statement is no longer up to date. The simplified risk-informed method may not necessarily provide conservative risk values. And also the EPRI Technical report does not provide information on how to develop models needed for standard risk-informed traditional PRA methods.

9 However, the EPRI report does provide some 10 characteristics to consider in reliability model 11 development. The current schedule for Task 1 is the 12 research division reviewed comments on our draft 13 report and the final report for Task 1 will be 14 completed June 30th.

15 CHAIRMAN APOSTOLAKIS: So I don't 16 understand that. I mean, Hossein just told us that 17 you are in the process of deciding whether to review 18 it. This is a research review, not NRR review.

MR. HILSMEIER: But in itself --

20 MR. HAMZEHEE: There are two parts. There 21 are two reasons we are looking at this EPRI report. 22 One is to gain insight as Todd said to help us with 23 our work to see if they've done some good work that we 24 can benefit from. The other one is to support NRR in 25 their review. So I think Todd is talking about the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

19

	24
1	first purpose of that review. Am I right, Todd?
2	MR. HILSMEIER: Yes, that's correct. The
3	review of the EPRI report for approval by NRC is a
4	future task. The primary purpose of our review is
5	just to gain insight on the report.
6	CHAIRMAN APOSTOLAKIS: This review was
7	done within the Agency?
8	MR. HILSMEIER: Excuse me?
9	CHAIRMAN APOSTOLAKIS: Was it done in-
10	house, the review?
11	MR. HILSMEIER: Yes, by myself and
12	Brookhaven National Laboratory, Louis Chu.
13	CHAIRMAN APOSTOLAKIS: Okay.
14	MR. HAMZEHEE: I think just for clarity,
15	most of our work is in-house with some help from BNL,
16	in our area.
17	MR. HILSMEIER: And we reviewed the EPRI
18	report before we had the final version. In Task 2,
19	the purpose of Task 2 is review industry experience
20	per methods and databases, failure databases of
21	digital hardware/software use to model digital
22	systems. The basic approach was to establish contacts
23	with industry, such as NASA, Army, Navy, Air Force,
24	DOE, DoD, the Defense Nuclear Facility Safety Board,
25	FAA, automotive industry and then several contractors,
	I

(202) 234-4433

OMNICON, RAC and Idaho National Laboratory, that's to 2 name a few. 3 The second step in the approach is to search and collect guidance on the reports and then

5 review the reports. And what we observed from 6 industry is that most of industry managed digital 7 system risk through a qualitative approach, which 8 involves software development process, management, 9 testing the software, documentation, QV&V of the And we found very little of industry that 10 software. forms quantitative risk analyses. 11

12 I think there are some small isolated quantitative risk analyses 13 cases of and digital 14 systems, such as Idaho National Laboratory performed 15 some digital reliability work for the Army and it's 16 all classified and proprietary, so we weren't able to 17 analyze the results. Also, OMNICON did similar work 18 for the Navy.

19 I'll be talking about the Idaho National Laboratory Failure Rate Database under 20 Task 5. 21 However, we also observed that NASA is moving to a 22 quantitative risk evaluation approach using PRAs. We looked at the NASA Fault Tree Handbook and the NASA 23 24 Peer Review Procedure Guide, that was developed by 25 experts with extensive nuclear power plant PRA

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

4

26 experience. Task 2 is currently being worked on and 1 2 the final report will be completed by August 30, 2005. Any questions on Task 2? 3 4 Task 3, we don't have a slide for, it's 5 simply documentation of all the work that we do in 6 creating an outline. We document as we go and one 7 document at the end. We want to make sure we stay up, 8 make sure we document all our thoughts and not miss 9 any information. 10 Task 4 is developing supporting analysis Digital System Reliability Project 11 for the and basically involves obtaining information about the 12 13 behavior of the digital system, such as developing 14 FMEA, failure modes and effects analysis and 15 dependency analysis for the system. And the FMEA 16 dependency analysis is a foundation of reliability 17 model. And we also want to develop guidance on how communication and voting should be modeled. 18 19 These supporting analyses will support the 20 development of the Digital Systems Reliability Model. We need to apply the supporting analyses to a case 21 22 And our case example will be the Digital example. 23 Reactor Protection System proposed for Oconee. For 24 reactor trip demand using the Teleperm platform, the 25 expected period of performance is expected to start in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	July of 2005, next month, and we expect to complete it
2	in September 2006. Any questions?
3	CHAIRMAN APOSTOLAKIS: Don't worry, there
4	are there will be.
5	MR. HILSMEIER: Okay. No questions.
6	Hossein questions me all the time.
7	CHAIRMAN APOSTOLAKIS: Do you feel you
8	have been treated unfairly?
9	MR. HILSMEIER: No, no.
10	CHAIRMAN APOSTOLAKIS: Okay. I
11	understand. Maybe you are doing a better job.
12	MR. HILSMEIER: I love this job in
13	consulting and working at the power plants.
14	CHAIRMAN APOSTOLAKIS: Okay. How much are
15	you going to tell us about the data now?
16	MR. HILSMEIER: I was going to skip this
17	task. I know this is your favorite task. Task 5 is
18	development of the failure database for digital
19	hardware. And for the analysis, our approach for
20	developing the database was reviewing failure rate
21	databases.
22	These databases were <u>Military Handbook</u>
23	Telcordia and PRISM. And I'll talk about this
24	approach in the next slide. It also serves industry
25	for additional digital failure data. Industry such as
ļ	

(202) 234-4433

	28
1	LERs and EPIX from nuclear power plants, also NASA,
2	the SPAR model and FAA. And then last, under approach
3	is development of a population variability
4	distribution using the proprietary PRISM failure
5	records.
6	CHAIRMAN APOSTOLAKIS: What's PRISM again?
7	What's PRISM?
8	MR. HILSMEIER: It's a software package
9	developed by Reliability Analysis Center used to
10	predict failure rates.
11	CHAIRMAN APOSTOLAKIS: Who is Reliability
12	Analysis Center, is that the NASA people?
13	MR. HILSMEIER: It's a consulting company.
14	CHAIRMAN APOSTOLAKIS: Huh?
15	MR. HILSMEIER: It's
16	DR. CHU: They work with the defense
17	industry a lot. It's like consulting.
18	CHAIRMAN APOSTOLAKIS: It's consultants?
19	DR. CHU: Yes.
20	MR. HAMZEHEE: It's proprietary.
21	CHAIRMAN APOSTOLAKIS: Huh?
22	MR. HAMZEHEE: It's proprietary though,
23	it's not available.
24	CHAIRMAN APOSTOLAKIS: So prohibited. Do
25	you have access to it?
	I

	29
1	MR. HAMZEHEE: We have purchased it and
2	yes, we do have access to it.
3	CHAIRMAN APOSTOLAKIS: Oh, okay.
4	DR. CHU: Yes, we are not supposed to
5	tabulate all the failure rates found at database.
6	CHAIRMAN APOSTOLAKIS: Is it a failure
7	rate database or is it failure modes? Are you using
8	it in any other way?
9	DR. CHU: They have raw data in the form
10	of failures in this number of hours.
11	CHAIRMAN APOSTOLAKIS: For software?
12	DR. CHU: For hardware.
13	CHAIRMAN APOSTOLAKIS: Okay. Anybody can
14	do that.
15	DR. CHU: That actually is the only thing
16	that we were able to find that kind of data, raw data.
17	CHAIRMAN APOSTOLAKIS: For what?
18	DR. CHU: Digital hardware.
19	CHAIRMAN APOSTOLAKIS: Digital hardware?
20	Well, I mean, if you rely on this a lot, maybe we
21	ought to look at it. There are mechanisms still
22	handling proprietary information. Yes.
23	MR. KEMPER: Did you say we purchased
24	it, right? So we
25	MR. HAMZEHEE: Yes, for our own use to
ļ	I

(202) 234-4433

	30
1	include in ACRS we can look at it.
2	CHAIRMAN APOSTOLAKIS: Yes.
3	MR. HAMZEHEE: Oh, yes.
4	CHAIRMAN APOSTOLAKIS: Definitely, we are
5	part of the Agency.
6	MR. HAMZEHEE: Sure. As long as you agree
7	with us.
8	CHAIRMAN APOSTOLAKIS: As long as what?
9	MR. HAMZEHEE: You agree with us.
10	MR. HILSMEIER: Task 5 continued. The
11	first bullet was reviewing the failure rates databases
12	and Military Handbook, Telcordia and PRISM, that's
13	what I'm going to discuss next. The analysis of these
14	three sources <u>Military Handbook</u> and Telcordia will be
15	documents and PRISM is the software program. They use
16	empirical formulas to predict failure rates.
17	CHAIRMAN APOSTOLAKIS: Can you tell us
18	what that means?
19	MR. HILSMEIER: Yes, basically, they take
20	a base failure rate and apply pi shaping factors.
21	CHAIRMAN APOSTOLAKIS: Oh.
22	MR. HILSMEIER: To adjust failure rates
23	for quality.
24	CHAIRMAN APOSTOLAKIS: The basic failure
25	rate comes from standard methods, though?
ļ	I

	31
1	MR. HILSMEIER: Yes.
2	CHAIRMAN APOSTOLAKIS: Bayesian or what,
3	maximum likelihood?
4	DR. CHU: They didn't provide the detail
5	of how they estimate.
6	CHAIRMAN APOSTOLAKIS: You know why? They
7	don't have an advisory committee to review those. You
8	guys wouldn't do that.
9	MR. HILSMEIER: That's why we didn't use
10	the data. I mean, the empirical formulas.
11	CHAIRMAN APOSTOLAKIS: See, the problem
12	with these things is they do it and then, you know,
13	people say oh, gee, this is DoD or NASA or whatever.
14	They have been doing it, so it must be right. Well,
15	no, it's not right.
16	MR. HAMZEHEE: I think we came to this
17	same conclusion. And I think he is going to tell you
18	the problems that we have found.
19	CHAIRMAN APOSTOLAKIS: And I agree with
20	him, yes.
21	MR. HAMZEHEE: Okay.
22	MR. HILSMEIER: The empirical formulas
23	work well when, in limited cases, the data is
24	applicable and sufficient. But in that case, one can
25	just use the data explicitly calculated by failure
ļ	

(202) 234-4433

	32
1	rates.
2	CHAIRMAN APOSTOLAKIS: So a broken clock
3	is right twice a day.
4	MR. HILSMEIER: Exactly.
5	CHAIRMAN APOSTOLAKIS: Yes.
6	MR. HILSMEIER: So the other concern we
7	had with these three sources was the lack of
8	uncertainty consideration. And is it correct they
9	didn't provide any uncertainty, the empirical formulas
10	don't provide uncertainty?
11	DR. CHU: Right. One situation I asked
12	why don't you consider uncertainty? And the answer I
13	got was there are so many sources of uncertainty, you
14	can't handle it.
15	CHAIRMAN APOSTOLAKIS: Well, that's a good
16	reason. And besides why get an uncertainty about the
17	wrong point estimate anyway.
18	MR. HILSMEIER: So we didn't use these
19	sources, the empirical formulas. We also reviewed
20	industry experience failure databases. The existing
21	PRA failure databases touch as far as NASA, PRA guide,
22	IEEE, did not contain digital component failure rates.
23	The advanced reactor PRAs may contain limited
24	additional failure rate data, which is proprietary.
25	CHAIRMAN APOSTOLAKIS: If you can get
ļ	I

(202) 234-4433

	33
1	those.
2	MR. HILSMEIER: Yes, and we plan to
3	evaluate this further under the second phase of data
4	analysis.
5	CHAIRMAN APOSTOLAKIS: Now, that was
6	another thought. Is that not what is this kind of
7	data? Is that true, Louis?
8	DR. CHU: I'm sorry?
9	CHAIRMAN APOSTOLAKIS: Nobody has that
10	kind of data. You are going through this, because you
11	have to. Do you really think there is somebody out
12	there that has a databank that has well-documented
13	failure rates for software components or hardware?
14	DR. CHU: I tend to think the
15	manufacturers do have.
16	CHAIRMAN APOSTOLAKIS: Yes, they will tell
17	you FFA has.
18	DR. CHU: Actually, some most of the
19	data in the PRISM software came from some
20	manufacturer. The name they don't tell us.
21	CHAIRMAN APOSTOLAKIS: Of course they
22	don't tell you, because if you go and look, you will
23	reject it like they rejected PRISM.
24	MR. HAMZEHEE: But I think, George, I
25	mean, we have to start from somewhere.
I	

(202) 234-4433

	34
1	CHAIRMAN APOSTOLAKIS: No, I'm not saying
2	we shouldn't do it.
3	MR. HAMZEHEE: And this database
4	CHAIRMAN APOSTOLAKIS: But I'm just
5	telling you that we know the answer.
6	MR. HAMZEHEE: Yes, but I think from
7	manufacturers you get some reasonable data, because
8	you have numerator and denominator, even though you
9	may not have high confidence, but it's a good start.
10	And as these systems are installed and we get more
11	operating experience, then we update the information.
12	That's really one way to go I think. The only way you
13	can really get some numbers and do some
14	quantification.
15	CHAIRMAN APOSTOLAKIS: Well, I repeat it's
16	not the numbers that worry me, it's the actual failure
17	modes. I don't think we really understand those.
18	MR. HILSMEIER: All right. We also
19	evaluate industry operating experience, such as the
20	nuclear power plant LERs, double event reports and
21	EPIX data, FAA, Army, the Department of Energy, and
22	they contain digital failures, but the reports are not
23	detailed enough. They don't describe what digital
24	component failed. As Steve mentioned yesterday, the
25	reports don't say specify in the meantime between
ļ	1

(202) 234-4433

	35
1	failures and specify additional systems that are
2	deployed that have not failed.
3	So there is a lot of information just from
4	these databases to calculate, to estimate a failure
5	rate. But we will evaluate some of these databases
6	further in the second phase of data analysis. Because
7	there is a second phase I'm kind of hinting at our
8	conclusion.
9	MR. HAMZEHEE: And I also would like to
10	add, George, that we will welcome any insights you
11	have. If you have some information that we can use,
12	this is a good time. So we are also asking you to
13	help us if you have some additional information in
14	some of your other work or involvement.
15	CHAIRMAN APOSTOLAKIS: I mean, even in my
16	additional comments, didn't I have a citation, which
17	is admittedly old, but was somebody at NASA had
18	collected information, actual data. What does that
19	mean, Louis? You didn't read the comments or you
20	checked the reference and it's not useful?
21	DR. CHU: I think I didn't read the
22	comment carefully.
23	CHAIRMAN APOSTOLAKIS: Thank you very
24	much. You come here.
25	MR. HILSMEIER: I didn't hear the
I	I

	36
1	question. I'm sorry.
2	CHAIRMAN APOSTOLAKIS: Well, there is
3	all I know is in that paper by Garrett and me and also
4	in the added comments. I don't have any thing
5	additional. Do you have the paper by Garrett, Chris
6	Garrett and me? That's all I got.
7	MR. HILSMEIER: All right.
8	CHAIRMAN APOSTOLAKIS: But I'm surprised
9	I don't see any of that here, because they have
10	individuals, not organizations, individuals have
11	collected information occasionally.
12	MR. HILSMEIER: And we also reviewed a
13	NASA failure database. I mean we didn't review it.
14	We tried getting the NASA failure database and this is
15	through Dr. Dezfouli.
16	CHAIRMAN APOSTOLAKIS: Who would have it
17	at NASA?
18	MR. HAMZEHEE: Normally, that would be
19	read from ISO and Bill Vesely and those guys can help.
20	CHAIRMAN APOSTOLAKIS: All right. Keep
21	going.
22	MR. HILSMEIER: All right. Thank you.
23	Right. Dr. Dezfouli was saying that
24	CHAIRMAN APOSTOLAKIS: They are looking
25	for it just as you are.
	I

(202) 234-4433

	37
1	MR. HILSMEIER: The data will be available
2	for publishing in 2006. However, there is a
3	Conference Spec 2000 between NRC and NASA to establish
4	a cooperative, I'm not sure of the correct words, but,
5	agreement to work on the Digital System Reliability
6	and for the second phase of data analysis, we're going
7	to try to get the proprietary data. If not, then use
8	the public available data. And another question is
9	will the data have sufficient detail.
10	CHAIRMAN APOSTOLAKIS: It is an IEEE or
11	some other publication on computers, which seems to
12	publish periodically an evaluation of major failures?
13	I don't remember what the title is. Are you familiar
14	with it, Steve? I'm not sure it's IEEE. It's some
15	other organization.
16	MR. ARNDT: It's not IEEE.
17	CHAIRMAN APOSTOLAKIS: Computers.
18	MR. ARNDT: It's one of the computer
19	societies.
20	CHAIRMAN APOSTOLAKIS: Yes, yes. And
21	again, they don't go out of their way to collect data.
22	MR. ARNDT: Yes, it's not
23	CHAIRMAN APOSTOLAKIS: But they take a few
24	cases of created ways and they analyze it. So you may
25	have to do some of that. I mean, you're not going to
I	I

(202) 234-4433

	38
1	find the database anywhere I don't think. But you may
2	create a database by picking some of these. And as I
3	say, that paper by Chris Garrett has some information.
4	But it's already a little old. But if you see the
5	name of the journal, then you go to more recent issues
6	and see whether they have more.
7	MR. ARNDT: Yes.
8	CHAIRMAN APOSTOLAKIS: Again, don't expect
9	them to solve your problems.
10	MR. HAMZEHEE: Again, we're trying to do
11	our best to see what is available, make sure we're not
12	missing anything. And then at the end we have to use
13	what is available with some uncertainty and, you know,
14	again, we got to start from somewhere in order to
15	quantify some reliability. So even if we don't have
16	the amount of data we need, we can still do some
17	quantification with some uncertainty there.
18	This is exactly the problem we had 30
19	years ago when we started doing PRAs. We didn't have
20	data for every single component for every equipment in
21	the plant, but then there was high uncertainty
22	associated with those. So I think it's a good start
23	and hopefully as utilities
24	CHAIRMAN APOSTOLAKIS: I'm not questioning
25	why you're doing it. I'm just trying to help. I
ļ	I

(202) 234-4433

(202) 234-4433

	39
1	think you have to do this as long as you have the
2	right amount of skepticism.
3	MR. HAMZEHEE: Yes.
4	MR. HILSMEIER: We also plan to look at
5	the COMPSIS data, which is international effort to
6	collect I&C operating experience. And it's still in
7	the early stage of data collection.
8	CHAIRMAN APOSTOLAKIS: They started in
9	1999.
10	DR. CHU: Yes, I read that.
11	CHAIRMAN APOSTOLAKIS: Huh? Have they
12	collected anything in the six years?
13	DR. CHU: That is a fairly they started
14	collecting.
15	CHAIRMAN APOSTOLAKIS: Yes, I mean, that
16	DR. CHU: Steve Watson can tell you.
17	CHAIRMAN APOSTOLAKIS: Steve who?
18	DR. CHU: Steve.
19	CHAIRMAN APOSTOLAKIS: So what do you
20	have?
21	MR. HAMZEHEE: You need to speak in the
22	microphone and introduce yourself, otherwise that lady
23	is going to get mad.
24	CHAIRMAN APOSTOLAKIS: And we don't want
25	that to happen.
	I

	40
1	MR. HAMZEHEE: No.
2	MR. ARNDT: The COMPSIS database is an
3	international OECD effort along the same lines as the
4	IEPD and things like that to collect data from various
5	international or national databases and agencies that
6	get data as part of their regulatory responsibilities
7	like our LER database.
8	CHAIRMAN APOSTOLAKIS: But have you
9	connected them?
10	MR. ARNDT: What we did was we started a
11	trial project in '99 to try and figure out whether or
12	not this was practical. We collected a small sample
13	of data to help us write the Coding Guidelines and
14	what information you need and things like that. We
15	got about 100 data points. Not over the useful, but
16	interesting. As of this year, we are starting to
17	collect full scale with all the signature countries
18	required to submit all their latest data.
19	CHAIRMAN APOSTOLAKIS: That's all nuclear?
20	MR. ARNDT: This is all nuclear.
21	CHAIRMAN APOSTOLAKIS: If you have 100, I
22	mean, I was hoping to see one or two or three examples
23	and I don't see any. You know, you guys don't want to
24	educate us?
25	MR. HAMZEHEE: I'm sorry, I was asking a
	I

(202) 234-4433

	41
1	question.
2	CHAIRMAN APOSTOLAKIS: I'm asking Steve.
3	Louis, do you have any examples you can give us?
4	DR. CHU: Well, we all we have done is
5	using the data from the PRISM software and we used the
6	hierarchial Bayesian analysis to come up with a
7	failure rate.
8	CHAIRMAN APOSTOLAKIS: Are you going to
9	talk about any of that?
10	DR. CHU: Yes, I will.
11	MR. HAMZEHEE: Yes.
12	CHAIRMAN APOSTOLAKIS: Oh, you mentioned
13	that you have done it, but you're not talking about
14	it.
15	MR. HAMZEHEE: Well, we did. If you would
16	like
17	CHAIRMAN APOSTOLAKIS: You said we did.
18	But, you know, this is a subcommittee. Subcommittees,
19	we generally are going to do that.
20	DR. CHU: Page 14 and 15.
21	CHAIRMAN APOSTOLAKIS: Yes.
22	DR. CHU: Talks about that.
23	CHAIRMAN APOSTOLAKIS: It says we did it,
24	at least. It doesn't say how you did it. This is a
25	Subcommittee meeting. In Subcommittee meetings we
ļ	I

(202) 234-4433

	42
1	want to know the how. Okay. Todd, you want to tell
2	us, Todd?
3	MR. HILSMEIER: How we got the failure
4	rates?
5	CHAIRMAN APOSTOLAKIS: Well, I was hoping
6	to see, you know, several examples of say here is the
7	means and then here our role of 2001 and here is why
8	it's interesting. You know, that kind of thing.
9	MR. HILSMEIER: Right.
10	CHAIRMAN APOSTOLAKIS: Maybe in a future
11	meeting we can do this, huh?
12	MR. HILSMEIER: Yes.
13	MR. KEMPER: If I could offer just back on
14	Tom's question, if nothing else, if all else fails, we
15	intend to use COMPSIS precisely for that purpose.
16	CHAIRMAN APOSTOLAKIS: Absolutely.
17	MR. KEMPER: We are paying into it, you
18	know. There is a fee every year and there is about,
19	I forget, eight or 11 countries, I think, have
20	CHAIRMAN APOSTOLAKIS: Well, he says you
21	have 100 points, I mean.
22	MR. KEMPER: In countries.
23	CHAIRMAN APOSTOLAKIS: That's great.
24	MR. KEMPER: And we'll start collecting
25	data pretty soon and George Tartal is our
I	

(202) 234-4433

	43
1	representative to that committee.
2	CHAIRMAN APOSTOLAKIS: Yes.
3	MR. KEMPER: And he'll go there twice a
4	year represent.
5	CHAIRMAN APOSTOLAKIS: Where are there,
6	Paris?
7	MR. KEMPER: Sometimes it will be, sure.
8	CHAIRMAN APOSTOLAKIS: At one time you go
9	to London, is that what you're saying?
10	MR. KEMPER: It could be.
11	CHAIRMAN APOSTOLAKIS: Marseilles.
12	MR. KEMPER: Right. But that's the idea.
13	We will each agree the incidents occurred in our
14	countries.
15	DR. BONACA: What about Huntsville?
16	CHAIRMAN APOSTOLAKIS: Huntsville,
17	Alabama?
18	MR. KEMPER: But at any rate
19	CHAIRMAN APOSTOLAKIS: Anyway, as an
20	action item for the future, we need to spend some
21	serious time looking at what kind of data is available
22	to us, what we learn from it, how we learn, don't just
23	give me Latin names with a hierarchial base.
24	MR. HAMZEHEE: You know, George, for this
25	meeting we were planning mainly to spend no more than
l	I

(202) 234-4433

	44
1	an hour to go over our program plan and to some detail
2	of some of these tasks, but if you like, we can then
3	meet with you again to spend a few hours on each of
4	these tasks.
5	CHAIRMAN APOSTOLAKIS: I think we should
6	do that.
7	MR. HAMZEHEE: And get more technical.
8	CHAIRMAN APOSTOLAKIS: I think this is
9	going to be one of the major issues that the Agency
10	will be facing in the next several years.
11	MR. HAMZEHEE: Sure.
12	CHAIRMAN APOSTOLAKIS: And we ought to be
13	on top of it.
14	MR. ARNDT: We can, as part of our ongoing
15	interaction, highlight a couple of main particular
16	tasks in the various programs. This one for this
17	program and go into a much greater level of detail.
18	We will work through Eric and try and figure out the
19	level of detail you're interested in and work that
20	out.
21	CHAIRMAN APOSTOLAKIS: I'm a little
22	overwhelmed by this. I mean, are we going to review
23	the individual projects of some going on past
24	judgment? I mean, this is down the road. You or the
25	program with some detail here as well, but

(202) 234-4433

	45
1	MR. HAMZEHEE: We were not planning to
2	have a detailed time review. But if you are
3	interested, we can send you some of our preliminary
4	documents, reports and get some feedback from you.
5	CHAIRMAN APOSTOLAKIS: In what form?
6	MR. HAMZEHEE: Some like internal
7	documents that are, you know, formal documents.
8	CHAIRMAN APOSTOLAKIS: Feedback though has
9	to be formal.
10	MR. HAMZEHEE: Right.
11	CHAIRMAN APOSTOLAKIS: The feedback has to
12	be a letter from the Committee.
13	MR. ARNDT: What is probably the easiest
14	way to do it is to schedule meetings at decision
15	points. We have looked at the data and we think we
16	can't do much or we need to do more or whatever and
17	then present those kind of things.
18	CHAIRMAN APOSTOLAKIS: Yes. Maybe that's
19	a good point.
20	MR. ARNDT: We did an evaluation of this
21	and we chose these two models to pursue or things like
22	that.
23	CHAIRMAN APOSTOLAKIS: No, I agree with
24	you, Steve. I think that makes perfect sense. But
25	let me bring another factor into this. This reminds
l	I

(202) 234-4433

	46
1	me of the days when we were struggling with how to
2	formulate the frame work for risk-informed regulatory
3	decision-making. That ended up being Regulatory Guide
4	1.174.
5	MR. ARNDT: Right.
6	CHAIRMAN APOSTOLAKIS: And in the sense
7	that here, just as then, the way to proceed forward is
8	not obvious. I mean, we are really looking for ways
9	of doing it and how to do it.
10	MR. ARNDT: Right.
11	CHAIRMAN APOSTOLAKIS: I mean, now
12	everybody says 1.174, you know, as if it's the most
13	natural thing in the world. But I know people have to
14	agonize over it, you know. And the ACRS got involved
15	early in the process and we had what some people call
16	participatory review, instead of waiting until the
17	end.
18	So the staff will come to us and say well,
19	gee, we're thinking of doing this or that. What do
20	you guys think? And we will, you know, say well, you
21	know, this makes sense, this doesn't make sense. If
22	you feel that that kind of participation will be
23	beneficial to you, I would rather go that way than
24	wait until you have a draft NUREG and then have the
25	Committee say we don't like it, so that doesn't come
	I

(202) 234-4433

	47
1	as well.
2	MR. ARNDT: Yes. And I agree. I think
3	for some of these tasks, particularly this one and
4	some of the others, we will investigate something and
5	we'll think we have a direction and that's what I mean
6	by a decision.
7	CHAIRMAN APOSTOLAKIS: Okay. So I would
8	like to have this being one of the areas where we can
9	do that. After you guys have thought about it and say
10	well, we're going to follow this route, maybe we can
11	have a meeting and get whatever reason you can get
12	from us.
13	MR. ARNDT: Yes, okay.
14	CHAIRMAN APOSTOLAKIS: Do the Members
15	agree?
16	DR. KRESS: I think it's great.
17	CHAIRMAN APOSTOLAKIS: I'm not running
18	this, you know. Well, actually, if they disagree with
19	that, I would have heard it all, so, but it was just
20	a courtesy. No, but I really think this is the best
21	way to proceed, because this is a very difficult
22	subject.
23	DR. KRESS: Usually we do this with the
24	full Committee.
25	CHAIRMAN APOSTOLAKIS: Yes.
	I

(202) 234-4433

	48
1	DR. KRESS: On 1.174 rather than just two
2	or three Members.
3	CHAIRMAN APOSTOLAKIS: Well, yes, yes. In
4	this case, probably the Subcommittee, I think.
5	DR. KRESS: We might want to combine some
6	Subcommittees.
7	CHAIRMAN APOSTOLAKIS: The Subcommittee
8	probably will have a meeting or two and then go to the
9	full Committee for a letter. I would rather
10	communicate with the staff than using letters.
11	DR. KRESS: Oh, yes.
12	CHAIRMAN APOSTOLAKIS: My understanding is
13	that the ACRS Staff doesn't like us to give you
14	informal comments. I mean, we give you comments here,
15	but not in writing.
16	MR. HAMZEHEE: We can give you status at
17	more often, but for that, then it can't be as
18	frequent, because it takes a lot of your resources to
19	prepare letters.
20	CHAIRMAN APOSTOLAKIS: No, I'm not saying
21	every week.
22	MR. HAMZEHEE: No, no.
23	CHAIRMAN APOSTOLAKIS: I don't want to see
24	you every week.
25	MR. ARNDT: The feeling is mutual.
I	I

(202) 234-4433

	49
1	CHAIRMAN APOSTOLAKIS: Louis, I would
2	really like to know a little more about it though.
3	Can you tell us anything? I mean, you know that, you
4	know, A, B, C, D means nothing. Is there any detail
5	you can give us now or is it pretty much over?
6	MR. HILSMEIER: I can give
7	CHAIRMAN APOSTOLAKIS: Yes, go ahead,
8	Todd.
9	MR. HILSMEIER: I can give you some
10	numerical guidance.
11	CHAIRMAN APOSTOLAKIS: Yes, no, I don't
12	need all the numbers.
13	MR. HILSMEIER: Okay. Because this
14	process, this task is still ongoing, that's and
15	we're counting time.
16	CHAIRMAN APOSTOLAKIS: Do you remember of
17	a failure mode that was kind of unusual and is worth
18	mention?
19	DR. CHU: Right now, we are looking at the
20	hardware failure part.
21	CHAIRMAN APOSTOLAKIS: Yes.
22	DR. CHU: We don't have detailed
23	description of any failures. What we have is, as I
24	indicated earlier, we have from one source of data for
25	this particular component. We observe high failures
ļ	

(202) 234-4433

	50
1	in hours, that's all.
2	CHAIRMAN APOSTOLAKIS: That's all?
3	DR. CHU: Failure may represent, you know,
4	products that get returned to the manufacturer and
5	manufacturer return to analyze yes, it fail or
6	identify specific cause of failures. But we don't
7	have that information. All we know is this failure
8	CHAIRMAN APOSTOLAKIS: You mentioned two
9	events yesterday, one of Turkey Point and the other
10	Davis-Besse. So at least you have those and you may
11	have more than
12	DR. CHU: Yes, Turkey Point. Okay. In
13	terms of nuclear experience, Turkey Point is one that
14	we have found, too, but that's a well-known one and
15	then there's
16	CHAIRMAN APOSTOLAKIS: That doesn't count.
17	DR. CHU: It was an equipment failure.
18	CHAIRMAN APOSTOLAKIS: It was not an
19	equipment failure. It was a software failure.
20	DR. CHU: It was software. And then
21	another one that seemed interesting is one at Pilgrim.
22	There it's, I will call it, a real software common
23	cause failure.
24	CHAIRMAN APOSTOLAKIS: Okay. What
25	happened? Do you remember?
	I

(202) 234-4433

	51
1	DR. CHU: It was during a storm and there
2	is this voltage regulator that controls the voltage
3	out of the transformer. The software was programmed
4	such that when you have certain under-voltage, it will
5	just trip the transformer. And of course, the same
6	software is used on different transformers. And
7	during this storm, the trip occurred. All the
8	transformers lost power and you lost vital AC buses,
9	so it is an interesting event at Pilgrim. This is
10	based on my understanding by reading the LER.
11	And then there is another incident. I
12	don't remember the specific controller. It's someone
13	like, you know, there are two controllers, the main
14	controller, a backup controller, but the main
15	controller failed in such a way it prevented the
16	backup controller from taking over. So it's some kind
17	of dependency that caused it. That's interesting,
18	too. You know, it is this kind of dependency we would
19	hope to capture.
20	CHAIRMAN APOSTOLAKIS: Yes, that's the
21	kind of insight we want to gain, yes. Yes,
22	absolutely, yes.
23	MR. SNODDERLY: Because mainly, I know
24	there are some folks here from Duke, but I would
25	imagine when they come in with their application for
I	I

(202) 234-4433

52 1 Oconee, they are going to look at your database and 2 the first thing they are going to say is it's not 3 applicable to us because, you know, we -- you know, we 4 have this system and it's different than yours. Okay. 5 So your database doesn't apply. But if you can say, you know, have you 6 7 considered this specific type of under-voltage or 8 common cause failure, they can say yes, we either have 9 that design flaw or we don't, we designed it out. So 10 I think it's something you have -- it goes back to, I think, some of the concerns that maybe NRR has, is 11 that I'm going to be presented with plant-specific 12 applications of specific digital replacements, and I 13 14 think it's going to be much more valuable to 15 understand, as Dr. Apostolakis has said, the failure modes and to identify all --16 CHAIRMAN APOSTOLAKIS: 17 Sure. MR. 18 SNODDERLY: -- the commonality as 19 opposed to we think digital systems of aux feed water 20 systems have this failure rate, because I'm going to 21 say my aux has that probability. 22 CHAIRMAN **APOSTOLAKIS:** This is the 23 cornerstone of everything we do because, for example, 24 yesterday we heard about fault injection techniques

and they said we start with a space and we select the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	53
1	faults. The natural question is how do you select the
2	fault to test against what happened at Pilgrim, right?
3	This is operating experience. This is the
4	real thing. Okay? That would be a contributor. I
5	mean, it can't be their only thing, the only basis,
6	but it's certainly very important to know. So this
7	data collection thing is really, in my mind, one of
8	the most important tasks that we have in this program.
9	Now, can you speed it up, Todd, a little bit? Yes,
10	skip this and this.
11	MR. HAMZEHEE: You don't want to hear
12	conclusions?
13	CHAIRMAN APOSTOLAKIS: I don't know. What
14	is 16?
15	MR. HAMZEHEE: It would be probably
16	conclusion.
17	CHAIRMAN APOSTOLAKIS: 16, what is 16?
18	MR. HAMZEHEE: 16?
19	MR. HILSMEIER: Task 6, Development of
20	Reliability of Digital System Hardware Model.
21	CHAIRMAN APOSTOLAKIS: So you seem to have
22	decided that either a fault tree or a Markov Model
23	will be good enough. Is that what you're saying here?
24	How did you decide that? I thought you were reviewing
25	methods or you are not reviewing methods for hardware
l	I

(202) 234-4433

	54
1	then? You are reviewing methods only for software
2	failure, because the third bullet seems to say we know
3	which way to go.
4	UNIDENTIFIED SPEAKER: George, this
5	CHAIRMAN APOSTOLAKIS: Louis has announced
6	it.
7	DR. CHU: We are really looking at kind of
8	modeling the hardware of the digital system.
9	CHAIRMAN APOSTOLAKIS: Yes. So you have
10	decided for hardware, this is the way to go?
11	DR. CHU: We feel that the Markov Model
12	captures a lot of the digital system features.
13	CHAIRMAN APOSTOLAKIS: Well, you may be
14	right, but you probably need to support that. Maybe
15	not now, but in the future.
16	MR. HAMZEHEE: I think once the work is
17	done, we're going to have some justification and
18	bases, definitely.
19	CHAIRMAN APOSTOLAKIS: What I'm saying is
20	that in the future meetings or, you know, when you
21	have to submit reports, these things have to be
22	supported. Don't just say, you know, we feel it's
23	good. The Agency does not feel, Louis. The Agency is
24	cold-blooded logic.
25	DR. CHU: We have tasks. We have tasks to

(202) 234-4433

	55
1	develop models. At that point we will evaluate it
2	more to see if it's a reasonable model.
3	CHAIRMAN APOSTOLAKIS: Anyway, what I'm
4	saying is that the message you are sending there is
5	something that may be premature.
6	MR. HAMZEHEE: We agree, but so far, based
7	on what we have seen, either fault tree or Markov
8	would be okay. I mean, not if there are some special
9	cases that may not be
10	CHAIRMAN APOSTOLAKIS: I don't know why.
11	I mean, a fault tree I can understand, but the Markov,
12	I mean, we start playing with states and transition
13	rates when we just said that there is no date. It's
14	an interesting way of proceeding. Okay. 17?
15	MR. HILSMEIER: Task 7 involves
16	quantifying the Hardware Reliability Model. We'll
17	discuss the core contributors, the system failure
18	probability.
19	CHAIRMAN APOSTOLAKIS: Now, the hardware
20	failures, shouldn't you talk about the environment at
21	some point, I mean, what harsh environments you may
22	have and what these will do to the hardware?
23	MR. HILSMEIER: I believe that should be
24	that would be in the failure rates, the environment
25	reflected in the failure rates. Is that correct?
	1

(202) 234-4433

	56
1	CHAIRMAN APOSTOLAKIS: I don't know.
2	DR. CHU: Yes, but we don't have data to
3	differentiate. If you look at what's in the <u>Military</u>
4	Handbook or PRISM, that kind of method, they do
5	explicitly try to account for it, but we don't know
6	what is the basis that they come up with a pi factor
7	of .35 or whatever. And then my suspicion is that
8	they may have, you know, as stated, a particular
9	component, a particular situation where they try to
10	extrapolate to other situations.
11	CHAIRMAN APOSTOLAKIS: Even without this
12	expert opinion, I mean, they feel that it was down by
13	whatever, 70 percent, but I thought that was the whole
14	point, that if you have an accident and you create
15	harsh conditions, there is concern about the hardware
16	of a machine, because under normal conditions, what,
17	you expect random failures?
18	MR. HAMZEHEE: I think qualitatively we
19	will include it, but how are we going to actually
20	quantify it and do we have data to support it. That's
21	the question.
22	CHAIRMAN APOSTOLAKIS: Oh, I don't now.
23	MR. HAMZEHEE: See, that is for
24	qualitatively, you are right.
25	CHAIRMAN APOSTOLAKIS: Didn't the report
I	1

(202) 234-4433

	57
1	from the National Research Council address this issue?
2	I think they did.
3	MR. HAMZEHEE: I'm not familiar with that.
4	CHAIRMAN APOSTOLAKIS: There was a report
5	on digital software in the nuclear industry. I mean,
6	it's a few years old now but, in fact, our consultant,
7	Mr. White, was a member of the group.
8	DR. KRESS: It wasn't the National
9	Research Council. Wasn't it the National Academy?
10	CHAIRMAN APOSTOLAKIS: It was the National
11	Research Council, yes. The academies issue their
12	reports through the National Research Council.
13	DR. KRESS: Oh, that's right. They do.
14	CHAIRMAN APOSTOLAKIS: It's the other NRC,
15	as they say.
16	DR. KRESS: Yes.
17	CHAIRMAN APOSTOLAKIS: So I think no,
18	they have a lot of good discussions there and probably
19	they are addressing this issue, too.
20	DR. CHU: George, our current task is kind
21	of limited. Look at what's available out there. You
22	know, somewhere someone has ASME database or has
23	collected some data.
24	CHAIRMAN APOSTOLAKIS: The Academy report
25	may also verify or may have information.
I	1

(202) 234-4433

	58
1	DR. CHU: In the case of software, I mean,
2	we are starting the task. We are starting the correct
3	software failure experience. It looks like they are
4	a lot of it is interesting experience.
5	CHAIRMAN APOSTOLAKIS: These Academy
6	reports usually are reviewed by everyone and his
7	mother and it's a good idea to know what they say,
8	because there was no consensus about that. That's
9	why, in fact, it never came up with any complete
10	recommendations, because they couldn't agree. They
11	just couldn't agree, but the discussions they had
12	there might be very enlightening and they have a long
13	list of references.
14	MR. HAMZEHEE: We'll look into it.
15	MR. HILSMEIER: Task 8 involves developing
16	an acceptable method for including software failures
17	in digital system PRAs, and the first task step in
18	Task 8 is to review software-induced failure events
19	from different industries to identify failure modes,
20	failure causes, current frequencies and to gain
21	insight into modeling software failures in the PRA.
22	This sub-task was included under recommendations from
23	ACRS. I don't recall what meeting that was, 2004.
24	And then the second
25	CHAIRMAN APOSTOLAKIS: This is the
ļ	I

(202) 234-4433

	59
1	presentation that follows, right? Isn't that what
2	Steve Arndt and Tunc Aldemir is going to talk about?
3	MR. ARNDT: Pardon me? What was the
4	question?
5	CHAIRMAN APOSTOLAKIS: Development of NASA
6	modeling software failures. Isn't that what you're
7	talking about later?
8	MR. ARNDT: Not exactly. As I talked
9	about last night, we're intentionally going at this
10	from two different perspectives. This effort is
11	looking at it from more traditional efforts of looking
12	at hardware modeling and software modeling and fault
13	tree modeling and things like that. The other effort
14	is looking at it from an integrated digital systems
15	type analysis that looks at using the more
16	complicated, integrated methodologies. So it's the
17	same concept, but from a different perspective and
18	we'll take about that after this presentation.
19	CHAIRMAN APOSTOLAKIS: All right.
20	MR. HILSMEIER: And next we'll review
21	additional literature on development of the Software
22	Reliability Model. We'll address issues such as
23	software failure rates, meaning full and consideration
24	of uncertainties and evaluate different reliability
25	methods such as fault trees, Markov, reliability
ļ	

(202) 234-4433

growth models and the other methods that we find from the review.

3 Then we'll develop the Ouantitative 4 Software Failure Model and evaluate existing software 5 reliability models and establish a linkage between software and hardware models, and determine software 6 7 failure parameters that have to be quantified. Different types of software have different effects on 8 9 digital systems and they may have to be modeled 10 differently. We'll apply the Software Reliability Model again to the digital protection system for a 11 12 time, and the scheduled time frame for this task is July 2005 to September 2008. 13

14Task 9 involves quantifying the software15failure probabilities identified under Task 8. And16this task is estimated to be performed in October 200717and completed by September of 2008. Task 10 involves18quantifying the Digital System Reliability Model19incorporating the hardware and software together and20performing --

21 CHAIRMAN APOSTOLAKIS: For all of the 22 system? 23 MR. HAMZEHEE: Yes. For instance, for RPS 24 systems. 25 CHAIRMAN APOSTOLAKIS: The digital RPS?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

60

	61
1	MR. HAMZEHEE: Yes, the digital RPS. The
2	analog we already have.
3	CHAIRMAN APOSTOLAKIS: No, but you would
4	not include the rods.
5	MR. HILSMEIER: That's right. And we'll
6	perform sensitivity calculations to evaluate
7	CHAIRMAN APOSTOLAKIS: You know, there is
8	a very good discussion in that Academy report on these
9	things and for the RPS, it might work, but for other
10	systems probably not, because all it does is it gives
11	a command scram, collects data and gives a command.
12	In other situations, we're saying that the argument is
13	that you cannot just talk about the software in
14	isolation from the bigger system. If the software,
15	you know, controls parts of the hardware and receives
16	commands and all that, but in the RPS probably it's a
17	simpler system, because all it does is monitors
18	variables and says shut down.
19	MR. KEMPER: Well, if I could add. This
20	is Bill Kemper again. To a large extent that's true,
21	but it's also variable trip calculations that go
22	through the various RPSs, so that is a bit of
23	sophistication maybe that we have to investigate.
24	CHAIRMAN APOSTOLAKIS: Right. Right.
25	True. But I mean, if there is a system where this
ļ	I

(202) 234-4433

62 1 approach works, then probably this is the kind. Okay. 2 Task 10. 3 MR. HILSMEIER: Task 10 is scheduled to 4 start in October 2007 and be completed in 2008, in Task 11 involves integrating the Digital 5 December. 6 System Reliability Model into the PRA. And if we 7 choose to use Markov in that model, then we have got 8 to develop an integration method. We also need --9 CHAIRMAN APOSTOLAKIS: Now, this work for 10 Oconee, because you mentioned Oconee several times, this is not in support of the NRR activity. I mean, 11 this is just the method development within RES and the 12 reason why you're using Oconee is because you're going 13 14 to have information. 15 MR. HILSMEIER: That's correct. 16 MR. HAMZEHEE: Correct. 17 CHAIRMAN APOSTOLAKIS: Okay. 18 MR. HILSMEIER: And also under Task 11, 19 we'll develop guidance on when diverse systems can be considered independent. And that's scheduled to start 20 21 in October 2007 and complete in March 2009. The last 22 task is developing, preparing a NUREG report that 23 documents all the tasks and, as you mentioned earlier, 24 we will have intermediate reports. 25 CHAIRMAN APOSTOLAKIS: Well, you gentlemen

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

may want to think about a schedule for interactions 2 I mean, pass it by Eric. Not too frequent, with us. 3 not too infrequent. Hossein, this is the report. Steve doesn't want anybody else to see what the report is. Okay. Any questions from the Members of the 6 Subcommittee? I guess not. Please. Please, identify yourself and speak with sufficient clarity.

8 MR. WATERMAN: This is Mike Waterman with Office of 9 Research. And just going back to my 10 experience over at NRR, I would like to bring up a manufacturing data, 11 point about using is the denominator in that data is going to be biased by the 12 warranty period of the equipment that's reported to 13 14 the vendor.

15 So if you just rely on that data, all you're going to get really reported to the vendor is 16 equipment that failed during the warranty period where 17 the company using that equipment thinks they can get 18 19 a new piece of equipment for it. Now, if that company 20 instead has a piece of equipment fail beyond the 21 warranty period, it's more expensive for them to 22 report the data and still buy the equipment than it is 23 for them to simply buy a replacement part, stick it in 24 and get back to operation. So you're probably not 25 going to get a lot of out-of-warranty reports on that.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

4

5

7

(202) 234-4433

63

1 Let's see here. The other basis is is 2 that if you have got equipment out in the field, the manufacturer says look how long my equipment has been 3 4 running. And then when you go out to the field, you 5 find out two years prior to that that equipment was replaced by another vendor's equipment. And so you 6 7 can't just say well, it hasn't failed so look how long 8 it has run without failure. It might be sitting over, 9 you know, acting as a reef out in somebody's harbor by So it's kind of hard to use manufacturing data. 10 then. As a matter of fact, in dedicating COTS 11 12 equipment, we have four processes that can be used to 13 dedicate COTS equipment for safety-related 14 applications. That's special tasks and inspections, 15 supplier surveys, source verification and use of 16 historical data. That fourth option always has to be 17 combined with one of the other three simply because, 18 you know, historical data is just not all that 19 reliable.

20 With regard to using nuclear power plant 21 LERs, keep in mind that LERs are submitted when safety 22 systems are challenged. So the only time you're going 23 to get an LER is if the reactor trips or something 24 like that happens or a piece of safety-related 25 equipment is inoperable. You may have lots of other

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

64

	65
1	failures in a plant that have occurred. But you may
2	never hear about them, you know, it costs money to do
3	an LER if they didn't affect safety. So you have got
4	to kind of keep that factored in there also. So just
5	a couple of comments on using historical data.
6	CHAIRMAN APOSTOLAKIS: Thank you.
7	MR. HAMZEHEE: Thanks, Mike.
8	CHAIRMAN APOSTOLAKIS: Any other comments
9	from the audience?
10	MR. TOROK: Yes.
11	CHAIRMAN APOSTOLAKIS: Yes, come in, come
12	up.
13	MR. TOROK: I'm Ray Torok from EPRI and I
14	guess we have been looking at, I guess, things related
15	to this for a couple of years now and I have some
16	suggestions about, I mean, questions about what you
17	have been looking at and maybe things that would be
18	helpful.
19	One of them is have you guys looked at the
20	sensitivity of the core damage frequency to how the
21	I&C is modeled in the PRA, you know, and more
22	specifically, what is the target reliability that you
23	need from the I&C to make it a negligible contributor
24	to risk compared to everything else, because in the
25	grand scheme there are many components in each system,
ļ	I

(202) 234-4433

you know, pumps and valves and so on, and there are many systems in a plant.

3	And so it may be that the reliability you
4	need from the I&C is really pretty modest in the grand
5	scheme of things and it may not be or it may be that
6	you don't need a precise, you know, determination of
7	the reliability. At least that's the way it looks
8	from a lot of sensitivity studies that we have done.
9	Another question is in regard to the use
10	of data from other places like NASA for example. When
11	you look at NASA software, are you looking at serial
12	number one, a one of a kind of software, you know,
13	based system as opposed to a commercial device where
14	there are 40,000 or 50,000 of them in the field.
15	Now, what we found in talking with
16	commercial vendors and reviewing, doing design reviews
17	and so on on their equipment including their software,
18	is that by the time a commercial device has matured in
19	the field, the manufacturer's historical data shows a
20	trend where the software-based failures go to nothing
21	and then they stop changing the software. They stop
21 22	
	and then they stop changing the software. They stop
22	and then they stop changing the software. They stop fixing it, because it's as fixed as it's going to get,
22 23	and then they stop changing the software. They stop fixing it, because it's as fixed as it's going to get, and the hardware failures continue, all right, which

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

66

The hardware continues to degrade with time and so on.

We have also talked with vendors were they meticulously kept records comparing their old analog devices to their new digital counterparts, because they wanted to prove to themselves that the digital devices were at least as reliable as the old analog devices, so that had data on that. Now, whether or not they want to share it with you, I don't know. You know, we signed non-disclosure agreements and whatnot.

10 But the manufacturers are really up to speed on that and many of these cases, now, 11 I'm 12 talking primarily simpler components, about transmitters, you know, signal controllers, simple 13 14 devices compared to PLCs, but in those cases once the 15 software gets mature, it's mature, you know, and 16 that's the end of the changes for that.

17 So another question then that goes with that is have you guys looked at the possibility of 18 19 comparing the analog to digital reliability to get a 20 handle on what these digital systems are, because the 21 analog systems are modeled in the PRAs right now. 22 That leaves us a black-box and, in many cases, I 23 suspect the black-box is more than adequate in the 24 context of the PRA because of all the other 25 contributors, right?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

(202) 234-4433

67

	68
1	The other thing I wonder about when you're
2	looking at the data, especially for software, is that
3	you look I suggest that you look at the root cause.
4	A lot of things that are determined to be or that are
5	called software failures turn out to be requirement
6	specification errors and, in fact, I know many stories
7	about digital failures at various times and every one
8	of them comes back to a requirement specification
9	error not a software error at all.
10	CHAIRMAN APOSTOLAKIS: So?
11	MR. TOROK: So then the question, of
12	course, is how do you roll that into what you do with,
13	you know, your with your model in PRA?
14	CHAIRMAN APOSTOLAKIS: Yes. And how is
15	that consistent with your earlier admonition to look
16	at what kind of reliability should the software have
17	compared to the hardware if the failure models are
18	different? You know, it seems to me it's not just a
19	matter of the number. It's a matter of us
20	understanding how they fail and digital software don't
21	fail in a continuous manner like analog or the non-
22	physical components.
23	MR. TOROK: No, I
24	CHAIRMAN APOSTOLAKIS: It seems to me you
25	have to understand first the failure models.
I	I

(202) 234-4433

	69
1	MR. TOROK: I agree, and that's why in the
2	method that we're proposing, we would love to talk to
3	you more about it.
4	CHAIRMAN APOSTOLAKIS: Yes, sure.
5	MR. TOROK: And I think we should. I
6	think we should participate in some of these
7	discussions, because we have kicked these things
8	around quite a bit. And that's why we ended up
9	looking to what we call this defensive measures
10	approach where you're trying to understand and
11	evaluate the specific design features that are
12	implemented in these software-based systems to
13	preclude certain types of failures, because that has
14	a tremendous impact on the reliability and in some
15	cases, you get into very subtle things.
16	CHAIRMAN APOSTOLAKIS: Maybe what you are
17	proposing in your report, I don't know, is how to
18	manage the issue of adding software to plants, because
19	you're talking about, you know, I guess defense-in-
20	depth and diversity issues.
21	MR. TOROK: Well, yes, and what we're
22	looking at, of course, is defensive measures built
23	right into the software.
24	CHAIRMAN APOSTOLAKIS: Yes.
25	MR. TOROK: Either intentionally as a
I	I

(202) 234-4433

70 1 defensive measure or because something inherent in the design structure provides some defense against common 2 3 cause failure, you know, and simple --4 CHAIRMAN APOSTOLAKIS: So your report 5 might be more useful to NRR, because these guys are developing methods for assessment, the assessment of 6 7 this. And after that they will go to the management, 8 but you, of course, are interested in what do we do 9 now. I mean, the industry has to have something, some 10 quidance, so you're probably ahead of the curve, but it doesn't hurt for them to know what is already done 11 on this. 12 You know, of course, 13 MR. TOROK: the 14 problem we end up with is software failures aren't 15 random at all, right? So what it comes down to is understanding what kinds of failures the software is--16 17 CHAIRMAN APOSTOLAKIS: You see, that's why I keep questioning the use of Markov Models. 18 You 19 know, they are not random. We have to understand that 20 and appreciate that. Now, there may be some instances 21 where, you know, the models are fine but, you know, 22 you have to really conclude that after some argument. 23 MR. HAMZEHEE: Yes. 24 CHAIRMAN APOSTOLAKIS: Okav. 25 MR. HAMZEHEE: And I think there were some

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	good remarks and I would like to just make two points
2	that are related. One is right now, as we speak and
3	as you know, the reliability of, for instance, analog
4	RPS is like a $1E^{-6}$ failure probability. So if they
5	are so highly reliable, can you beat that with the
6	digital?
7	CHAIRMAN APOSTOLAKIS: Anyway, the
8	MR. HAMZEHEE: So we have to make sure,
9	number one, how they compare.
10	MR. TOROK: Well, there is
11	CHAIRMAN APOSTOLAKIS: No, he wants you to
12	compare it with the failure rates of pumps.
13	MR. HAMZEHEE: Well, but right now this is
14	with RPS?
15	CHAIRMAN APOSTOLAKIS: Then you are at
16	least more free.
17	MR. HAMZEHEE: Because they are highly
18	reliable with analog systems. We don't know how
19	reliable the digital is, number one. Number two,
20	you're right again with respect to the software, but
21	the problem that we may have, and we don't know
22	because of some of these unknowns, is the software is
23	highly reliable, but if there is a bug someplace, it
24	can bypass all the redundancies within your system.
25	So that could wipe out the whole system. That's why
ļ	

(202) 234-4433

	72
1	you have got to be careful as to not allow any
2	failures in your software.
3	CHAIRMAN APOSTOLAKIS: If it fails, you
4	don't know how it's going to fail.
5	MR. HAMZEHEE: Exactly. You could wipe
6	out the whole system regardless of how many channels
7	you have, how many redundancies you have.
8	MR. TOROK: That's true and the thing that
9	typically gets software into trouble is when it
10	encounters conditions that were unanticipated by the
11	designer or untested, that sort of thing. Well, it
12	turns out there are many defensive measures that can
13	be incorporated into the design of the feature, I
14	mean, into the design of the software, I'm sorry, to
15	handle those things. So that's why in our method it's
16	very important to find those.
17	CHAIRMAN APOSTOLAKIS: Anyway, maybe the
18	message here is that oh, I'm sorry.
19	DR. BONACA: You made a statement
20	regarding, you know, the importance of using
21	commercial devices where the potential is that since
22	you have the software so, therefore, the software
23	folds back under from that.
24	CHAIRMAN APOSTOLAKIS: Yes.
25	DR. BONACA: But I always sense that for
I	1

(202) 234-4433

	73
1	power plants, I mean, the way I see it, if I think
2	about replacement RPS and ESF, it's going to be really
3	probably one or two applications at least in the
4	short-term. So how does that insight apply? I mean,
5	am I misunderstanding what you're communicating there?
6	MR. TOROK: Well, I'm not sure. Let me
7	try this in a number of the applications that are
8	being done right now, like at Oconee they are using a
9	Teleperm XS platform, right, a commercial device, a
10	commercial PLC.
11	DR. BONACA: Commercial? Let me
12	understand now, commercial?
13	MR. HAMZEHEE: He is saying you can't use
14	commercial, because these are safety-related systems.
15	How can you use commercial for RPS, for instance?
16	MR. TOROK: Well, there is commercial
17	grade dedication to get commercial grade equipment in
18	there. In the case of the Teleperm, it has been
19	reviewed by NRR and there is an SER out on it. So
20	those things have been done.
21	MR. HAMZEHEE: There's a quality
22	requirement even for commercial. You have some
23	quality requirement.
24	DR. BONACA: The software logic is going
25	to be one application, right? The software logic that
ļ	I

(202) 234-4433

	74
1	you have put in on this platform is going to be one
2	application.
3	MR. TOROK: That's right. That's a good
4	point. So what you find in a platform like that where
5	it's a very flexible platform by design, right, the
6	weak link from a software standpoint isn't in the
7	invented software that's on the platform or the
8	operating system or any of that stuff. The weak link
9	is the application code. That's where you have got to
10	be very careful.
11	DR. BONACA: And that's what we're
12	concerned about.
13	MR. TOROK: That's right. So the object
14	in a case like RPS is to keep that as painfully simple
15	as you can, right, and then to go through the right QA
16	process and so on.
17	DR. BONACA: And that's what troubles me
18	somewhat. This goes back to the presentations we had
19	yesterday morning regarding the new approach. For
20	example, we go from Reg Guides who are very
21	prescriptive about what you're going to monitor and
22	what controls you have in the RPS to one for new
23	plants that is very generic, general, provides all
24	these error guidelines.
25	And you know, my concern is, you know,
	I

(202) 234-4433

	75
1	maybe the proliferation of uses that you may have, so
2	you get the bigger software on a bigger platform as a
3	capacity, so that you can handle more things, and I
4	think that in general brings with itself a higher
5	fault probability, it seems to me.
6	MR. TOROK: I agree, so it's the weakest
7	link. Nothing is better than keeping it simple.
8	DR. BONACA: Yes. I'm trying to
9	understand how you go about 4b.
10	CHAIRMAN APOSTOLAKIS: But not simpler, as
11	Einstein said.
12	DR. BONACA: Yes. But even, you know, I
13	mean, after TMI, for example, one of the objectives
14	was the one of minimizing literally the functions that
15	you put in front of an operator, make them really
16	meaningful, so that you have a good picture but, you
17	know, the word at that time a lot of companies that
18	proposed very large systems with many more functions,
19	etcetera, and the objective was they want to say
20	forget about this stuff. You want to focus on really
21	critical pieces of communication to the operators.
22	Okay? And I am trying to understand how the digital
23	systems are going to go away from this philosophy,
24	maybe. I don't know.
25	MR. HILSMEIER: That's a good point.
	1

(202) 234-4433

	76
1	MR. TOROK: It's certainly concerned with
2	the digital systems and a fair question to ask is what
3	have you done to make sure that you're not going to
4	overwhelm the operator or have made it too
5	complicated? Is this a fair question?
6	DR. BONACA: Or create again other failure
7	modes inside the software that were not foreseen.
8	MR. TOROK: That's right. And the other
9	thing, the same consideration, if you add a diverse
10	backup for a software-based system to deal with the
11	common mode failure, because you add complexity when
12	you do that, so you want to be careful about where you
13	do that.
14	CHAIRMAN APOSTOLAKIS: Thank you very
15	much. Anybody who wants to be hated? We will
16	reconvene at 3:15.
17	(Whereupon, at 3:00 p.m. a recess until
18	3:20 p.m.)
19	CHAIRMAN APOSTOLAKIS: Back in session.
20	The last presentation will be by Mr. Arndt and
21	Professor Aldemir of Ohio State. Is that the plan?
22	Yes.
23	PROF. ALDEMIR: Yes, sir.
24	CHAIRMAN APOSTOLAKIS: And you need, what,
25	an hour and 45 minutes or something like that?
l	I

(202) 234-4433

	77
1	MR. ARNDT: An hour and a half to two
2	hours depending upon how many questions we get.
3	CHAIRMAN APOSTOLAKIS: There are no
4	questions.
5	MR. ARNDT: Yes, right. I will be giving
6	the first part of this presentation and since you have
7	heard more than enough of me for the last two days,
8	Professor Aldemir will be giving the latter part of
9	the presentation. Why don't you go ahead?
10	CHAIRMAN APOSTOLAKIS: Now, there is also
11	a report, which is a NUREG draft report out of Tunc's
12	shop.
13	MR. ARNDT: That was provided for
14	background.
15	CHAIRMAN APOSTOLAKIS: Just background.
16	MR. ARNDT: Yes.
17	CHAIRMAN APOSTOLAKIS: You are not asking
18	us to comment on it.
19	MR. ARNDT: No, it's a draft, so just
20	background.
21	CHAIRMAN APOSTOLAKIS: But it will become
22	a NUREG report.
23	MR. ARNDT: If we decide that it's of
24	sufficient quality, etcetera, etcetera, then it is
25	anticipated it to become a NUREG report.
I	

(202) 234-4433

	78
1	CHAIRMAN APOSTOLAKIS: But I'm just
2	wondering. I mean, there is some speculation here
3	that a rating of various methods against some
4	criteria, I don't know, I mean
5	MR. ARNDT: We'll talk about that today.
6	CHAIRMAN APOSTOLAKIS: Ah, okay. Go
7	ahead.
8	MR. ARNDT: Just as some basic background,
9	we talked about this a lot last night. The NRC
10	encourages the use of PRA and associated analyses to
11	the extent possible. In the National Academy study,
12	as well as the ACRS letter associated with it, they
13	encouraged the development of risk-informed
14	application in this area.
15	Particularly, to go back to the National
16	Academy study, the specific recommendation was that
17	the NRC should strive to develop methods for
18	establishing the failure probabilities of digital
19	systems for use in probabilistic safety assessment.
20	These methods should include acceptance criteria
21	guidelines, limitations of use and for rationalization
22	and justification for the methods chosen.
23	So the idea behind this is to look at the
24	different kinds of methodologies. As has been
25	recommended by the ACRS, it would be preferable if we

(202) 234-4433

79 1 could do this in an integrated fashion. Now, we may 2 not be able to do that, but what we want to do is look 3 at near term PRA applications, which means you have to 4 integrate the rest of the current PRA and develop them in such a way that it makes the most sense. 5 So because of this, what we need to do is 6 7 look at the need to account for dynamic interactions 8 with the process, the interactions between the digital 9 system itself, the various components in the digital 10 system as well as the systems that they are controlling and tripping. 11 12 So as I mentioned yesterday, what we're look at this from two different 13 trying to do is 14 aspects, one from the traditional fault tree/event 15 tree analysis, one from a dynamic modeling analysis. So what we're trying to do is figure out whether or 16 17 not you can build models that can account for these effects and then feed them into our current regulatory 18 19 structure. 20 As we talked about yesterday, we have an overall program plan that looks like this. 21 What I 22 have done is I have shaded in green the areas that 23 this presentation is referring to. In the previous 24 presentation that Hossein gave, they are looking at 25 some of the other parts of the program. So for

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

example, the failure modes, the traditional methods, hardware, software quantification and the evaluation, that's a simplified version of their chart. On the other side, the stuff we're going to talk about this afternoon, is looking at the dynamic modeling methodologies.

7 CHAIRMAN APOSTOLAKIS: But several of the 8 methods that you will talk about have not been 9 designed just for dynamic methods. I mean, I'm 10 surprised that the guys on the left have not looked at that and they just talk about traditional fault trees 11 12 and Markov. I mean, we will see them later, but --13

MR. ARNDT: Yes, you can --

14 CHAIRMAN APOSTOLAKIS: I mean, the two 15 groups don't seem to talk to each other, do they? 16 MR. ARNDT: We do talk to each other. 17 CHAIRMAN APOSTOLAKIS: Over the phone? MR. ARNDT: Yes, but we're down the hall 18 19 from each other. It's a challenge.

CHAIRMAN APOSTOLAKIS: But, Todd, really, 20 21 I mean, in your presentation I would have expected to 22 have seen a longer list of potential methods from 23 which you will pick one after you decide what is 24 applicable to your methods like these guys have been 25 doing, and I know what methods Tunc is going to talk

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	81
1	about. I mean, some of them are unique to dynamic
2	systems in the sense that Tunc is talking about, but
3	not all of them.
4	MR. ARNDT: No.
5	CHAIRMAN APOSTOLAKIS: Not all of them.
6	MR. ARNDT: And what I think Todd was
7	trying to say is this is an example of a methodology.
8	They haven't come up with their actual solution yet.
9	CHAIRMAN APOSTOLAKIS: No, but the way
10	they were presenting it, they said we'll go either
11	with fault trees or with Markov. That means that's
12	it, one of the two. And now, we're going to hear
13	about five or six methods and I think most of them
14	apply to them as well.
15	MR. ARNDT: They potentially apply.
16	CHAIRMAN APOSTOLAKIS: Yes, potentially,
17	potentially, maybe, perhaps.
18	PROF. ALDEMIR: May I make a comment here?
19	My name is Tunc Aldemir and I am a faculty with Ohio
20	State University. I have been working with
21	Probabilistic Risk Assessment for over 20 years and
22	specifically in dynamic methodologies.
23	What I think the issue here, which was
24	mentioned earlier, is that we are approaching it from
25	I mean, it's the diversity issue like we had
l	I

(202) 234-4433

	82
1	national, what is it, Los Alamos and Sandia and then
2	Lawrence Livermore, not really competitors, but doing
3	different methodologies. We are approaching the same
4	problem using different approaches. I think that's
5	the issue, right?
6	CHAIRMAN APOSTOLAKIS: I don't know why
7	you guys are commenting on what I said so much.
8	MR. ARNDT: Okay.
9	CHAIRMAN APOSTOLAKIS: All I said was that
10	they did not present a complete set of potential
11	methodologies and I keep hearing well, we're doing it
12	two different ways and perhaps and potential. I think
13	it's a true statement.
14	MR. ARNDT: It is.
15	CHAIRMAN APOSTOLAKIS: Yes.
16	MR. ARNDT: Onward. So the objective of
17	the study is, basically, to look at the different
18	kinds of methodologies that might be available, make
19	some conclusions and choose the kinds of methodologies
20	we can use, develop an understanding of the potential
21	advantages and disadvantages and do some pilot studies
22	on the proposed methodologies.
23	As you heard earlier, the other side of
24	the problem is also going to do some pilot studies and
25	what we're planning on doing is having at least two
I	I

(202) 234-4433

different pilot studies, one that has the likelihood 1 2 to be more successful than traditional modeling like 3 RPS, and one that has more likely challenges 4 associated with dynamic modeling like the auxiliary 5 feed water system.

So we're going to look at the various 6 7 issues associated with the current PRA modeling 8 methodologies, fault trees/event trees, review the 9 advantages and limitations of dynamic methodologies, review the industry practices, has anybody else used 10 dynamic methodologies effectively, look 11 at the existing regulatory framework and what does that drive 12 13 us toward?

14 What do we need to accomplish? What level 15 do we need to do, so this might of detail be 16 implementable from a regulatory standpoint. And then 17 look at the minimum requirements associated with doing this. Is there something associated with the dynamics 18 19 the failures or with the system itself that of We don't want to do this 20 requires us to do this? 21 simply as an academic exercise if the particular 22 interactions in the system --

23 CHAIRMAN APOSTOLAKIS: So don't go to Ohio24 State.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. ARNDT: Yes.

25

	84
1	CHAIRMAN APOSTOLAKIS: Well, you have a
2	professor and you are asking him not to do an academic
3	exercise.
4	MR. ARNDT: Yes.
5	CHAIRMAN APOSTOLAKIS: All right.
6	MR. ARNDT: But the point that we're
7	trying to make is if we do this research and it turns
8	out that these are really neat methodologies, but they
9	are not necessary to get an accurate answer, we don't
10	want to require or encourage the industry to do
11	something more than is necessary. Now, there may be
12	situations where you do need it and that's what we're
13	trying to understand, and we believe that there is at
14	least a good possibility that that's the case or we
15	wouldn't be doing it. And then identify the
16	requirements associated with it.
17	CHAIRMAN APOSTOLAKIS: Okay.
18	MR. ARNDT: So at this point, I'm going to
19	let Tunc talk for awhile and you can give him a hard
20	time.
21	PROF. ALDEMIR: Okay. When we got the
22	task I went through the introduction, I guess.
23	When we got the task, we said what is it that makes
24	analog systems different from digital systems? So we
25	looked through the literature and we really didn't
	I

(202) 234-4433

	85
1	find a complete list. Actually, we didn't even find
2	a partial list. So we tried to characterize.
3	Incidentally, on this project, we have
4	three people who are professional computer science
5	people, two professors and one student, so the
6	computer expertise is not being provided by the
7	nuclear people.
8	CHAIRMAN APOSTOLAKIS: By the way, do you
9	have anybody at Ohio State in the Computer Science
10	Department who worries about software failures?
11	PROF. ALDEMIR: There is no such person.
12	CHAIRMAN APOSTOLAKIS: There is nobody
13	anywhere in the Computer Science Department.
14	PROF. ALDEMIR: No, you are right. You
15	are right. I checked for that, because I wanted to
16	establish a Reliability Engineering Program a long
17	time ago. There is no such person, but we will have
18	somebody who is as close to it as you can get. That's
19	Mike Stusky, who is working on our project. So what
20	we found are the following and, again, this is
21	probably not a complete list, but this is the best we
22	could come up with.
23	First of all, the firmware and software
24	components of the digital I&C systems do not
25	demonstrate any wear characteristics, so they don't
ļ	

(202) 234-4433

1 respond to accelerated testing, stress testing, 2 etcetera, so it's hard to test them the way you would 3 do hardware. Firmware, software reliability cannot be 4 accurately modeled using your bathtub curve approach. What happens is that you have the infant mortality 5 6 come down and come to sort of a plateau and then 7 slightly increase, because every time you fix software 8 you may be messing it up more. 9 So then the third difference is that, and 10 this is a big one, there may be complex interactions between the constituents of the digital I&C system and 11 12 the digital I&C system and the process between physics, which may lead to potentially significant 13 14 dependencies between failure events, such as digital 15 I&C systems rely on sequential circuits that have 16 memory, and so the system response is not just 17 dependent on the existing system state, but also on the system history as well as the rate of progress. 18 19 Tasks may compete for digital controllers resources, which may lead to problems such as deadlock 20 21 and starvation. Choice of external/internal 22 communication mechanisms for the digital I&C system,

such as buses and networks, and the communication protocol affects the rate of data transfer. The ability to coordinate multiple digital controllers

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

86

	87
1	directly and explicitly may necessitate a finer degree
2	of communication and coordination between controllers.
3	A digital
4	CHAIRMAN APOSTOLAKIS: I don't know what
5	that means.
6	PROF. ALDEMIR: Right now, I will go
7	through an example. I will go through an example
8	later on to show process couples events.
9	CHAIRMAN APOSTOLAKIS: Okay. Okay. We
10	can do that later.
11	PROF. ALDEMIR: And all I'm saying here is
12	that it makes it tighter. A digital controller can
13	remain active and not only react to data, but
14	anticipate the state of the controlled monitoring
15	system and actually do prognosis rather than just
16	diagnosis.
17	CHAIRMAN APOSTOLAKIS: Now, this is, your
18	bullet here, your third bullet, not the second, but
19	the third one, really the major issue in the software
20	safety community and that's why I said earlier for the
21	reactor protection system, you may be able to model
22	the software sort of independently of the rest of the
23	system. But in general, the school of thought that
24	follows that says that the software is embedded in the
25	hardware system that it controls and you have to study
I	1

(202) 234-4433

	88
1	it as one system. Okay. And I still think that
2	applies to the other guys, too. It's not just you.
3	MR. ARNDT: Well, the issue is
4	CHAIRMAN APOSTOLAKIS: And this is a major
5	issue that was discussed in the Academy.
6	MR. ARNDT: Yes. And the issue is where
7	do you draw that line until you go at it from both
8	sides?
9	CHAIRMAN APOSTOLAKIS: If you want to draw
10	a line.
11	MR. ARNDT: Yes, if you want to.
12	CHAIRMAN APOSTOLAKIS: I don't even know
13	why you draw it.
14	PROF. ALDEMIR: Another important
15	difference is that the failure modes of the digital
16	I&C system are not defined, well-defined. For
17	example, failure of one component, constituent of the
18	system can affect the rest or other parts of the
19	overall system. A system may not fail only on
20	specific input, but on other inputs that are
21	semantically similar or even equivalent or correlated.
22	Software may be able to mask intermittent
23	failures in hardware, so it may be failed, but you may
24	not be aware of it. And there is an example here.
25	Digital I&C systems share data transmissions,
I	I

(202) 234-4433

1 functions, process equipment, which makes them more 2 vulnerable to common cause failure. It is possible 3 for the I&C system to introduce new events, new 4 failure events and also, as part of this as well, 5 multi-testing may introduce new failure dependencies 6 between systems. 7 Software is not a physical entity and 8 testing alone is not sufficient to verify that 9 software is complete and correct and, in fact, there is a fair amount of literature on this. And software 10 defects may remain hidden for long periods 11 and 12 suddenly appear when a certain execution path is exercised. 13 CHAIRMAN APOSTOLAKIS: Which is typical of 14 15 design error. 16 PROF. ALDEMIR: Right. 17 CHAIRMAN APOSTOLAKIS: If you have а design error that will appear only if you have a 18 19 strong earthquake, you know, that's the problem. 20 PROF. ALDEMIR: In fact, this came up 21 before and I want to make a comment as to the use of 22 conventional reliability models or potential use of 23 the conventional reliability models to model software 24 failures. Solenoid wells have a failure PDF, 25 probability distribution function, for failure that is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

89

	90
1	almost like a delta function. So you know, there is
2	an analog in the hardware world and what we are
3	talking here, if nothing happens, unless something
4	happens and so it's like a delta function.
5	CHAIRMAN APOSTOLAKIS: For equipment that
6	are there to mitigate the consequences of severe
7	external events, this is a major issue. If I have a
8	major earthquake, if I have a major tornado and I have
9	built into my plan systems and components that will
10	protect me against those, it is a design error there
11	I have never known until I'm hit. So in the hardware
12	there is exactly the same problem.
13	PROF. ALDEMIR: There is a problem.
14	CHAIRMAN APOSTOLAKIS: And if they find in
15	one of the plants, they had problems, that they had
16	run out of oil or lubricant or something, I don't
17	remember now, it was in the old days. A previous
18	incarnation of the ACRS worried about design errors
19	every time they met, so this is very well-known.
20	PROF. ALDEMIR: Well, this has been
21	discussed already, so I'm not going to spend too much
22	time and the previous presentation covered much better
23	than I am covering.
24	CHAIRMAN APOSTOLAKIS: Well, let me ask
25	you this. We always keep saying about other
l	I

(202) 234-4433

91 1 industries. Have we ever found anything in other 2 industries that was useful to us? PROF. ALDEMIR: No. 3 4 CHAIRMAN APOSTOLAKIS: No. 5 PROF. ALDEMIR: The answer is no from my side. 6 7 CHAIRMAN APOSTOLAKIS: The answer is no. 8 PROF. ALDEMIR: There is one exception and 9 then, this is the last bullet. NASA, of course, has 10 been using dynamic methodologies for awhile, so that is an --11 12 CHAIRMAN APOSTOLAKIS: A small group at NASA, not NASA itself. 13 14 PROF. ALDEMIR: But they are very much interested in doing right now. 15 CHAIRMAN APOSTOLAKIS: 16 Yes. PROF. ALDEMIR: Mike Stamatelatos wants to 17 actually join forces with NRC on this. 18 19 CHAIRMAN APOSTOLAKIS: A lot of people are 20 interested, but what are they doing? 21 PROF. ALDEMIR: Well, we'll try to coordinate. 22 23 CHAIRMAN APOSTOLAKIS: Yes. 24 PROF. ALDEMIR: Okay. So the question is 25 -- and we kept mentioning dynamic methodologies, but

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	92
1	we did not really justify it. The justification
2	changed through implicit statements. I mean, when I
3	was listening to differences between digital systems
4	and analog systems, the need was implicit, but I want
5	to make it a little bit clearer here.
6	What happens is that these dynamic
7	interactions between plant processes and triggered and
8	stochastic events, which may happen in reactor
9	protection and control systems, may lead to coupling
10	between failure events and I will illustrate that
11	later on by an example from feed/bleed cooling of a
12	PWR following a small break.
13	Cases reported in the literature, and
14	there aren't too many of them as far as I know, maybe
15	three or four, all on this process control system
16	interaction indicate that the event tree/fault tree
17	approach may yield conservative, but this may be an
18	important point, but may be overly conservative
19	results. This may be a point for the industry maybe.
20	Omission of failure scenarios is possible
21	if dynamic interactions between plant physical
22	processes and triggered or stochastic logical events
23	are not accounted for. The first study, as far as I
24	know and it may be the only study as far as I know, is
25	by Cacciabue and Amendola and Cojazzi. It's about,
Į	I

(202) 234-4433

1	what, 15, almost 20 years old. They discovered that
2	you may be missing important scenarios if you don't
3	use if you use static methods in conventional event
4	tree/fault tree.

5 And dynamic methodologies, I will define formally in a little while, will be needed only for 6 7 significant systems in which interactions are If they are not and RPS system is a good 8 possible. 9 candidate, but as was mentioned earlier, there may be also complex interactions within that system through 10 11 the software, so we are not too clear if it's really 12 going to be applicable. But if there is any system, reactor-related system, that is probably a 13 qood 14 candidate.

15 need to worry about two types We of The first one is the interaction 16 interactions. 17 between the I&C system and, in our case, the reactor protection and control system and controlled and 18 19 monitored plant physical processes, such as heatup and 20 pressurization of the reactor and level control, which 21 I will call Type I interactions. This is not standard 22 from literature. We are just inventing the 23 terminology, Type I interactions.

And I call them Type I, because historically they were the first ones that were

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

93

	94
1	discovered. Interactions between the constituents of
2	the reactor protection and control system itself, such
3	as communication between different components, multi-
4	tasking, multiplexing, and there are lots more. So we
5	call them Type II interactions.
6	From a reliability modeling viewpoint,
7	Type I and Type II interactions are separable only for
8	single-input, single-output I&C systems.
9	CHAIRMAN APOSTOLAKIS: Like a scram
10	system.
11	PROF. ALDEMIR: Even then, again, it
12	depends how many single-input, single-output. Yes,
13	multiple-input, single-output I am not too sure. This
14	assessment you validated but, again, you know, it's
15	kind of speculative at least, but sounds reasonable,
16	I guess.
17	Generally, it is difficult to integrate a
18	dynamic model into existing plant PRAs, almost all of
19	which are based on the ET/FT approach. Now, this is
20	a critically important point, because there are
21	dynamic methodologies available and I believe you can
22	use them for all sorts of fancy modeling, however
23	fancy your system may be. But then what do you do
24	with the results is a big issue, because it has to go
25	into a complete plant PRA and that is based on codes
ļ	I

(202) 234-4433

	95
1	like SAPHIRE and CAFTA.
2	So you have to come up with cut sets. You
3	have to come up with the dependencies between. You
4	have to figure out the boundaries of the system within
5	the existing PRA, take it out, put the new one in.
6	That's a major task and I don't think that anybody
7	knows how to do that yet.
8	So what are dynamic methodologies, and I
9	will look at first for Type I interactions. There are
10	three types, three major types, continuous time
11	methods, discreet time methods and what I call visual
12	methods. I first called it graphic methods. My
13	colleagues did not like it, so I called it visual
14	methods and most of which are semi-dynamic and I will
15	define that in a little while.
16	So continuous time methods. The first one
17	is the continuous, not the first one historically, but
18	the one that is most comprehensive and then includes
19	almost everything else, is called the continuous event
20	tree approach, which was proposed by the late Jacques
21	Devooght from the Free University of Belgium, a very
22	elegant theory. It consists of a set of linear
23	integral differential equations. It includes
24	everything about the system. You can model almost
25	anything that you want, but it's very complicated,
I	

(202) 234-4433

	96
1	too.
2	Then there is the discreet space, but
3	continuous time analog of this. The one problem with
4	CET or the continuous event tree is that it is hard to
5	model transitions on demand or failures on demand. So
6	we came up with a discreet space version of it. This
7	one, the continuous cell-to-cell mapping technique,
8	which allows failures or modeling failures on demand.
9	When you go to discreet time methods, of
10	course, the first one is Monte Carlo. I mean, if you
11	could
12	CHAIRMAN APOSTOLAKIS: What do you mean?
13	Monte Carlo is a method of propagating uncertainties.
14	Why is that a discreet time method?
15	PROF. ALDEMIR: You can do the same thing
16	to failures.
17	CHAIRMAN APOSTOLAKIS: But Monte Carlo you
18	can use everywhere.
19	PROF. ALDEMIR: Right, right, right.
20	CHAIRMAN APOSTOLAKIS: I mean, it's a
21	method for solving a problem. It's not a model or a
22	methodology.
23	PROF. ALDEMIR: But it is a methodology to
24	approach the problem. If you really can afford the
25	computational time, in fact, that's the best thing to
I	I

(202) 234-4433

	97
1	do.
2	CHAIRMAN APOSTOLAKIS: But you will still
3	need a model and you may still need the CET.
4	PROF. ALDEMIR: You will need a failure
5	model, sorry, a probability distribution function to
6	describe your failure. You are right in that. But
7	when I say
8	CHAIRMAN APOSTOLAKIS: Not only that, but
9	I mean how the components interact, how they interact
10	with the process system. I mean, this is just a
11	method for
12	PROF. ALDEMIR: If you have a system
13	simulator and you use a model
14	CHAIRMAN APOSTOLAKIS: So I will need a
15	model.
16	PROF. ALDEMIR: Yes, you are right.
17	CHAIRMAN APOSTOLAKIS: I need a model.
18	PROF. ALDEMIR: Right.
19	CHAIRMAN APOSTOLAKIS: This is not a
20	methodology like DYLAM, for example, DYLAM is a
21	methodology.
22	PROF. ALDEMIR: You are right.
23	CHAIRMAN APOSTOLAKIS: And Monte Carlo is
24	not.
25	PROF. ALDEMIR: When I said methodology,
I	

	98
1	I implicitly was thinking of stochastic methodologies.
2	CHAIRMAN APOSTOLAKIS: I would delete it
3	from here. I mean, it's just a tool for
4	PROF. ALDEMIR: Okay.
5	CHAIRMAN APOSTOLAKIS: working with any
6	of those.
7	PROF. ALDEMIR: Okay. Then there is a
8	dynamic event tree generation approach and there is a
9	slew of methodologies. DYLAM is the first one as far
10	as I know, developed by Ispra Mendelo and I think
11	Mendelo was the main contributor. Then there is the
12	one that Nathan Siu developed at MIT while he was at
13	MIT. They are similar in principle, but they differ
14	in branching rules. Then there is the Accident
15	Dynamic Simulator by Ali Mosleh at the University of
16	Maryland. There is the Integrated Safety Assessment
17	methodology developed by
18	CHAIRMAN APOSTOLAKIS: This is what the
19	chemical guys use?
20	PROF. ALDEMIR: No, no, this is by Jose
21	Izquierdo from Spain.
22	CHAIRMAN APOSTOLAKIS: Because there is an
23	ISA that is being used by the MOX people. Is that
24	what they call it, Integrated Safety Analysis?
25	MR. SNODDERLY: Right.
Į	I

(202) 234-4433

	99
1	CHAIRMAN APOSTOLAKIS: This is not it?
2	MR. SNODDERLY: Right. No, it's something
3	else.
4	PROF. ALDEMIR: No, this is not it. This
5	is by Jose-Maria Izquierdo from Spain and the Spanish
6	NRC, by the way, or their equivalent of it is using it
7	to assure that the scenarios are complete for the
8	licensee reports. And there is the cell-to-cell
9	mapping technique, which was developed at Ohio State
10	and it's a discreet time, discreet space version of
11	CHAIRMAN APOSTOLAKIS: So there is one
12	less C.
13	PROF. ALDEMIR: One less C, yes.
14	CHAIRMAN APOSTOLAKIS: Which C did you
15	drop?
16	PROF. ALDEMIR: Actually, historically,
17	this came first. This came later and this came last.
18	CHAIRMAN APOSTOLAKIS: Yes, but, I mean,
19	what is the extra C? It stands for what?
20	PROF. ALDEMIR: Continuous cell-to-cell
21	mapping technique.
22	CHAIRMAN APOSTOLAKIS: Oh.
23	PROF. ALDEMIR: Cell-to-cell.
24	CHAIRMAN APOSTOLAKIS: There should have
25	been a D there. Where is the D?
I	

	100
1	PROF. ALDEMIR: Discreet.
2	CHAIRMAN APOSTOLAKIS: Discreet.
3	PROF. ALDEMIR: Okay. Professor
4	Apostolakis is going to argue with that probably, but
5	there is also a DDET/MC. DDET/MC is a dynamic event
6	tree generator developed by
7	CHAIRMAN APOSTOLAKIS: That's okay. We
8	don't need it.
9	PROF. ALDEMIR: a Belgian chap, Pierre-
10	Etienne Labeau, Pierre-Etienne Labeau, but what
11	happens with the MC part is it is used to quantify
12	uncertainties associated with the inputs to dynamic
13	event tree. See, there are two types of uncertainties
14	and I'm talking about aleatory and epistemic, but
15	there are two types of uncertainties that you need to
16	analyze when you look at the event tree.
17	Firstly, the branching probabilities and
18	the numbers you use are just numbers and you don't
19	know if you are right or not. So there is one
20	approach which likes to sample over a given
21	distribution rather than using discreet numbers.
22	There is another approach, which uses the Latin
23	Hypercube, that means that you generate more than one
24	branch, and then you say, but you started an
25	initiating event. How do you know your initiating
	I

(202) 234-4433

	101
1	event was right in the first place? So you have to
2	sample over the uncertainties in the initiating event
3	and that's where the MC part is coming from.
4	I'm sorry. I'm sorry. I get in a
5	lecturing mode. Visual methods. You know, the common
6	denominator for these methods is that they have all
7	graphical interfaces. You can look at them and you
8	see system topology.
9	CHAIRMAN APOSTOLAKIS: But again, I don't
10	know. I mean, isn't the Petri net a discreet time,
11	discreet space and state?
12	PROF. ALDEMIR: You can look at it
13	different ways, true.
14	CHAIRMAN APOSTOLAKIS: But is it true?
15	PROF. ALDEMIR: Yes, sure. But as I said,
16	the common point is that
17	CHAIRMAN APOSTOLAKIS: You have
18	PROF. ALDEMIR: of these methods is
19	that the commonality is going to be the visual aspect
20	of it.
21	CHAIRMAN APOSTOLAKIS: No. I mean, you
22	really have to make that very clear, I mean, in your
23	report or whatever. I understand the difference
24	between continuous time and discreet time. They are
25	different things. What you call visual, I mean, they
l	I

(202) 234-4433

	102
1	fall into one of the previous two categories. The
2	additional thing they have is that, as you say, you
3	know, they pictorially represent what is going on.
4	This is definitely a discreet time, discreet state,
5	isn't it?
6	PROF. ALDEMIR: Sure.
7	CHAIRMAN APOSTOLAKIS: And the same
8	applies to DFM?
9	PROF. ALDEMIR: Oh, yes, yes. I mean,
10	dynamic flowgraphs.
11	CHAIRMAN APOSTOLAKIS: Yes, right.
12	PROF. ALDEMIR: GO-FLOW.
13	CHAIRMAN APOSTOLAKIS: Yes. I mean, all
14	of these are one of the previous two groups.
15	PROF. ALDEMIR: Yes. The reason I grouped
16	them differently, and well, dynamic flowgraph, GO-
17	FLOW, Dynamic Fault Tree, Event Sequence Diagrams.
18	Oh, sorry. We'll come to that.
19	CHAIRMAN APOSTOLAKIS: Oh.
20	PROF. ALDEMIR: The reason
21	CHAIRMAN APOSTOLAKIS: But DYLAM is
22	pictorial, too, is it not?
23	PROF. ALDEMIR: Not really, no. You don't
24	have to come up with a visual outlay of system
25	topology before you can start your model. These you
l	I

(202) 234-4433

	103
1	have to.
2	CHAIRMAN APOSTOLAKIS: So what I would
3	suggest is that you place them in the previous two
4	categories as appropriate, and then you put an
5	asterisk or something next to them and say these are
6	also visual.
7	PROF. ALDEMIR: Okay.
8	CHAIRMAN APOSTOLAKIS: They have a visual
9	component.
10	PROF. ALDEMIR: That's a good suggestion.
11	CHAIRMAN APOSTOLAKIS: Because it took me
12	awhile to figure that out. I say why is he doing it
13	that way?
14	PROF. ALDEMIR: Well, you know, if you
15	really look
16	CHAIRMAN APOSTOLAKIS: No, look, I
17	understand.
18	PROF. ALDEMIR: But
19	CHAIRMAN APOSTOLAKIS: Let's go on,
20	because it's kind of late.
21	PROF. ALDEMIR: All right. Fine. Well,
22	I put the disclaimer that this is only my brainchild.
23	Nobody else is to blame and I take all the blame.
24	CHAIRMAN APOSTOLAKIS: Yes. The problem
25	with these categorizations, Tunc, is that when you say
I	

```
(202) 234-4433
```

	104
1	"accuracy," when you say "ease," when you say
2	"desirability," you have to have some quantitative
3	measure because, you know, otherwise I don't know why
4	you gave a 10 to ESD. I mean, what is that, you know,
5	Event Sequence Diagram.
6	PROF. ALDEMIR: Well, I can explain that.
7	CHAIRMAN APOSTOLAKIS: But I don't even
8	think it's a methodology. It's just a reliability
9	block diagram.
10	PROF. ALDEMIR: No, no, not really.
11	CHAIRMAN APOSTOLAKIS: Oh, come on.
12	PROF. ALDEMIR: Not really. Not really.
13	CHAIRMAN APOSTOLAKIS: And where is the
14	event tree approach? Do you have the event tree
15	there?
16	PROF. ALDEMIR: The event tree is these
17	are dynamic, these are dynamic. You have of
18	course, the dynamic event tree is a whole bunch of
19	them, DYLAM, DETAM, DDET, ADS and so forth, but event
20	tree is not here.
21	CHAIRMAN APOSTOLAKIS: Why? I mean, I
22	don't want to get in details over this. DFM gets a 3?
23	PROF. ALDEMIR: DFM gets a 3.
24	CHAIRMAN APOSTOLAKIS: Why?
25	PROF. ALDEMIR: I will explain. I will
ļ	I

(202) 234-4433

	105
1	explain that. I was going to pick a few and explain
2	why I am giving these numbers and, as I said
3	CHAIRMAN APOSTOLAKIS: But do you
4	understand my problem with all this?
5	PROF. ALDEMIR: Not
6	CHAIRMAN APOSTOLAKIS: You are not really
7	giving us some objective criteria for the
8	classification and I don't know why this is useful.
9	PROF. ALDEMIR: Okay. I cannot give you
10	quantitative criteria.
11	CHAIRMAN APOSTOLAKIS: So why do you give
12	me the data?
13	PROF. ALDEMIR: If somebody wants to have
14	some idea of how difficult they are to use, how
15	accurately they can represent system dynamics
16	CHAIRMAN APOSTOLAKIS: What do you mean
17	difficult? You don't have any difficulty there.
18	PROF. ALDEMIR: Ease of probabilistic
19	model construction.
20	UNIDENTIFIED SPEAKER: The second column.
21	CHAIRMAN APOSTOLAKIS: But you know, this
22	is meaningless, because maybe a methodology that is
23	more involved and it's a bit more difficult has bigger
24	benefits, too.
25	PROF. ALDEMIR: True. True. I mean, I'm
I	I

(202) 234-4433

	106
1	not
2	CHAIRMAN APOSTOLAKIS: Where are the
3	benefits?
4	PROF. ALDEMIR: Here, I mean, the benefits
5	accuracy is the system representation of system
6	dynamics.
7	CHAIRMAN APOSTOLAKIS: Oh, I'm sure Dr.
8	Guarro will disagree on the 3 you gave DFM.
9	PROF. ALDEMIR: Yes. As I said, I will
10	take the blame.
11	CHAIRMAN APOSTOLAKIS: He already, in
12	fact, disagreed with it. He talked to me about it.
13	PROF. ALDEMIR: Well, these numbers are
14	just
15	CHAIRMAN APOSTOLAKIS: We're getting into
16	terrible territory here but, you know, what can you
17	do?
18	PROF. ALDEMIR: No, no.
19	CHAIRMAN APOSTOLAKIS: I mean, I'm
20	familiar with the method.
21	PROF. ALDEMIR: No, the
22	CHAIRMAN APOSTOLAKIS: I don't know why
23	you gave it a 3.
24	PROF. ALDEMIR: I was
25	CHAIRMAN APOSTOLAKIS: It seems to me it
1	

```
(202) 234-4433
```

	107
1	is as accurate as anything else.
2	PROF. ALDEMIR: I don't know if we should
3	get too technical here, but, you know, the process
4	modeling is you go by large increments in changes in
5	the process variables. So I am not sure how
6	accurately you are modeling this process dynamic.
7	CHAIRMAN APOSTOLAKIS: Listen, Tunc. If
8	I have a method that is very high level, okay, it will
9	be accurate, because at a very high level it tells me
10	that if this happens and the operators do this, you
11	know, then that, it's very accurate, but it's almost
12	useless, because it's very high level. Okay?
13	PROF. ALDEMIR: True.
14	CHAIRMAN APOSTOLAKIS: If I have a small
15	LOCA and I don't have a high pressure injection and I
16	don't have this and that, I'm in trouble. It's
17	extremely accurate, but it's not useful. You have to
18	go further down and say ah, what does it mean not to
19	have high pressure injection? And you do fault trees,
20	you do this and this and that.
21	Now, according to this classification, as
22	I understand it, this second way of doing business
23	would not be too accurate, whereas the first one is
24	accurate, because it's a very high level.
25	PROF. ALDEMIR: No, no, no, not high
I	1

(202) 234-4433

	108
1	level, detail, system detail. How much
2	CHAIRMAN APOSTOLAKIS: ESDs are high
3	level.
4	PROF. ALDEMIR: ESDs.
5	CHAIRMAN APOSTOLAKIS: ESDs. Don't go
6	into the puzzle.
7	PROF. ALDEMIR: Okay. I mean, I guess you
8	may be right, but my understanding of it is that the
9	transitions are from continuous event trees.
10	CHAIRMAN APOSTOLAKIS: But the ESD, the
11	Event Sequence Diagram, is the way NASA is using them
12	and the way they have been used in the nuclear
13	industry. They just say you lost the system. Then
14	you have the standby system. If it fails, you go over
15	there. If it works, you go here. Then you have that.
16	I mean, that's a high level sequence.
17	PROF. ALDEMIR: As you will see at the
18	end, that's why we are not using it for benchmarking.
19	CHAIRMAN APOSTOLAKIS: But what
20	PROF. ALDEMIR: There is no nuclear
21	application.
22	CHAIRMAN APOSTOLAKIS: All I'm saying,
23	Tunc, is
24	PROF. ALDEMIR: We can change this.
25	CHAIRMAN APOSTOLAKIS: you are asking
I	1

(202) 234-4433

	109
1	for trouble with this table.
2	PROF. ALDEMIR: I agree.
3	CHAIRMAN APOSTOLAKIS: And I don't know
4	how useful it is.
5	PROF. ALDEMIR: Okay. No problem. We'll
6	get rid of the table.
7	CHAIRMAN APOSTOLAKIS: You understand?
8	PROF. ALDEMIR: Yes.
9	CHAIRMAN APOSTOLAKIS: Okay.
10	PROF. ALDEMIR: No problem, no problem.
11	CHAIRMAN APOSTOLAKIS: It's not that I
12	disagree with everything you have there, but it's
13	PROF. ALDEMIR: I understand.
14	CHAIRMAN APOSTOLAKIS: Anytime you do
15	anything
16	PROF. ALDEMIR: No sense in creating
17	controversy. No, I understand.
18	MR. ARNDT: No, let me do it. The point
19	was we're trying to go through all the different
20	methodologies that are available or have been
21	discussed in the literature and come up with some way
22	of working through the ones that might be possible.
23	CHAIRMAN APOSTOLAKIS: I understand the
24	intent.
25	MR. ARNDT: Okay.
ļ	I

(202) 234-4433

	110
1	PROF. ALDEMIR: I am using it as
2	CHAIRMAN APOSTOLAKIS: I understand the
3	intent.
4	PROF. ALDEMIR: I am using it as a
5	rationale to chose methodologies.
6	CHAIRMAN APOSTOLAKIS: But you went too
7	far.
8	PROF. ALDEMIR: Okay. Fine.
9	CHAIRMAN APOSTOLAKIS: You went too far.
10	PROF. ALDEMIR: Okay.
11	MR. KEMPER: If I could offer this. If
12	there is any help that you can give us
13	PROF. ALDEMIR: Yes.
14	MR. KEMPER: Because what he is trying to
15	do here is to construct a screening criteria, right,
16	to determine which are the one or two methodologies
17	that we should pursue. So if there is anything that
18	you can help us with on this, we would be more than
19	happy.
20	CHAIRMAN APOSTOLAKIS: Okay. So this
21	table I suggest deletion.
22	MR. KEMPER: Well, we need some screening
23	criteria. I mean, without some objective
24	CHAIRMAN APOSTOLAKIS: Well, it's not this
25	or nothing. I mean, come on. He has looked at all
	1

(202) 234-4433

	111
1	these other things. He has arguments. He knows how
2	they work.
3	PROF. ALDEMIR: But see, we have a little
4	problem here, because we cannot communicate
5	informally, right? That's one thing.
6	CHAIRMAN APOSTOLAKIS: Well, one way of
7	doing this, if you really want to, is to poll people.
8	I mean, you don't just give your view. You could have
9	approached the actual developments of these and asked
10	them to rank either their own method or the other
11	guy's method.
12	PROF. ALDEMIR: That is a very good
13	suggestion.
14	CHAIRMAN APOSTOLAKIS: Yes. That might
15	have been more reasonable.
16	PROF. ALDEMIR: That's a very good
17	suggestion.
18	CHAIRMAN APOSTOLAKIS: And you should have
19	a range of things.
20	PROF. ALDEMIR: But do you agree with the
21	metrics?
22	CHAIRMAN APOSTOLAKIS: Oh, I don't know.
23	No, the benefit, where is the benefit? I said there
24	has to be some benefit.
25	PROF. ALDEMIR: Oh, this is a benefit.

(202) 234-4433

	112
1	CHAIRMAN APOSTOLAKIS: I mean, certain
2	methods are more complicated.
3	PROF. ALDEMIR: Accuracy is the system
4	representation of system dynamics.
5	CHAIRMAN APOSTOLAKIS: I mean, I don't
6	know. Is the theory of relativity complex? Yes, yes,
7	but that's the only way of understanding a few things.
8	PROF. ALDEMIR: This is the benefit part.
9	If you don't like the
10	CHAIRMAN APOSTOLAKIS: Where is the
11	benefit, the accuracy?
12	PROF. ALDEMIR: Accuracy, accuracy is the
13	benefit.
14	CHAIRMAN APOSTOLAKIS: You would have to
15	explain to me more or what do you mean by accuracy?
16	Again, I tell you, if I stay at a high level I'm more
17	accurate, but I'm not very useful. Benefit means, you
18	know, somebody like NRR or whoever who wants to use it
19	in doing something with it, is he going to find it
20	useful? If you give him a very high level description
21	of the system, that's not useful. It's a good
22	starting point like, you know, small LOCA, high
23	pressure injection. Yes, thank you very much. But
24	there are many ways of achieving high pressure
25	injection.
	I

(202) 234-4433

	113
1	PROF. ALDEMIR: Well, you know, if there
2	is any procedure where we can get comments from you,
3	you know, without
4	CHAIRMAN APOSTOLAKIS: This is the
5	procedure.
6	PROF. ALDEMIR: Okay. Then can you give
7	us metrics that I can use?
8	CHAIRMAN APOSTOLAKIS: Why do you want
9	I don't understand, I mean.
10	PROF. ALDEMIR: As Bill said, we need
11	screening criteria to justify the kind of
12	methodologies we are going to use for benchmarking,
13	which will come on later on.
14	CHAIRMAN APOSTOLAKIS: What are the
15	objectives of your answers? Where do you want to go
16	with this and then to evaluate these according to your
17	objectives.
18	PROF. ALDEMIR: This is actually what we
19	tried to do, because we actually want to go to the
20	fault. We want to have accurate system and we want to
21	have an accurate model. We want to have an easily
22	constructed model. We want that model to integrate
23	well with an existing PRA.
24	CHAIRMAN APOSTOLAKIS: Well, you already
25	well, first of all, I mean, I am not supposed to solve
ļ	I

(202) 234-4433

	114
1	your problem here, but you listed a number of possible
2	problems very early on. Okay. Maybe you can start
3	with those and ask yourself whether some of these
4	methodologies could be helpful in addressing these
5	unique issues that you raise.
6	PROF. ALDEMIR: That's in the second
7	table, which you argued with again.
8	CHAIRMAN APOSTOLAKIS: And ask, you know,
9	what are the needs of the Agency, right? Ask the NRR
10	guy what does he want to know?
11	PROF. ALDEMIR: Okay. Yes.
12	CHAIRMAN APOSTOLAKIS: Okay. Right?
13	PROF. ALDEMIR: Okay.
14	CHAIRMAN APOSTOLAKIS: Like we know with
15	standard PRAs we want to understand not only what the
16	level of risk is, but also what are the dominant
17	contributors. Okay. So a methodology that gives us
18	a dominant contributor, is good enough. Right? So
19	you know, think about it that way. I'm not saying
20	it's a straightforward, simple problem, but this
21	certainly invites
22	PROF. ALDEMIR: No, you are right. But I
23	mean, as I said, you know, this is what we could come
24	up. Any suggestions are
25	CHAIRMAN APOSTOLAKIS: Because if I look

(202) 234-4433

	115
1	at this now, I know, for example, that later on,
2	because I listened to you at the ANS meeting, you are
3	proposing to compare DFM with something else. If I
4	look at this table, I wouldn't chose DFM.
5	PROF. ALDEMIR: But this is not the
6	complete picture, because
7	CHAIRMAN APOSTOLAKIS: It gets a 3, a 5,
8	a 7 and a 7.
9	PROF. ALDEMIR: Wait until oh, sorry,
10	I don't have it here. But this is conditional. This
11	is only for the process side.
12	CHAIRMAN APOSTOLAKIS: Yes.
13	PROF. ALDEMIR: It does not include the
14	digital aspects. There is another table there, which
15	tries to combine both.
16	CHAIRMAN APOSTOLAKIS: I see.
17	PROF. ALDEMIR: So this
18	CHAIRMAN APOSTOLAKIS: But why is ease of
19	modeling a factor?
20	PROF. ALDEMIR: Well, because
21	CHAIRMAN APOSTOLAKIS: I mean, if it's a
22	complex problem
23	PROF. ALDEMIR: True.
24	CHAIRMAN APOSTOLAKIS: even the
25	methodology would be false.
I	I

	116
1	PROF. ALDEMIR: True. But if it is so
2	complex that you need a four year degree, I mean, a
3	four year program to learn it, then it's not going to
4	be very useful to a lot of people.
5	CHAIRMAN APOSTOLAKIS: But it shouldn't be
6	up there at the same level as the accuracy.
7	PROF. ALDEMIR: Fine.
8	CHAIRMAN APOSTOLAKIS: What we defined as
9	accuracy.
10	PROF. ALDEMIR: I mean, as I said, any
11	suggestions are welcome.
12	CHAIRMAN APOSTOLAKIS: And if I have two
13	methodologies and one is very accurate and the other
14	is not so accurate, but it's easier to use, then I can
15	see how you can go with that one. But to say accuracy
16	and ease of use are the same benefit, I mean
17	PROF. ALDEMIR: Fine. We can change the
18	metrics in any way that
19	CHAIRMAN APOSTOLAKIS: Anyway, I think you
20	get the message.
21	UNIDENTIFIED SPEAKER: Yes, I think so.
22	PROF. ALDEMIR: Yes. Okay. Now, the Type
23	II interactions. Again, these
24	CHAIRMAN APOSTOLAKIS: Type II now is
25	within the
I	

(202) 234-4433

	117
1	PROF. ALDEMIR: Within the system. Markov
2	Models, and when I say Markov Models, you know, I'm
3	not going to spend too much time on these, because we
4	I think discussed this at some length yesterday, and
5	when I refer to Markov Model, I only refer to Barry
6	Johnson's model, because there are others.
7	There are basic methodologies. The Markov
8	Models, and again this has been discussed, so I'm not
9	going to talk about it, Bayesian methodologies. The
10	one that we looked at in detail is by my colleague
11	from MIT.
12	CHAIRMAN APOSTOLAKIS: Again, why is that
13	a dynamic methodology? I mean, poor Bayes is not
14	dynamic.
15	PROF. ALDEMIR: It is dynamic in the sense
16	that your model is being updated as you get new
17	information.
18	CHAIRMAN APOSTOLAKIS: But that's not what
19	you meant by dynamic earlier. Dynamic, you said
20	interactions with a physical process, I mean.
21	PROF. ALDEMIR: It is taking into well,
22	this is Type II within the system not physical
23	process. This is Type II. So, Barry Johnson, sorry.
24	My colleague's methodologies are Golay's Bayesian
25	update method and it has got a lot of assumptions and

(202) 234-4433

	118
1	part of which is that software is being developed.
2	It's not really applicable to let me get their
3	information on this. It's not really applicable to
4	existing software. The number of paths, possible
5	paths within the system, has to be estimated. You are
6	assuming a lot of making a lot of assumptions.
7	CHAIRMAN APOSTOLAKIS: The University of
8	Maryland
9	PROF. ALDEMIR: Pardon me?
10	CHAIRMAN APOSTOLAKIS: The University of
11	Maryland yesterday told us that they also want to know
12	that, the number of paths.
13	PROF. ALDEMIR: Yes, yes, yes, right. You
14	are making assumptions on the choice of the priors.
15	You are rejecting some execution paths, but you don't
16	really know whether you should have looked at them or
17	not.
18	CHAIRMAN APOSTOLAKIS: That's fine, that's
19	fine.
20	PROF. ALDEMIR: Okay. So dynamic
21	flowgraph methodology is, as you will see later on,
22	the best one, in fact, compared with earlier what I
23	said, everything combined. It turns out to be the
24	best one. The only restriction we could find out, and
25	that comes to what Professor Apostolakis was referring
ļ	I

(202) 234-4433

	119
1	to earlier, why we ranked it low, is because it is
2	making certain assumptions on how to model the
3	process.
4	And, for example, level change, high level
5	change, low level change, medium level change and kind
6	of qualitative descriptions. It's based on digraphs,
7	which are qualitative in nature, and that is where 3
8	is coming from actually. So you don't know.
9	Now, if you talk to the method developers,
10	then they tell you that sure, I can take 10, 15
11	levels, 100 levels, but the model becomes very
12	complicated.
13	CHAIRMAN APOSTOLAKIS: True.
14	PROF. ALDEMIR: True. There is a self-
15	check mechanism. But the thing that we were looking
16	at, at this point, is how they have been used in the
17	literature, not speculate on how they could have been
18	used. So if you look at what has been out there,
19	which is a NUREG on a feed water control system, the
20	system dynamics are qualitative.
21	CHAIRMAN APOSTOLAKIS: That's not on the
22	table.
23	PROF. ALDEMIR: Right, right. But the
24	reason I mention NUREG, because this is an NRC-related
25	meeting. That's why. So I mean, there is a NUREG.
l	I

(202) 234-4433

	120
1	That's the point. But you know, that is the reason
2	why 3, not necessarily because of the inherent
3	limitations of the methodology. Petri nets.
4	CHAIRMAN APOSTOLAKIS: The analysis of the
5	reactor at Sandia, I thought, was pretty interesting
6	that Chris Garrett did. You have that paper.
7	PROF. ALDEMIR: I don't have it.
8	CHAIRMAN APOSTOLAKIS: Where he found, in
9	fact, a fault in the software.
10	PROF. ALDEMIR: I don't have that. Which
11	one are you talking about, this one that was more
12	recently published?
13	CHAIRMAN APOSTOLAKIS: Yes.
14	PROF. ALDEMIR: Oh, the reliability and
15	system safety?
16	CHAIRMAN APOSTOLAKIS: I believe so, yes,
17	where he found that there was a denominator, k minus
18	1.
19	PROF. ALDEMIR: Right.
20	CHAIRMAN APOSTOLAKIS: In the program.
21	PROF. ALDEMIR: Right, but that was oh,
22	okay.
23	CHAIRMAN APOSTOLAKIS: Yes, he found it.
24	PROF. ALDEMIR: No, no, I don't mean that.
25	I mean
I	1

(202) 234-4433

	121
1	CHAIRMAN APOSTOLAKIS: He went to the
2	developer and the developer, first of all, was shocked
3	that he was there and, second, he said, which is
4	related to what you guys were saying yesterday
5	PROF. ALDEMIR: Right.
6	CHAIRMAN APOSTOLAKIS: He said but there
7	will never be a situation where k is 1. But the
8	interesting thing is do you have that paper?
9	PROF. ALDEMIR: Yes, yes, I have that
10	paper. I have the paper. Let's see, Petri nets.
11	CHAIRMAN APOSTOLAKIS: In fact, that could
12	be one of your criteria. Has the method under
13	scrutiny ever been used in a case study and has it
14	identified anything?
15	PROF. ALDEMIR: Well, we tried. We did
16	actually try to do that. That's the only reason why,
17	as I said, we are using you will see. We will zero
18	in on two methodologies and that's the only reason why
19	we're doing that, because it has been implemented.
20	CHAIRMAN APOSTOLAKIS: I'm trying to help.
21	PROF. ALDEMIR: No, I understand, I
22	understand. Okay. Petri nets.
23	CHAIRMAN APOSTOLAKIS: It may not go, but
24	the motivation is there.
25	PROF. ALDEMIR: That's all right. Petri
l	I

(202) 234-4433

	122
1	nets. Again, you know, they seem to do a very good
2	job within Type II interactions, but I am not too sure
3	how well they model Type I interactions, and then I
4	will have a complete table later on with a different
5	ranking.
6	Test-based approaches, as the name
7	implies, is just test-based, so then there are all
8	sorts of issue, you know, how do you select your test
9	cases and the system must be mostly complete. Testing
10	is a value-added activity. It shows presence, but not
11	the absence of error. Test cases may not be rigorous
12	enough to exercise the system to predict accurately
13	its reliability and, of course, they don't model Type
14	I interactions, which is interactions with the
15	process. Black-box models are the type of models
16	CHAIRMAN APOSTOLAKIS: I don't see the
17	word black-box. Oh, down there. So you skipped the
18	software metric?
19	PROF. ALDEMIR: We discussed this
20	yesterday at great length.
21	CHAIRMAN APOSTOLAKIS: But what do you
22	think?
23	PROF. ALDEMIR: I mean
24	CHAIRMAN APOSTOLAKIS: Black-box.
25	PROF. ALDEMIR: Because it's going to

(202) 234-4433

start anew.

1

2

3

4

5

6

7

CHAIRMAN APOSTOLAKIS: Well, let me ask you this. I see these others without necessarily agreeing with them, but I see them as, you know, taking a piece of software and doing something to it. Is the software metric approach doing the same thing or is it more generic?

PROF. ALDEMIR: My opinion is that it is 8 9 generic but, you know, the rankings and so forth, the 10 choices are by our computer science people, who felt Their impression of metric-based 11 more qualified. approaches is that -- I mean, if you want me 12 to mention the kind of things that they had problems 13 14 with, measured the software development process, but 15 not the end result of the process.

It has yet to be shown that this method can scale to high reliability requirements with a large system, which they claimed yesterday it does. The metrics chosen are based on expert opinion and may change as new metrics are discovered and, of course, does not model Type I interactions.

22 CHAIRMAN APOSTOLAKIS: So what is this 23 Schneidewind? 24 PROF. ALDEMIR: Schneidewind Model. Well, 25 it's a black-box model and the name implies they treat

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	124
1	it as a black-box. They chose NASA used it for
2	modeling one of the missions. And it has got it
3	uses a non-homogenous Poisson process as the basis to
4	predict the reliability of software components,
5	assumes that the software system is changed only when
6	there is an observable failure, failure data needed
7	for quantification, but may not be available, because
8	they have the data on the shuttle system, needs
9	mechanism to select cases, test times and reword
10	criteria. In other words, there is no justification
11	of what's being done, and it has been only implemented
12	on software. So again, you know, it does not model
13	the complete system.
14	CHAIRMAN APOSTOLAKIS: Okay.
15	PROF. ALDEMIR: So we tried to come up
16	with
17	CHAIRMAN APOSTOLAKIS: So you do have.
18	Why are you asking me then? You do have your criteria
19	here.
20	PROF. ALDEMIR: These are requirements.
21	Okay. We tried to go through a screening process to
22	gradually reduce, so we went through a screening of
23	Type I interactions. We went through a screening of
24	Type II interactions. And then we did a screening of
25	both. And then we tried to come up with requirements.
	I

(202) 234-4433

(202) 234-4433

	125
1	So if you want me to use them as metrics, that's fine.
2	CHAIRMAN APOSTOLAKIS: I think this is
3	the ones
4	PROF. ALDEMIR: Great.
5	CHAIRMAN APOSTOLAKIS: that you should
6	be using and No. 3 is the most important of them all.
7	PROF. ALDEMIR: Yes, no problem.
8	CHAIRMAN APOSTOLAKIS: No problem.
9	PROF. ALDEMIR: So I don't know. Well,
10	I'll just go through them fast. The model must be
11	able to predict future failures well. The reason I
12	mention it is because there are models based on
13	existing performance and they are not necessarily all
14	that great, because you don't know if you have covered
15	everything. And there are models that people have
16	based on neural nets, for example, which are based on
17	totally the operation of data, which is not very
18	practical to predict future events.
19	The model must account for the relevant
20	features of the system under consideration. You must
21	be able to model all types of complex interactions
22	that are taking within the system. Also, you need to
23	worry about if you are omitting things by using
24	assumptions. So you have to make sure that your
25	assumptions are reflecting the true operation of the
I	I

(202) 234-4433

	126
1	system, which ties up with 3.
2	This we discussed in great length. The
3	model must be able to represent dependencies. No. 5,
4	desirable feature. It must not be hard to learn. No.
5	6, data used in the quantification process must be
6	credible to a significant
7	CHAIRMAN APOSTOLAKIS: Oh, you have more?
8	PROF. ALDEMIR: I have 11. You must be
9	able to differentiate between a state that fails one
10	safety check and that those that fail multiple ones,
11	must be able to differentiate between faults that
12	cause function failures and intermittent failures,
13	must have the ability to provide relevant information
14	to the users and that has to do with the one of our
15	internal reviewers argued with that, for example, that
16	Monte Carlo methodology does precisely the same, but
17	the intention here is that it provides you information
18	that you can use to integrate the results into a full
19	PRA like cut sets and so forth.
20	And talking about integration, when you
21	integrate this system, this model into the full PRA,
22	it must be able to match with the rest. For example,
23	like a Markov Model, you need a lot of detailed system
24	information, which the fault tree is not going to give
25	you. By the same token, you have to extract the
	I

(202) 234-4433

	127
1	information out of the Markov Model to put into the
2	PRA. But you can do that even qualitatively using
3	graph theoretical methods, so you can get qualitative
4	information out of Markov Models.
5	This kind of goes with 10. Models should
6	not require highly time-dependent or continuous plant
7	state information. So if you think that these are
8	good metrics, we can use them.
9	CHAIRMAN APOSTOLAKIS: I think they are
10	pretty good, but I'm wondering why the previous
11	speaker didn't use something like this. Todd? I
12	mean, shouldn't you have some list of requirements, as
13	well, in the development of your models?
14	These are not unique to time-dependent, I
15	mean, dynamic methodologies that Professor Aldemir is
16	talking about. They are general requirements, except
17	the last one, for any model, so it seems to me since
18	both of you are part of the NRC, you should have a
19	common set of requirements, should you not? Maybe you
20	should increase the number of telephone calls.
21	MR. HILSMEIER: That's a very good idea.
22	CHAIRMAN APOSTOLAKIS: Now, honestly,
23	Todd, is this the first time you've seen this?
24	MR. ARNDT: We have shared our graphs with
25	Todd.
I	1

(202) 234-4433

	128
1	CHAIRMAN APOSTOLAKIS: Just about. No,
2	but, I mean, I would expect, I mean, you know, you
3	have the two approaches that Steve has talked about,
4	but a lot of the elements are common. And one is the
5	requirements for what you are trying to develop, and
6	all the methodologies that Tunc mentioned, he just
7	about exhausted everything. I mean, so I don't see
8	why they don't apply to you.
9	Now, you can reject some of these for
10	obvious reasons like the continuous event tree and say
11	my God, this is too much for me, because I'm dealing
12	with this problem, which is perfectly all right. This
13	is good. So I would expect to see a little closer
14	collaboration.
15	PROF. ALDEMIR: Another table.
16	CHAIRMAN APOSTOLAKIS: Now, wait, wait,
17	wait.
18	PROF. ALDEMIR: Okay.
19	CHAIRMAN APOSTOLAKIS: Where are you
20	setting as a requirement that the model should be
21	capable or at least have a promise of handling certain
22	things that we have observed, such as the sequencer
23	issues that Mr. Waterman mentioned yesterday?
24	PROF. ALDEMIR: Well, that is implicit in
25	4, of course.
I	I

(202) 234-4433

	129
1	CHAIRMAN APOSTOLAKIS: In where?
2	PROF. ALDEMIR: In 4. Model must be able
3	to represent dependencies between failure events
4	accurately and quantitatively.
5	CHAIRMAN APOSTOLAKIS: I don't know.
6	Classify what you told us yesterday, Mike, as a
7	failure, I mean, as being one of dependencies. I
8	don't think so.
9	MR. ARNDT: Yes. It's basically, the way
10	Tunc defined it is, a Type II dependency. The issue
11	is, and we could probably define it better, but it's
12	a design fault associated with the interaction between
13	two parts of the software.
14	MR. WATERMAN: No, I think that's a Type
15	I failure. You don't know the failure exists until
16	you get some kind of Type I demand that it performed.
17	That's why they ran on and on and on and didn't
18	realize they didn't have HPI about 30 percent of the
19	time, because they didn't have any external event that
20	said hey, work for me and then the software said I'm
21	not going to do that. So I think that's kind of a
22	Type I event. You don't know the failure exists.
23	CHAIRMAN APOSTOLAKIS: Yes. In any case,
24	I think it's this kind of experience.
25	MR. WATERMAN: Yes.
ļ	I

(202) 234-4433

	130
1	CHAIRMAN APOSTOLAKIS: I mean, the
2	impression I get from you guys, both teams, is that
3	there is precious little out there regarding nuclear
4	experience. At least, you know, if you can say okay,
5	I know these four incidents.
6	MR. ARNDT: Yes.
7	CHAIRMAN APOSTOLAKIS: Does this
8	methodology have any chance of modeling?
9	MR. ARNDT: That coupled both in with, as
10	Tunc mentioned, the ability to represent dependencies,
11	what we probably should do, and when tested gets
12	accurate results on the examples that we actually
13	have.
14	PROF. ALDEMIR: Oh, oh, we should put that
15	as the 12^{th} requirement that compare actually.
16	CHAIRMAN APOSTOLAKIS: Does it have any
17	chance of modeling the existing operating experience?
18	PROF. ALDEMIR: You know, it is implicit
19	in here, but
20	CHAIRMAN APOSTOLAKIS: A catchall.
21	PROF. ALDEMIR: In other words, what I
22	meant, implicitly meant with 1, also includes that
23	future failure, as well, because if something comes
24	up, we should be able and once something comes up,
25	literally happens, we should be able to model it. So
ļ	I

(202) 234-4433

	131
1	it is implicit in there, but maybe we should make it
2	more explicit.
3	CHAIRMAN APOSTOLAKIS: I would rather do
4	what you just said, make it 12.
5	PROF. ALDEMIR: Okay. Make it 12.
6	CHAIRMAN APOSTOLAKIS: And use explicitly
7	the words operating experience.
8	PROF. ALDEMIR: Fine.
9	MR. ARNDT: Right.
10	CHAIRMAN APOSTOLAKIS: To show that you
11	are fully aware of it.
12	PROF. ALDEMIR: Well, I'll take notes.
13	MR. ARNDT: We'll get it from the
14	transcript.
15	PROF. ALDEMIR: The transcript. Okay.
16	Good.
17	MR. ARNDT: Something on the order of
18	ability to integrate operational experience.
19	PROF. ALDEMIR: Okay. That's good. Can
20	I go on?
21	CHAIRMAN APOSTOLAKIS: Yes, please.
22	PROF. ALDEMIR: Another table. Now, here,
23	why I'm doing what you just said I should do in the
24	first place, but I am doing it myself and not giving
25	numbers in this situation.
Į	1

(202) 234-4433

	132
1	CHAIRMAN APOSTOLAKIS: This is progress,
2	saying X and O is really progress versus
3	PROF. ALDEMIR: And lots of question
4	marks, as you see.
5	CHAIRMAN APOSTOLAKIS: 1, 2, 3, 4, 5.
6	PROF. ALDEMIR: No, you are right. I
7	mean, this was done for our internal screening
8	purposes. We put it there and we were invited to
9	come.
10	CHAIRMAN APOSTOLAKIS: Also, these are the
11	11 requirements?
12	MR. ARNDT: Yes.
13	PROF. ALDEMIR: Yes.
14	CHAIRMAN APOSTOLAKIS: Oh, well, that's
15	much better, Tunc.
16	PROF. ALDEMIR: As I said, we have done
17	it, but again this is my personal opinion. Again, I
18	don't want anybody to jump on anybody else, because
19	this is what I thought is the case.
20	CHAIRMAN APOSTOLAKIS: We will only jump
21	on you.
22	PROF. ALDEMIR: But you are right in the
23	sense that we should test this and that's, I guess,
24	one of the reasons why we have this meeting in the
25	first place, to have input. We should test it. We
I	I

(202) 234-4433

	133
1	should send it out as a survey to the developers, to
2	all the stakeholders, so to speak.
3	CHAIRMAN APOSTOLAKIS: This one.
4	PROF. ALDEMIR: This one, right. And we
5	have comments from some of the reviewers, internal
6	reviewers, on this, for example, and it got revised
7	actually. Now, I don't want to go through this again.
8	CHAIRMAN APOSTOLAKIS: That's okay.
9	PROF. ALDEMIR: But if you want, I can
10	give you some justification. For example, let's take
11	DFM. DFM, you see no zeros here.
12	CHAIRMAN APOSTOLAKIS: What is 4? What is
13	4?
14	PROF. ALDEMIR: 4 is capable to what I
15	just said earlier and then we have this.
16	CHAIRMAN APOSTOLAKIS: So it is not " It
17	is not hard for an analyst to learn."
18	PROF. ALDEMIR: No, no, it is the
19	CHAIRMAN APOSTOLAKIS: "Must be able to
20	represent dependencies."
21	PROF. ALDEMIR: Dependencies.
22	CHAIRMAN APOSTOLAKIS: Yes, I think
23	there's a question mark there. You are right.
24	PROF. ALDEMIR: I mean, right, you will
25	see that that's one where we are going. I mean,
I	

(202) 234-4433

	134
1	that's what we are aiming at. We're going to test it.
2	CHAIRMAN APOSTOLAKIS: And then 6, "The
3	data used must be credible."
4	PROF. ALDEMIR: None of them has that.
5	None of them has credible data.
6	CHAIRMAN APOSTOLAKIS: Yes, everybody has
7	a question.
8	PROF. ALDEMIR: Right, right, nobody.
9	CHAIRMAN APOSTOLAKIS: And then what else
10	do you have? 8. What is 8? "The model must be able
11	to differentiate between faults that cause function
12	failures and intermittent failures." I don't know
13	what that means, but I guess you are right.
14	PROF. ALDEMIR: Well, I can go into that.
15	MR. ARNDT: Take yes for an answer.
16	CHAIRMAN APOSTOLAKIS: No, that's fine.
17	Move on.
18	PROF. ALDEMIR: Okay. But you see, what
19	I'm trying to get at is that whenever there is an
20	internal, initial, not internal, initial screening
21	first and then try to combine both, there is an
22	implicit screening for the others, but I didn't show
23	that. And then I didn't make a table.
24	CHAIRMAN APOSTOLAKIS: Tunc, as you know,
25	even if you send this out, it's like any new field.
I	1

(202) 234-4433

	135
1	Most of the developers of these methodologies have not
2	used somebody else's methodology, so they really
3	cannot pass judgment. They have some idea.
4	PROF. ALDEMIR: That is a good point.
5	CHAIRMAN APOSTOLAKIS: They have some idea
6	like you organized this workshop in Turkey years ago.
7	Okay. People listen to other people and so on, but
8	they haven't really tried it. They haven't really.
9	You know, so they are very familiar with their own
10	methodology, but not with other people's approach.
11	PROF. ALDEMIR: I doubt that this is the
12	proper forum, but as you well know, Ohio State is part
13	of the University Consortium to help Idaho National
14	Lab to conduct research towards future reactors, and
15	our task is as instrumentation control and PRA. So as
16	the first task of this academic center of and there
17	are academic centers of excellence established at each
18	five universities.
19	CHAIRMAN APOSTOLAKIS: Yes.
20	PROF. ALDEMIR: Our first task, we were
21	planning to organize a workshop on dynamic
22	methodologies in PRA.
23	CHAIRMAN APOSTOLAKIS: That's not what
24	PROF. ALDEMIR: No. The reason I mention
25	that, do you think it's a good idea to use this as a
I	I

(202) 234-4433

	136
1	forum to get opinions?
2	CHAIRMAN APOSTOLAKIS: I think the best
3	way to do what I said is through benchmark exercises
4	where people are forced to use somebody else's model
5	to actually do real work, but these tend to be
6	expensive.
7	PROF. ALDEMIR: That's exactly right.
8	CHAIRMAN APOSTOLAKIS: And you have a
9	large number of methods here.
10	PROF. ALDEMIR: That's right. So we have
11	to screen. That's the whole problem.
12	CHAIRMAN APOSTOLAKIS: Yes.
13	PROF. ALDEMIR: We have to screen.
14	CHAIRMAN APOSTOLAKIS: But you see, the
15	biggest problem with workshops or anything else is
16	people just don't listen to others.
17	PROF. ALDEMIR: Well, we saw that in
18	Turkey.
19	CHAIRMAN APOSTOLAKIS: You don't have to
20	go so far to see it.
21	PROF. ALDEMIR: No, I don't mean that. I
22	mean the workshop. I am trying to explain.
23	MR. ARNDT: You can go to an ACRS meeting,
24	people not listening to you.
25	PROF. ALDEMIR: Excluding present company.

```
(202) 234-4433
```

	137
1	CHAIRMAN APOSTOLAKIS: No, I'm serious,
2	and this is true everywhere. I mean, that's why in
3	the beginning there is chaos. Take PRA, you know, in
4	the '70s and '80s. There is no classical statistics.
5	There is classical-based. Classical now in the year
6	of 2005, you realize that there hasn't been a single
7	PRA done in a classical way. So at this point you say
8	well, maybe then they are right, okay, but that's the
9	way it is.
10	PROF. ALDEMIR: Well, we tried to then do
11	the screening, because it's expensive to benchmark
12	everything.
13	CHAIRMAN APOSTOLAKIS: I don't see
14	anywhere though you saying I'm going to look at the
15	basic assumptions behind these things and make a
16	judgment myself whether these assumptions are sound.
17	I think you should do that.
18	PROF. ALDEMIR: Well, it is, of course,
19	implicit in those tables. I mean, what I say are you
20	modeling the process, it's implicit in that. If the
21	assumptions are too restrictive, you are not modeling
22	it correctly.
23	CHAIRMAN APOSTOLAKIS: But I would also
24	come to my favorite theme of the last two days.
25	Markov approach, fundamental assumption, cost and
ļ	I

(202) 234-4433

	138
1	transition rate from this state to that state. It's
2	not justified.
3	PROF. ALDEMIR: Let me say a few words on
4	that. Okay. Let me go through this and then I'll
5	come back to Markov and then say a few things.
6	CHAIRMAN APOSTOLAKIS: And I think GO-FLOW
7	is
8	PROF. ALDEMIR: Actually as good as Petri
9	nets, actually as good as
10	CHAIRMAN APOSTOLAKIS: Which tells me a
11	lot.
12	PROF. ALDEMIR: As good as you know,
13	the reason what?
14	MR. ARNDT: Just to go to that slide.
15	PROF. ALDEMIR: Well, okay. When we
16	ranked these things, we found out that, again, purely
17	subjective basis, because there is no real
18	benchmarking, but dynamic flowgraph methodology,
19	that's the one that we found, let's put it this way,
20	least objectionable with the least restrictions, least
21	number of assumptions.
22	CHAIRMAN APOSTOLAKIS: But let me also add
23	something here, because other people may not remember.
24	All these approaches, not all but certainly the DFM,
25	it doesn't give you any probabilities. It just gives
I	I

(202) 234-4433

	139
1	you failure modes, sequences that lead to failure.
2	This is very important, because Steve also yesterday,
3	every time I pushed him hard, he said oh, but there's
4	always benefit here because we understand the
5	structure of the model. I think most of these models
6	help you do that.
7	MR. ARNDT: Yes, they do.
8	PROF. ALDEMIR: All of them.
9	CHAIRMAN APOSTOLAKIS: But some of them do
10	not claim that they produce probabilities. There is
11	a good reason for that. The developers were modest
12	people.
13	PROF. ALDEMIR: Well, okay. Let me go
14	through this and I will come back to Markov and say a
15	few words.
16	CHAIRMAN APOSTOLAKIS: Okay.
17	PROF. ALDEMIR: Because to respond to some
18	of the comments that were made yesterday. Dynamic
19	flowgraph methodology we found has the least. The
20	only thing that we could see in the dynamic flowgraph
21	is this potentially not describing the system process
22	or the process dynamics correctly and if you don't do
23	it correctly, as I will show you in a little while,
24	you may be missing sequences. Also, you may be coming
25	up with the wrong numbers if you are going to quantify
ļ	I

(202) 234-4433

it.

1

2

3

4

5

6

7

8

9

Now, the second choice, although Professor Apostolakis may not agree, is the Markov approach. Maybe this is the time. The Markov approach. Again, one of the important reasons why we zeroed in on these applications are two is because there in the literature on systems that pertain to nuclear systems. Markov has that. Dynamic flowgraph methodology has that.

10 Now, Markov, as was mentioned yesterday, maybe it's the right time, has to work with numbers, 11 12 but not necessarily so. If you want to extract qualitative information out of the system, you can 13 14 look at the -- you can regard the lambdas as 15 You can use a search, graph theoretic placeholders. 16 search scheme through the matrix, transition matrix, 17 and you can come up with very a well-defined, very detailed scenario as to how the accident progresses. 18

Now, there is no machinery to do that automatically, I agree, but it can be done. So you can get qualitative information. That's one. The other thing is that even if the numbers are wrong, you can do, of course, sensitivity analysis.

CHAIRMAN APOSTOLAKIS: But the question is how do you transition from one state to the other?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	The assumption there is independently of the number is
2	that there is a constant rate of
3	PROF. ALDEMIR: No, no, no.
4	CHAIRMAN APOSTOLAKIS: But I'm saying that
5	there is.
6	PROF. ALDEMIR: No constant, no assumption
7	on constant rate.
8	CHAIRMAN APOSTOLAKIS: I mean, if there is
9	a design error, I don't know why I would transition
10	from one state to the other. There is a design error,
11	for heaven's sakes. If the conditions are there, it
12	will never work, because it's wrong. That's where I
13	have a problem. With the Markov I go there, I come
14	back, I go there, I come back.
15	PROF. ALDEMIR: What you are saying is
16	that the transition is dependent upon the initial
17	conditions.
18	CHAIRMAN APOSTOLAKIS: Yes.
19	PROF. ALDEMIR: Right.
20	CHAIRMAN APOSTOLAKIS: I mean, the
21	fundamental assumption is that I can go from one state
22	to another. And what I keep hearing from the experts,
23	who have experience with these things, is that the
24	specification error is a requirement there. So if the
25	damn thing doesn't work under these conditions in one
ļ	I

(202) 234-4433

	142
1	case, it will never work, because it's wrong and
2	Markov doesn't allow that. Now, don't tell me about
3	semi-Markov, I mean, come on.
4	PROF. ALDEMIR: Well, no, but I will come
5	to something else, you know.
6	CHAIRMAN APOSTOLAKIS: This is my problem.
7	PROF. ALDEMIR: No, that is a valid
8	assumption, I mean, not assumption, valid statement,
9	but let me say something about the failure rate.
10	Constant failure rate or non-constant failure rate is
11	no problem, because if there is
12	CHAIRMAN APOSTOLAKIS: Well, yes, but
13	there are still transitions though.
14	PROF. ALDEMIR: Well, I mean, if you
15	assume that the concept of a transition, constancy or
16	non-constancy is no problem, it can be taken care of.
17	CHAIRMAN APOSTOLAKIS: Absolutely.
18	PROF. ALDEMIR: The other thing, and it is
19	not by the way, it is not a bad assumption. If you
20	are basing your failure data on the field data and on
21	a maintained system, it is not a bad idea to use
22	constant failure rates.
23	CHAIRMAN APOSTOLAKIS: I can't think of a
24	single incident from the ones that Mike described
25	yesterday, others that I have seen, this Canadian
l	

(202) 234-4433

1 reactor, the Bruce reactor where they had a problem a 2 number of years ago, where it was a matter of It was wrong and the right conditions 3 transition. 4 were created and the error came to the surface. It 5 was a design error or specification, if you wish, or whatever that was dormant until the right conditions 6 7 were created. 8 Now, I can't see for the life of me any 9 Markov approach dealing with that. We need something 10 new, something fresh and I don't know what that is. If you ask me, I don't know. I'm sorry, I don't know, 11 but I'm not going to go with the wrong approach just 12 because I don't know. 13 14 PROF. ALDEMIR: I mean, what I am trying 15 to say is that if there is a transition possible, 16 whether it is due to the software failure, so to 17 speak, or whether because the software was designed and the initial conditions prompted 18 wronq that 19 transition, as long as there is a transition, that's 20 okay. 21 CHAIRMAN APOSTOLAKIS: I understand that, 22 yes. 23 PROF. ALDEMIR: That's fine. 24 CHAIRMAN APOSTOLAKIS: Yes, if it's a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 transition.

(202) 234-4433

(202) 234-4433

143

	144
1	PROF. ALDEMIR: I mean, that is my system
2	topology. That is my system topology.
3	CHAIRMAN APOSTOLAKIS: My problem is that
4	I don't see very many cases where there is a
5	transition, so you and I and others have to eventually
6	convince ourselves that, you know, under certain
7	conditions perhaps it's okay, under others it's not.
8	But the big issue now in front of us, and I don't
9	think you should feel responsible that you can solve
10	it.
11	PROF. ALDEMIR: No, no.
12	CHAIRMAN APOSTOLAKIS: This is a real
13	issue.
14	PROF. ALDEMIR: Yes.
15	CHAIRMAN APOSTOLAKIS: I mean, this is a
16	new issue.
17	PROF. ALDEMIR: No, all I am trying to see
18	is, first of all, you know, you need a couple of
19	methodologies, as you said, to kind of look at what is
20	available, what are their weak points and their strong
21	points.
22	CHAIRMAN APOSTOLAKIS: Yes.
23	PROF. ALDEMIR: And when looking at
24	available methodologies, what we are seeing is that
25	these are the two most promising. The others don't

(202) 234-4433

	145
1	rank as high. That's why we are using them.
2	CHAIRMAN APOSTOLAKIS: You know, I
3	explained to somebody, but maybe I should say it
4	again, just a little lecture here.
5	One of the labors of Hercules was to
6	capture and kill a bandit who was between Athens and
7	Corinth. His name was Procrustes. I will tell you
8	how you spell that later. What he did, he would grab
9	travelers, at that time, you know, by walking or
10	whatever, rob them and then he had a bed. He would
11	stretch them out on the bed.
12	If they were shorter than the bed, he
13	would stretch them to fit the bed and, of course, they
14	died. If they were taller than the bed, he would cut
15	off pieces of them until they fit the bed. And from
16	that a saying came about, which is much better known
17	in Greek, but in English, too, I just seen it, the
18	Procrustean bed.
19	All these people who are taking existing
20	methods from reliability and put them on software are
21	using the Procrustean bed. They are taking something
22	that doesn't fit the bed and either they stretch it or
23	they cut it off until it fits the bed, and that is not
24	an approach, an acceptable approach anyway and as
25	Hercules demonstrated.
ļ	I

(202) 234-4433

	146
1	PROF. ALDEMIR: Well, I mean, I agree with
2	you, of course. There is nothing to disagree but, you
3	know, we have to do either we do nothing or we do
4	something.
5	CHAIRMAN APOSTOLAKIS: Correct, something,
6	correct.
7	PROF. ALDEMIR: If we are and if we
8	have to have time constraints, we have to do something
9	fast. We have to use available stuff.
10	CHAIRMAN APOSTOLAKIS: Listen. It cannot
11	be a Procrustean bed. You have to do something. I
12	agree. But remember Procrustes and what happened to
13	him. So let's go. Don't feel that you have to do
14	something
15	PROF. ALDEMIR: No.
16	CHAIRMAN APOSTOLAKIS: even if it's
17	wrong.
18	PROF. ALDEMIR: But I can make the same
19	arguments about all the other, for example, common
20	cause failure models.
21	CHAIRMAN APOSTOLAKIS: No, they are not
22	like that. Come on. They are not. They are crude,
23	but they are not wrong. There is a big difference, a
24	big difference.
25	PROF. ALDEMIR: Okay. So
I	I

(202) 234-4433

	147
1	CHAIRMAN APOSTOLAKIS: So where are you
2	now, Slide 19?
3	PROF. ALDEMIR: Slide 19 and, basically,
4	the model story of this Slide 19 is that the top two
5	ranking ones are dynamic flow methodologies.
6	CHAIRMAN APOSTOLAKIS: I see you have an
7	example later.
8	PROF. ALDEMIR: I will come to that.
9	CHAIRMAN APOSTOLAKIS: Maybe the
10	Subcommittee is interested more in that. We keep
11	seeing acceptance criteria and they more or less
12	repeat themselves, don't they?
13	PROF. ALDEMIR: Acceptance criteria. By
14	the way, we are defining it in a slightly different
15	way.
16	CHAIRMAN APOSTOLAKIS: I understand that,
17	but, I mean, you have already stated your position.
18	PROF. ALDEMIR: Yes, right. Okay.
19	CHAIRMAN APOSTOLAKIS: So I'm asking you
20	whether it would be worthwhile going to Slide 22.
21	PROF. ALDEMIR: Okay.
22	CHAIRMAN APOSTOLAKIS: Do you think you
23	are skipping something that's very important? It's
24	late in the day.
25	PROF. ALDEMIR: Not really, because I
	1

(202) 234-4433

	148
1	stated, like you said, I stated most of them. I am
2	trying to condense them, basically, from 11 to 7.
3	That's all there is to it.
4	CHAIRMAN APOSTOLAKIS: 22.
5	PROF. ALDEMIR: Now, what I am trying to
6	show you here is how the process couples failure
7	events or, actually, stochastic and it demands events
8	that may take place on demand. So what we have here
9	is, I guess, a real system from a BWR/6 and this is
10	supposed to provide core cooling in case the RCIS, the
11	reactor core insolation cooling system, becomes
12	incapacitated.
13	And I'm not going to go through the system
14	description in detail, because I'm sure everybody is
15	more familiar with it than I am. But the key point is
16	that there is a high pressure core spray system
17	consisting of many components, and there are three
18	sets of safety relief valves. What we will try to do
19	is to just concentrate on one of them.
20	So the incident that we have in mind is
21	the following. There is a small break which
22	incapacitates the RCIC system. In this situation it
23	so happens that the enthalpy lost through the break is
24	larger than the enthalpy addition due to decay heat.
25	So the level goes down, pressure goes up. So you can
Į	I

(202) 234-4433

	149
1	get the HPCS pump started through two signals, either
2	the first low level signal or the high radiation
3	signal in the containment.
4	The HPS pump starts, but nothing happens,
5	at this point, until the level hits the low, low mark,
6	I think it's the second low mark, in which case the
7	injection valve opens and water is sprayed, so the
8	level starts. In the meantime, of course, it reduces
9	the pressure a little bit, but not sufficiently, so
10	you may need to the SRV, which is pressure-
11	activated, SRV 1, safety relief valve 1, opens and it
12	relieves pressure, so the level comes it starts
13	spraying water, the level starts going up.
14	When you hit the high pressure mark, this
15	valve closes, pump doesn't stop, keeps circulating
16	water heat through the jockey pump. And when the
17	pressure comes down, the set point and the safety
18	valve closes, so you feed, you try to cool the core
19	through a feed/bleed cooling mode.
20	Now, it is desirable, I have been told, to
21	operate like this with using one SRV, because it takes
22	less time to start up the reactor again in the future.
23	So the top events that we defined oh, before I go
24	into that. The system, as you see, is very complex.
0 5	

CHAIRMAN APOSTOLAKIS: This is not

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	150
1	software.
2	PROF. ALDEMIR: No.
3	CHAIRMAN APOSTOLAKIS: This is just Type
4	I dynamic.
5	PROF. ALDEMIR: No, Type I, Type I
6	interaction. There is no example of Type II
7	interactions, none in the literature that we have
8	seen.
9	CHAIRMAN APOSTOLAKIS: So you will
10	consider software here in Type I interactions?
11	MR. ARNDT: This is just an illustration.
12	Go ahead.
13	PROF. ALDEMIR: An illustration of how
14	Type I interactions tie up, coupled failure events.
15	Type II, there are two effects of the digital aspects.
16	One of them is the closer communication between the
17	devices, which makes the Type I coupling much worse
18	than this one and two on top of that, you have Type II
19	coupling or Type II there. There is no model. There
20	is no application of Type II interactions, so that's
21	why I'm showing this one.
22	So you try to control the water, I mean,
23	cool the reactor through feed/bleed cooling mode and
24	although this is a complex system, as you see, for
25	modeling purposes we can make it simpler. This comes
I	I

(202) 234-4433

	151
1	to the one-input, one-output model that I was talking
2	about, even if it's a digital controller inside. As
3	long as they are within the shaded area, I can regard
4	it as a single controlled, single structural unit or
5	micro component, which is what I'm doing in the next
6	picture.
7	And since I am using one safety relief
8	valve, I am regarding it as a single component, in
9	spite of its intricate construction. Either I have
10	data or I'm modeling it through conventional
11	techniques to get failure data. So this is how it
12	looks for modeling purposes. Then these are the set
13	points and we are talking about okay, sorry. Let
14	me go back here.
15	We are talking about four set points.
16	Either I go below a certain level or go above a
17	certain level, sorry, high level, low level possible
18	failure mechanisms and the high pressure/low pressure.
19	Now, these don't have safety implications obviously.
20	What the low level signal will do is it initiates the
21	RPCS system, but the point is that it will affect the
22	demand frequency of the RPCS.
23	So although this is not a safety-related
24	issue, it has safety implications from a PRA
25	viewpoint, because if you do a PRA, you are going to

(202) 234-4433

	152
1	change the demand frequency on the RPCS. And again,
2	the pressure, of course, you know, if SRV 1 does not
3	respond, then you have the other SRVs and you can go
4	for manual operation and so forth.
5	So the incident that we had here, I looked
6	at, is a 1 percent double-ended guillotine break.
7	Pressure reaches whatever in two minutes following the
8	loss of
9	CHAIRMAN APOSTOLAKIS: What do you mean by
10	1 percent?
11	PROF. ALDEMIR: Of area.
12	CHAIRMAN APOSTOLAKIS: So double-ended at
13	the largest pipe and you are considering 1 percent of
14	that?
15	PROF. ALDEMIR: No, no, we are talking
16	about a small, small break here, small instrumentation
17	break.
18	CHAIRMAN APOSTOLAKIS: I don't know. What
19	does
20	DR. BONACA: You mean 1 percent of the
21	double-ended
22	CHAIRMAN APOSTOLAKIS: If the largest pipe
23	has an area A, you are considering a pipe that has
24	area 1 percent of that?
25	PROF. ALDEMIR: Yes.
ļ	I

(202) 234-4433

	153
1	CHAIRMAN APOSTOLAKIS: And that breaks?
2	PROF. ALDEMIR: That's right.
3	CHAIRMAN APOSTOLAKIS: Okay.
4	PROF. ALDEMIR: Level reaches whatever in
5	two minutes following the LOCA, so these are your
6	initial conditions and we're assuming that the major
7	contributor to the HPCS failure is the failure of the
8	injection valve.
9	Now, this is the results of the analysis
10	using the cell-to-cell mapping technique. I don't
11	know if I should read this through, but the point is
12	that the failure mode of the system depends very much
13	on the exact timing of the failures and exact location
14	of the system variables at the time of the failure.
15	That's what comes out of this picture.
16	CHAIRMAN APOSTOLAKIS: Give us an example
17	of the exact time.
18	PROF. ALDEMIR: Examples. Low level,
19	which is minus 148 inches, occurs. If only HPCS fails
20	or only SU2, which is the SRV, fails to open. High
21	level occurs if SU2 fails closed after SU1 fails
22	after.
23	CHAIRMAN APOSTOLAKIS: After?
24	PROF. ALDEMIR: After. So high pressure
25	occurs if the level at the time of the SRV failure is
	I

(202) 234-4433

1 such that it takes longer for the level to reach the 2 low level point, 100 minus 148 inches, than the time 3 it takes for the pressure to reach 1110 psi. And 4 there are two other examples how this exact timing is important at the time of failure. This was a study we 5 6 did a long time ago. It has been now, what, 15 years. 7 CHAIRMAN APOSTOLAKIS: But you know how 8 the event tree guys would model this if they realized 9 They would have SU1 fails. Well, that's easy. it. Yes, SU1 fails and then ask does SU2 fail afterwards? 10 Put it on the right of the event tree and then you 11 would have a number of consequences. 12 If they put it on the left, you have another kind. 13 14 I mean, there are good ways of doing these 15 things and, as you know, that's why the people have 16 not embraced the dynamic methodologies, you know, 17 since you guys started screening because, you know, the same thing with electric power. You remember how 18 they model. Even in the Reactor Safety Study they say 19 20 what is the probability that off-site power will be 21 recovered before the diesels fail, and they have a 22 crude equation with an integral there and it's not 23 very accurate, but it's good enough. 24 PROF. ALDEMIR: But remember here, vou 25 know, there are two types of situations. I mean, if

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

154

	155
1	it were just sequence dependence, I would agree with
2	you, but it not just sequence dependence.
3	CHAIRMAN APOSTOLAKIS: Okay. What else is
4	there?
5	PROF. ALDEMIR: This bullet here. It's
6	the exact timing.
7	CHAIRMAN APOSTOLAKIS: Okay.
8	PROF. ALDEMIR: This one. This one. All
9	three exact timing, not sequenced. These are
10	sequenced.
11	CHAIRMAN APOSTOLAKIS: So why aren't they
12	listening to you?
13	PROF. ALDEMIR: Because two reasons.
14	CHAIRMAN APOSTOLAKIS: This is not just
15	software.
16	PROF. ALDEMIR: I will give you two
17	reasons.
18	CHAIRMAN APOSTOLAKIS: Okay.
19	PROF. ALDEMIR: The first reason is that
20	it is hard to follow this methodology. The second
21	reason is that they say, you know, from the workshop,
22	that's what Stefan Hirshberg said, so what? So if you
23	are right, what do I care if it is not very
24	significant? In fact, the same comment was made
25	earlier. You know, if the digital I&C system failure
	I

(202) 234-4433

156 1 is not significant to core malfrequency, what do I 2 care? Now, nothing has been done so far for a 3 4 full PRA to show that and I think this is an excellent 5 opportunity to do it, which we are proposing to do, by the way. So that is why we haven't been listening and 6 7 I'm very happy that, you know, we have such an 8 occasion to look at it and see if it is really 9 significant or not. 10 Okay. I just summarized it, but I want to mention these two here, which are going to 11 be 12 You see, we are overestimating the low important. 3 13 pressure probability by а factor of and 14 overestimating low level probability by a factor of 2. 15 Now, if we had digital controllers in place, because of tighter coupling I would have expected much larger 16 differences. 17 And you see the other interesting result, 18 19 and that is part of the controversy. High level/high 20 pressure results are very close to conventional 21 methodology results. So sometimes it's okay, 22 sometimes it isn't okay, and that is the other 23 argument that people have raised. So as a regulator, 24 for example, in the old days, NRC would say what do I 25 You know, it's safe, no problem, but I don't care?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	think in today's risk-based environment.
2	So anyway, conclusions. No single
3	methodology satisfies all requirements, namely for
4	DFM, for example. The only thing that is really
5	missing is the data business, but of course that is
6	true for everything. Data, even if we had data, it's
7	not going to be convincing. It's not going to be
8	credible to a significant portion of the technical
9	community. We need to show that DFM is capable of
10	describing the system dynamics properly and the
11	alternative is Markov approach.
12	Oh, I have two more. And what happens
13	when you don't use dynamic event trees? Well, we
14	don't have any evidence on digital Type II
15	interactions. What we have is only evidence on Type
16	I interactions, which says that, which implies, not
17	says, but implies, part of it is a little bit
18	conjecture, that if the system is a single failure
19	mode, if it doesn't have logic loops, if it doesn't
20	have substantial time delay with respect to the system
21	time constants between the initiation of the fault and
22	system failure, then the likelihood is high that the
23	event tree/fault tree approach is going to give good
24	results.
25	Now, if we extrapolate this evidence to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 the digital I&C systems, what we can say is the 2 The ET/FT approach may yield satisfactory following. 3 results as the conventional one when a digital system 4 does not interact with a process that has multiple top 5 events, logic loops and so forth is basically a repetition of 6 these three, rely on sequential 7 circuits, which have memory, have tasks which compete 8 for the I&C system resources and anticipate future 9 states of the controlled/monitored process. 10 That's why I said RPS system is the most

likely one that can be modeled using the static event 11 tree/fault tree approach, but I don't know exactly how 12 Ιf is 13 this system works. there extensive 14 communication within the system, you know, some of 15 these, and I think Bill mentioned earlier or somebody 16 mentioned earlier, that there is a computer in there 17 and you are looking at future states, so I'm not sure 18 in that respect. So what we were proposing to do is 19 first --

CHAIRMAN APOSTOLAKIS: Now, before you go to that, you are focusing here on dynamic stuff, which is important and so on, but another dimension, and I'm not sure it's a truly different dimension, but in the spirit of helping, you are aware of this thing that we're talking about that a failure of a software

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	159
1	should be looked at in the context in which the
2	software is used.
3	PROF. ALDEMIR: Yes, right.
4	CHAIRMAN APOSTOLAKIS: That there is a
5	classic example with the landing gear of an airplane
6	that Chris used as an example.
7	PROF. ALDEMIR: Yes, I read the paper.
8	CHAIRMAN APOSTOLAKIS: Where the airplane
9	was on the ground and the pilot ordered the system to
10	raise the landing gear and the system obeyed. There
11	should have been something there forbidding it to do
12	that if the plane is on the ground. So the question
13	that was raised is is that software now faulty? I
14	mean, can you say that the software no. One school
15	of thought says the software did what it was supposed
16	to do. It's the designer who screwed up.
17	PROF. ALDEMIR: Yes, specification error,
18	specification error.
19	CHAIRMAN APOSTOLAKIS: With the
20	requirements, requirements actually, not the
21	specifications. So what is the failure of the
22	software sometimes is not obvious, because the
23	software did it.
24	PROF. ALDEMIR: Yes, that's why
25	CHAIRMAN APOSTOLAKIS: He wanted me to
ļ	

(202) 234-4433

	160
1	raise the landing gear. I am going to do it. You
2	know, so the context is very important. I mean, if
3	it's flying, it's good. If it's on the ground, it's
4	not good and that's a trivial example, of course, but
5	it happened actually. It happened. So I don't know.
6	And then, of course, the example we have
7	been using here is the abnormal events, external
8	events that require the software to do something
9	extraordinary, and that's when you see that there is
10	a problem. So should you make context as another
11	dimension of all this and how does that fit into what
12	you are describing?
13	PROF. ALDEMIR: I'll let Steve comment and
14	then I will comment.
15	CHAIRMAN APOSTOLAKIS: Okay.
16	MR. ARNDT: Yes. The concept that you are
17	putting forth is a very important issue and how
18	context-specific, if you will, are certain situations
19	is also a big issue.
20	CHAIRMAN APOSTOLAKIS: Yes.
21	MR. ARNDT: And that drives us to the
22	kinds of questions we were asking last night. What
23	kind of modeling is necessary? What level of detail
24	of modeling not only in terms of how many circuits and
25	things like that, but how much of the process, how
ļ	I

(202) 234-4433

	161
1	much of the specification, what kinds of issues do you
2	have to deal with?
3	As I go back to what I talked about
4	yesterday, one of the big issues in developing both
5	guidance for what is acceptable from a licensee PRA,
6	as well as what we want in our own PRA, and asking
7	these kind of questions and that's part of both
8	developing the methodologies, as well as understanding
9	what the requirements need to be, what level of
10	information do you have to embed in the process model.
11	And one of the toughest ones, as you have pointed out,
12	is how do you deal with specification issues.
13	CHAIRMAN APOSTOLAKIS: Yes, and
14	requirements.
15	MR. ARNDT: And requirements.
16	MR. KEMPER: The integration, what you are
17	trying to do is model what you don't know. Right?
18	CHAIRMAN APOSTOLAKIS: We are very good at
19	that.
20	MR. KEMPER: There may or may not be.
21	CHAIRMAN APOSTOLAKIS: We are very good at
22	that.
23	PROF. ALDEMIR: This is what we are
24	planning to do. You know, as has been clear so far,
25	not only we are taking software and hardware jointly,
I	

(202) 234-4433

	162
1	but we are also taking the process as part of it. So
2	what you are
3	CHAIRMAN APOSTOLAKIS: And the process may
4	create contexts.
5	PROF. ALDEMIR: Right.
6	CHAIRMAN APOSTOLAKIS: But we didn't say
7	anything about
8	PROF. ALDEMIR: But you know, what we are
9	going to do is when we come to okay, maybe not I
10	think enough time here, but what we are going to do is
11	basically take this. If we can get a good description
12	of the feed water control system, which we are sure to
13	get
14	CHAIRMAN APOSTOLAKIS: Yes.
15	PROF. ALDEMIR: then we are going to
16	couple it to a system simulator.
17	CHAIRMAN APOSTOLAKIS: No, no, no, but you
18	are now going into the details of how to do it.
19	PROF. ALDEMIR: But that's what will
20	happen.
21	CHAIRMAN APOSTOLAKIS: But you gave us a
22	presentation where you said, you know, there are
23	certain needs. I have to recognize a few things and
24	so on. And what I'm saying is shouldn't you also
25	recognize somewhat there that the context is
ļ	I

(202) 234-4433

	163
1	important?
2	PROF. ALDEMIR: Oh, you mean the
3	conclusions?
4	CHAIRMAN APOSTOLAKIS: And even before.
5	MR. ARNDT: Yes.
6	PROF. ALDEMIR: Okay, okay.
7	CHAIRMAN APOSTOLAKIS: When you have your
8	requirements and all that.
9	PROF. ALDEMIR: I see, I see. Okay.
10	Sure, sure.
11	CHAIRMAN APOSTOLAKIS: It seems to me
12	PROF. ALDEMIR: Yes, yes, yes.
13	CHAIRMAN APOSTOLAKIS: Do you mention it
14	in the NUREG, draft NUREG?
15	PROF. ALDEMIR: No, no, good point, good
16	point.
17	CHAIRMAN APOSTOLAKIS: And what I'm saying
18	is that maybe it's something.
19	PROF. ALDEMIR: Good point.
20	CHAIRMAN APOSTOLAKIS: I thought that
21	example by Chris was very, very illuminating.
22	PROF. ALDEMIR: No, no, that's a valid
23	point.
24	CHAIRMAN APOSTOLAKIS: Yes. All this
25	applies to your work, too.
I	1

	164
1	MR. ARNDT: Right. And where this is
2	going to be particularly important, and why we're
3	looking at particular kinds of methods, is how do you
4	develop a state-based model or whatever model you use
5	to feed the particular reliability models.
6	PROF. ALDEMIR: But in the report we
7	what I think Professor Apostolakis is saying, that we
8	should make it a separate point.
9	MR. ARNDT: As explicit.
10	CHAIRMAN APOSTOLAKIS: Discuss it.
11	PROF. ALDEMIR: Good point, good point.
12	CHAIRMAN APOSTOLAKIS: I know you know
13	about it.
14	PROF. ALDEMIR: Yes.
15	CHAIRMAN APOSTOLAKIS: But good point,
16	good point. And we see all this stuff.
17	PROF. ALDEMIR: Right, good point.
18	CHAIRMAN APOSTOLAKIS: Because you see,
19	when you talk about state space, a new context may
20	create new states.
21	PROF. ALDEMIR: Right.
22	CHAIRMAN APOSTOLAKIS: There is a defined
23	support. Can you hear him?
24	MR. CHIRAMAL: The example, there is
25	something missing in the examples. My name is Matt
	I

(202) 234-4433

	165
1	Chiramal, NRR. It starts off with a loss of off-site
2	power and the feed water pumps have tripped,
3	everything is tripped and it initiated with a large
4	break or a small break?
5	PROF. ALDEMIR: Small break.
6	CHAIRMAN APOSTOLAKIS: Small break.
7	MR. CHIRAMAL: So you mentioned the loss
8	of off-site power.
9	PROF. ALDEMIR: No, no loss of off-site
10	power.
11	MR. CHIRAMAL: Then the feed water system
12	would be working.
13	PROF. ALDEMIR: The break is such that it
14	incapacitates the reactor core isolation cooling
15	system.
16	MR. CHIRAMAL: Yes, but the thing is if
17	the feed water is running already, it supplies water
18	already.
19	PROF. ALDEMIR: Oh, you mean the oh,
20	yes, off-site power.
21	MR. CHIRAMAL: So you are missing a lot of
22	initials.
23	PROF. ALDEMIR: Okay.
24	MR. CHIRAMAL: Plus when it happened, the
25	second HPC pump also, high pressure injection pump,
ļ	I

```
(202) 234-4433
```

	166
1	tripped. There should be two, at least two or three
2	sometimes. You are looking at a system a lot more
3	better than when you read an example like that.
4	PROF. ALDEMIR: But the point is that the
5	paper is not here, so I'm not sure if I am capturing
6	all the assumptions that we had in the paper here in
7	this transparency. And you may be right. We might
8	have missed them in the original paper. But the point
9	is that the dynamics is not going to change very much.
10	CHAIRMAN APOSTOLAKIS: No, because the
11	feed water is an entirely different situation.
12	MR. ARNDT: Yes, we'll clean it up. The
13	point is that there are certain scenarios that when
14	you have competing events, the dynamics drive you to
15	the different conclusions.
16	CHAIRMAN APOSTOLAKIS: And I think another
17	thing you should do, Tunc, is nobody disputes what you
18	say, but what you really ought to do, as well, and
19	maybe you plan on some of it, is look at those crude
20	models that people use to handle these situations and
21	then draw some conclusions that the crude model is way
22	off or something like that.
23	PROF. ALDEMIR: We tried to do that.
24	CHAIRMAN APOSTOLAKIS: Because people are
25	aware of these things. I mean, even in the Reactor
ļ	I

(202) 234-4433

	167
1	Safety Study, as I said, they do. They do it.
2	PROF. ALDEMIR: And this came up again in
3	the
4	CHAIRMAN APOSTOLAKIS: Not happily perhaps
5	or satisfactorily, but they do it.
6	PROF. ALDEMIR: In the workshop it came
7	again. You know, if we try to do that analysis, the
8	conventional analysis, people become skeptical. They
9	say well, of course, you know, how do you know, we
10	could have done Stefan Hirshberg was saying that
11	oh, I could do anything you can do with event
12	trees/fault trees.
13	CHAIRMAN APOSTOLAKIS: That's a song from
14	something.
15	PROF. ALDEMIR: But what he ends up doing
16	is exactly what we are doing, except not so
17	methodical. He uses a simulator. He generates
18	multiple event trees, multiple fault trees.
19	CHAIRMAN APOSTOLAKIS: I don't know what
20	you are trying to say now, but the truth of the matter
21	is that you are not identifying a situation that
22	people are completely unaware of. They are aware of
23	the fact that sequencing sometimes is important and
24	they have proposed very crude methods for handling
25	that and the classic case is loss of off-site power
I	

(202) 234-4433

	168
1	and when it is restored. Okay?
2	So if it is restored after the batteries
3	are exhausted, then I'm in trouble, right? So people
4	say well, gee, you know, I had to do that. Okay. How
5	long are the batteries going to last? 11 hours. What
6	is the probability that we will restore off-site power
7	in 11 hours? So they break it up into pieces that
8	they can handle.
9	Now, of course, you might say but how do
10	you know it's 11 hours? It might be something else.
11	And they will reply well, I don't need that kind of
12	detail, because I have already gotten my order of
13	magnitude number and that is good enough.
14	PROF. ALDEMIR: But there are two
15	different issues here. One of them is the sequencing
16	timing and subjectives, the phasing of mission, so to
17	speak, as you describe it. The other one is
18	interaction. They are different issues.
19	CHAIRMAN APOSTOLAKIS: No, I'm with you.
20	All I'm saying is that your arguments will carry more
21	weight if you acknowledge that other people are doing
22	something about some of these.
23	PROF. ALDEMIR: We did that in the NUREG.
24	CHAIRMAN APOSTOLAKIS: Okay.
25	PROF. ALDEMIR: It is in the NUREG. We
ļ	1

(202) 234-4433

	169
1	did talk about phase missions and how people address
2	that issue. You are right. I mean, we did that.
3	That was Curtis Smith's
4	CHAIRMAN APOSTOLAKIS: So what you are
5	telling me is I should read the NUREG?
6	PROF. ALDEMIR: No, no, there was no
7	implication, no.
8	CHAIRMAN APOSTOLAKIS: I started, by the
9	way. So can we go on now to the happy end, next
10	steps?
11	UNIDENTIFIED SPEAKER: Backwards.
12	PROF. ALDEMIR: Oh, backwards, okay.
13	Sorry. We are proposing to develop two benchmark
14	problems that will capture important features of the
15	existing I&C systems, and they have digital
16	counterparts. We want to do an analog. This was also
17	mentioned yesterday, that we should do that or
18	somebody should do that. We are planning to take an
19	analog system as is and if we can find the ideal
20	situation is to find something that was there earlier
21	and then that is there now and then compare the exact
22	systems as they are and if we can get access to the
23	data. I'm not sure if we can.
24	But anyway, we're going to come up with
25	two systems that will try to capture all these
ļ	I

(202) 234-4433

	170
1	features that I mentioned, and we will use dynamic
2	flowgraph methodology and the Markov approach with a
3	common set of failure data to compare just the
4	capabilities, not necessarily data sensitivities or
5	CHAIRMAN APOSTOLAKIS: What do you mean
6	"common set of failure data?" I mean, their needs may
7	be very different. I mean, if you give them the
8	failure data, you are forcing them to use it.
9	PROF. ALDEMIR: No, no, no.
10	CHAIRMAN APOSTOLAKIS: I mean, the failure
11	models that they are considering may be different.
12	Why don't you do it in pieces? First, ask the Markov
13	guys to come up with a state space and ask the DFM
14	guys to come up with the equivalent.
15	PROF. ALDEMIR: That's what
16	CHAIRMAN APOSTOLAKIS: And then compare.
17	PROF. ALDEMIR: That's what we
18	CHAIRMAN APOSTOLAKIS: Forget about
19	failure rates. When you say failure data, I don't
20	know what you mean.
21	PROF. ALDEMIR: Well, it could be
22	CHAIRMAN APOSTOLAKIS: Don't give it to
23	them.
24	PROF. ALDEMIR: No, no, no. I'm sorry.
25	This is the situation. When I say "common set of
I	1

(202) 234-4433

	171
1	failure data," the current plan is that the University
2	of Virginia is going to come up with the failure modes
3	of the system. Then we are going to use the same
4	failures. We're going to take those failure modes and
5	then try to see if the dynamic flowgraph methodology,
6	given the system description, how it operates, is
7	going to come up with the same failure modes, because
8	there may be a discrepancy. It's not clear at this
9	point.
10	CHAIRMAN APOSTOLAKIS: Yes, but that
11	doesn't mean that Virginia is right.
12	PROF. ALDEMIR: No, no, but we're going to
13	do comparison.
14	CHAIRMAN APOSTOLAKIS: So you're just
15	making part of it.
16	PROF. ALDEMIR: We are looking at both
17	failure modes. But what I'm trying to say here in
18	this bullet is we need to quantify.
19	CHAIRMAN APOSTOLAKIS: Yes.
20	PROF. ALDEMIR: So if we need
21	quantification, we'll try to make sure that both sets
22	are using the same data.
23	CHAIRMAN APOSTOLAKIS: Yes. I disagree
24	with your statement. We need to quantify no matter
25	what.
	I

(202) 234-4433

	172
1	MR. ARNDT: We need to try to quantify.
2	PROF. ALDEMIR: It has to go into a full
3	PRA. I have to have numbers.
4	CHAIRMAN APOSTOLAKIS: Yes. Okay. Are we
5	going to have another chance to look at the benchmark
6	exercise?
7	MR. ARNDT: Yes.
8	CHAIRMAN APOSTOLAKIS: After the fact or
9	during the fact or before the fact?
10	MR. ARNDT: It's entirely up to you.
11	CHAIRMAN APOSTOLAKIS: Well, if I were
12	you, I would ask for it as early as possible, because
13	clearly there are some disagreements here.
14	MR. ARNDT: Okay.
15	CHAIRMAN APOSTOLAKIS: And I think it's
16	too late to resolve them today.
17	MR. ARNDT: Okay.
18	PROF. ALDEMIR: Okay. But anyway, the
19	intention is that if DFM and if we have agreement, and
20	I'm not sure if it's going to be that easy to resolve
21	at this point, I mean, from what Professor Apostolakis
22	said. And then we are going to take the results and
23	try to see how we can incorporate them into a full
24	PRA. And with dynamic flowgraph methodology, it's
25	fairly clear, because it gives prime implicates which
Į	

(202) 234-4433

	173
1	can replace the minimal cut sets within the PRA, so it
2	should integrate fairly easily.
3	If it turns out that we need more detail
4	for more physical process detail, then we'll also try
5	to see how we can get the Markov Model out, but then
6	try to put it in a mechanical fashion into an existing
7	PRA such as SAPHIRE. And also, we are doing it kind
8	of independently of this project, but we are also
9	looking at the feasibility of developing a dynamic
10	methodology on the SAPHIRE platform, but this is
11	another project.
12	(Whereupon, at 5:00 p.m. the meeting
13	continued into the evening session.)
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
I	1

	174
1	E-V-E-N-I-N-G S-E-S-S-I-O-N
2	5:00 p.m.
3	CHAIRMAN APOSTOLAKIS: Thank you very
4	much. Do you have anything else to say?
5	PROF. ALDEMIR: Oh, any questions?
6	CHAIRMAN APOSTOLAKIS: Steve, do you have
7	anything to say that you really think is important?
8	MR. ARNDT: I guess not.
9	CHAIRMAN APOSTOLAKIS: Okay. Maybe we
10	should go around. I don't know. Are there any
11	questions?
12	MR. THORNSBURY: We have representatives
13	from NSIR here in case they wanted to comment on the
14	research process.
15	CHAIRMAN APOSTOLAKIS: Anybody who wants
16	to speak? No. Okay.
17	MR. MORRIS: On this topic, no, or on any
18	topic?
19	CHAIRMAN APOSTOLAKIS: We have one topic.
20	Okay. Thank you very much. This was very, very
21	helpful both yesterday and today and yesterday's
22	speakers. I believe the Subcommittee has a much
23	better idea now what's going on. The plan is to have
24	another Subcommittee meeting to cover the rest of the
25	plan, right? Then in October maybe, September,
I	I

(202) 234-4433

	175
1	October, sometime
2	MR. SNODDERLY: October.
3	CHAIRMAN APOSTOLAKIS: October. You will
4	come and brief the full Committee, at which time we
5	will write a letter on the plan. Now, today maybe if
6	the Members are willing, they can give us preliminary
7	thoughts. If you are unwilling, that's fine, too.
8	What?
9	MR. ARNDT: The NSIR staff wanted to be
10	available to make comments on the overall plan.
11	CHAIRMAN APOSTOLAKIS: Yes.
12	MR. ARNDT: Not this particular
13	presentation.
14	CHAIRMAN APOSTOLAKIS: Okay.
15	MR. ARNDT: Do you want to hear from them
16	for a minute or two?
17	CHAIRMAN APOSTOLAKIS: Okay. Go ahead.
18	MR. MORRIS: I mean, I wasn't available
19	yesterday. I'm Scott Morris.
20	CHAIRMAN APOSTOLAKIS: Can you go there,
21	please?
22	MR. MORRIS: Yes.
23	CHAIRMAN APOSTOLAKIS: We have a
24	microphone.
25	MR. MORRIS: I'm Scott Morris from NSIR.

	176
1	I'm one of the Section Chiefs in the Division of
2	Nuclear Security. I couldn't be here yesterday,
3	unfortunately. It's my understanding that the NRR
4	folks had an opportunity to comment as well. We only
5	looked at the cyber security portion of it, which I
6	think is Section 3.4. The research folks, Bill Kemper
7	and his staff, asked us to take a look at it and see
8	whether or not we had any heartburn with it or thought
9	we could make it do more.
10	CHAIRMAN APOSTOLAKIS: And you wrote a
11	memo, right?
12	MR. MORRIS: And we wrote a memo and I
13	think it summarizes it fairly well, but I guess the
14	point that I wanted to raise in this discussion is
15	that we you know, from a security standpoint, I
16	mean, you look at everything differently when you do
17	it from a safety standpoint, because it's not random
18	failures. I mean, it's bad people trying to do bad
19	things and take advantage of vulnerability, etcetera.
20	And so from our standpoint, we're
21	interested in any research that would help promote an
22	understanding of the vulnerabilities that exist and
23	how they could be exploited. Now, we are fairly far
24	down a path of devising a process, an approach. We
25	have issued a couple of NUREGs already you may or may
I	I

(202) 234-4433

	177
1	not be aware of that define a mechanism by which
2	licensees at reactor facilities or any facility, for
3	that matter, can employ this process and help
4	determine where their vulnerabilities exist.
5	It's a very well-articulated process and
6	it doesn't really from a big picture standpoint, we
7	really don't care what happens inside of the box. We
8	just want to know of a box that may control a safety
9	system. We don't really care.
10	CHAIRMAN APOSTOLAKIS: Are these Official
11	Use Only?
12	MR. MORRIS: Yes. They haven't been
13	widely disseminated.
14	CHAIRMAN APOSTOLAKIS: But we can have it?
15	MR. MORRIS: Absolutely.
16	CHAIRMAN APOSTOLAKIS: Yes.
17	MR. MORRIS: I'll make those available to
18	you. But the point is it's not so important to us to
19	know how all the inner workings of the we just want
20	to know, number one, look out, look at your site.
21	Figure out what systems are important to you from a
22	safety standpoint, then figure out how those systems
23	are controlled, operated, monitored, whatever and how
24	they can be exploited from an external adversary or
25	even an internal.
ļ	I

(202) 234-4433

And figure out if this is the box, how is it connected to the outside world, and to take a look at all those connections and make sure that you're satisfied that they are either secure through a system of barriers or protocol, whatever. And if they are, fine, but to figure out what they all are and then use a risk-based approach to determine which ones you need to do something with or not.

And we have, as I said, been -- we have 9 10 prepared these detailed methodologies. We were aided by the industry, because we have piloted it at four 11 12 different sites. We had PNNL help. Pacific Northwest Lab helped with devise this 13 National us their 14 expertise. And now, we're working with the industry 15 themselves, Nuclear Energy Institute, and their own 16 Cyber Security Task Force to develop a program 17 management document.

They currently have it published, it's NEI 04-04, that they use, but it's to take what we have developed as a staff, to use this cyber security selfassessment methodology and then put a programmatic overlay over the whole thing to help individual licensees identify it and manage the risks of cyber security at their facilities.

And we're working very closely with them,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

8

commenting on that whole thing. So with all of that as a background as to what NSIR is doing, a very nondetailed description, we looked at the research plan, from what they wanted to do or what they had proposed to do, and of course our overriding comment was hey, anything you can do to help us implement this process, that's our top priority.

8 But we understand there is benefit to 9 doing some degree of anticipatory research to look 10 inside the box, you know, to enhance our understanding 11 of what's actually out there and to do some research 12 to look at validating what we think we know, but do we 13 really know it, you know, and how some of the software 14 works.

15 All that is legitimate, but it doesn't 16 directly help me necessarily. It may add credibility 17 to the overall, what we're doing, but it doesn't -- so our comments were all based on we're doing this. 18 19 Anything you can do to help us implement this is great. We understand there's a need to do these other 20 21 things at some good level. You know, NRR can weigh in 22 on that and I think they have.

CHAIRMAN APOSTOLAKIS: But you said youwent to PNNL for help.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. MORRIS: Yes.

25

1

2

3

4

5

6

7

	180
1	CHAIRMAN APOSTOLAKIS: Why shouldn't that
2	activity be part of the plan or maybe there is no
3	reason for it to be part of the plan. But I mean,
4	does PNNL know would PNNL benefit from interactions
5	with Steve and Mike and their contractors, because
6	that's really the question. I mean, if it's an
7	isolated activity that is really very different from
8	what the rest of the guys are doing
9	MR. MORRIS: I'm not sure. I think Eric
10	can tell you better.
11	CHAIRMAN APOSTOLAKIS: I mean, you create
12	a plan usually because there are activities that have
13	a common goal and there may be synergies. You know
14	how it is.
15	MR. MORRIS: Yes, I understand.
16	CHAIRMAN APOSTOLAKIS: But if your needs
17	are so different that really you are not going to
18	benefit from anything that these guys are doing, then
19	maybe what you did is good enough. Otherwise, the
20	question is why weren't PNNL part of this?
21	MR. KEMPER: Well, let me try to address
22	that. Our approach in the cyber area is to take an
23	inside and outside approach. We're looking at what's
24	the vulnerability of safety-related digital control
25	systems and other things are connected to from an
I	I

(202) 234-4433

	181
1	inside threat as well as an outside threat. So that's
2	why we started from the inside. It's important to
3	understand the protocol and communication lessons
4	between one process over another to get a better
5	appreciation for what the vulnerability is.
6	As Todd said, we're trying to assess the
7	vulnerability, not the threat, that's up to the
8	threat. So until we actually start taking these
9	systems apart and looking at their susceptibility to
10	cyber attacks
11	CHAIRMAN APOSTOLAKIS: But you are not
12	looking for those, are you?
13	MR. KEMPER: Oh, yes. We haven't
14	explained it to you yet.
15	CHAIRMAN APOSTOLAKIS: Oh, okay. This is
16	one of the next meetings.
17	MR. KEMPER: This is the next meeting,
18	right.
19	CHAIRMAN APOSTOLAKIS: Okay. Okay. Maybe
20	you should come to the next meeting.
21	MR. MORRIS: We'll be there.
22	MR. KEMPER: Okay. So that's the inside
23	part. And then, of course, there's the another
24	CHAIRMAN APOSTOLAKIS: I understand that.
25	MR. KEMPER: which is the outside.
I	1

(202) 234-4433

	182
1	We're going to look at a typical, you know,
2	configuration of connectivity of power plants and try
3	to see what's the vulnerability of that.
4	CHAIRMAN APOSTOLAKIS: Even with that
5	though, NSIR says that you are not really helping.
6	MR. WATERMAN: Well, to interject, when we
7	received NSIR's comments and follow-up comments
8	CHAIRMAN APOSTOLAKIS: Okay.
9	MR. WATERMAN: into the research plant,
10	additionally, the NUREG 6047, as I've read it
11	COURT REPORTER: Sorry, when you speak,
12	move the microphone over.
13	MR. WATERMAN: Oh, okay.
14	CHAIRMAN APOSTOLAKIS: We were whispering,
15	but
16	MR. WATERMAN: Mike Waterman in research.
17	As I understand 6047, it is designed to look at
18	installations in nuclear power plants, right now look
19	for vulnerabilities in installed systems. It's our
20	research plan to address more of that. However, the
21	other area that we're looking at is guidance for
22	developers of new networks that haven't been installed
23	in plants yet to tell if these are the things you
24	ought to be considering when you are thinking about
25	designing a secure network to put into a plant, so we
I	1

(202) 234-4433

	183
1	can sort of head off some of the issues that Scott is
2	trying to deal with right now.
3	Instead of having bad networks installed
4	in the plants and then having 6047 and tools deal with
5	those issues once they are in, we're also trying to
6	provide guidance that have
7	CHAIRMAN APOSTOLAKIS: It seems to me that
8	all this really should be discussed at the next cyber
9	meeting.
10	MR. MORRIS: Well, I just wanted to say
11	that this is premature.
12	CHAIRMAN APOSTOLAKIS: It's a little
13	premature, yes, but especially
14	MR. MORRIS: Yesterday you guys talked
15	about some of this stuff.
16	CHAIRMAN APOSTOLAKIS: Yes.
17	MR. MORRIS: It happened then.
18	CHAIRMAN APOSTOLAKIS: Okay.
19	MR. MORRIS: But I think you do need to be
20	aware of
21	CHAIRMAN APOSTOLAKIS: Yes.
22	MR. MORRIS: that there is a fairly
23	significant level of activity going on.
24	CHAIRMAN APOSTOLAKIS: Yes, the next
25	meeting will be probably some time in August perhaps.
ļ	1

(202) 234-4433

	184
1	MR. THORNSBURY: Or September.
2	CHAIRMAN APOSTOLAKIS: September is hard
3	for some of us.
4	MR. THORNSBURY: It will be in one of
5	those two.
6	CHAIRMAN APOSTOLAKIS: Is that okay with
7	you guys?
8	UNIDENTIFIED SPEAKER: It would be okay
9	with us. August would be
10	MR. KEMPER: I won't be able to
11	participate.
12	CHAIRMAN APOSTOLAKIS: August is
13	MR. KEMPER: Because I mean, in August I'm
14	away on vacation.
15	UNIDENTIFIED SPEAKER: In July?
16	CHAIRMAN APOSTOLAKIS: After the middle?
17	MR. KEMPER: Oh, after the middle.
18	DR. BONACA: After the middle we're going
19	to transfer me, right? So then we have a couple of
20	good preparation for the full meeting. We have
21	MR. SNODDERLY: Mario, was there a
22	subcommittee scheduled yesterday for September for
23	Browns Ferry? I think there was.
24	CHAIRMAN APOSTOLAKIS: Probably was.
25	Actually, we scheduled something.
I	I

(202) 234-4433

	185
1	MR. SNODDERLY: So you may want to tag it
2	on to that.
3	CHAIRMAN APOSTOLAKIS: Yes.
4	MR. SNODDERLY: Because you never know
5	when the time
6	DR. BONACA: And that's going to be
7	probably involving most members.
8	MR. SNODDERLY: Right.
9	DR. BONACA: Because of all the mix.
10	CHAIRMAN APOSTOLAKIS: Visit where?
11	DR. BONACA: It's going to be here, but we
12	return subcommittee on Browns Ferry.
13	MR. THORNSBURY: Okay. We'll work that
14	out.
15	DR. BONACA: We talked to the staff.
16	MR. SNODDERLY: So Eric will work with
17	Steve
18	CHAIRMAN APOSTOLAKIS: Well, remember that
19	the
20	MR. SNODDERLY: to come up with an
21	agenda.
22	CHAIRMAN APOSTOLAKIS: Right. I mean,
23	it's hard for me to Monday, Wednesday is going to
24	be very hard to get it.
25	DR. BONACA: The trouble now, you know,
l	I

(202) 234-4433

	186
1	with meeting July 20^{th} and then the summer is getting
2	all scheduled with meetings.
3	CHAIRMAN APOSTOLAKIS: Anyway, Tom, you
4	want to say a few words?
5	DR. KRESS: Yes, I can give some
6	impressions.
7	CHAIRMAN APOSTOLAKIS: Yes.
8	DR. KRESS: First of all is I'm awfully
9	glad to see research doing this. I think it's stuff
10	that we have called for in the past and it's going to
11	be badly needed and it's going to be, I think, very
12	helpful. I like the idea of up front looking for
13	modes of failure first, types of failures you have by
14	searching out. I'm afraid you won't find very many
15	out there though.
16	I like the thought that the EPRI guy, he's
17	not here now, suggested that have you thought about
18	looking at whether or not you can declare all digital
19	systems, I&C systems better than analog and therefore
20	you could either say that the risk is not that
21	significant or you could just use the analog value and
22	say you've bound it. I like that thought.
23	One thing that struck me is that basically
24	everything we are doing in terms of looking at digital
25	software failure rates, failure probabilities seems to
	I

(202) 234-4433

1 imply that the failure is a random event and we know 2 they are not. And I think the one unique failure 3 probability, I think it will be sequence dependent, 4 and maybe even time dependence within the sequence. 5 I think you have a problem looking for a failure 6 probability. 7 I think you need -- that's why you need these failure modes and how they fail and how they 8 9 interact first, because I am very doubtful you will get a unique failure probability. Other than that, 10 I'm sure glad that you guys are doing this, because 11 it's something that, I think, will bear fruit and be 12 very useful. 13 14 CHAIRMAN APOSTOLAKIS: Thank you, Tom. Mario? 15

DR. BONACA: Yes, I'm commenting also on 16 17 some presentation we had yesterday morning. I felt 1.97 endorsing actually 18 that Req Guide policy 19 It is going in the right standard, I think, is good. I don't 20 direction. know, however, about the 21 possibility of backfitting that Reg Guide to older 22 plants. That's an issue that is not submitting to us 23 it seems to me, at this stage.

24 We heard about the preliminary validation 25 of the methodology for assessing software quality. We

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	188
1	had a presentation yesterday morning. I was, I guess,
2	confused about what is in that report that was
3	presented, so
4	CHAIRMAN APOSTOLAKIS: Which one is that
5	one?
6	DR. BONACA: It's the
7	MR. SNODDERLY: Maryland.
8	CHAIRMAN APOSTOLAKIS: Maryland?
9	DR. BONACA: Yes. Maybe it was my problem
10	in digesting all the information in that document.
11	But I wasn't too convinced about that work. In so far
12	as the plan, the role plan, I think I totally agree
13	with you, Tom, that, you know, I really had an
14	appreciation developed yesterday and today for the
15	need for this work. I mean, clearly, I came out of
16	this meeting with increased concern with the use of
17	digital systems, although we know that they will be
18	here. And they will be used.
19	So, you know, one thought, we certainly
20	would like to get involved with the Oconee upgrade.
21	CHAIRMAN APOSTOLAKIS: Oh, yes.
22	DR. BONACA: As a means of learning more
23	about those issues you are bringing up, which is time
24	dependency, for example, that may mask certain faults
25	at first view. And, you know, my thought is that you
ļ	

(202) 234-4433

wanted to couple the design from the platform. But in this case, it may be very well that the platform itself or the process that you are using for the digital design it seems to create the opportunity for mistakes on the part of the design. There is that kind of feedback there.

7 Ι thought that the plan was quite 8 significant and I hope that they can resolve their 9 differences with NRR. Clearly, I think that NRR is writing and being involved in the finding of need, but 10 I think that we have to look forward and far on this 11 12 issue, because there are significant implications for 13 safety.

DR. KRESS: I hope that the apparent negative reaction of NRR doesn't put a damper on this, because, you know, I think this is anticipatory research and might not even need a user need.

DR. BONACA: Yes, I mean, I don't see, you know, given all we have heard, you have to get to it and study and try to understand it and these are pressing issues.

DR. KRESS: I mean, I thought NRR had the feeling that they know how to do these reviews already and they don't need this. But I think that's very short sided.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	190
1	CHAIRMAN APOSTOLAKIS: But it's also
2	DR. BONACA: I think
3	CHAIRMAN APOSTOLAKIS: important to
4	know that the attitude of the NRR people this time
5	around was very different than the first time we met.
6	DR. KRESS: Yes, there is change.
7	DR. BONACA: Yes, there is better
8	communication.
9	DR. KRESS: Somebody must have jumped on
10	them.
11	MR. SNODDERLY: Well, I think, Mario makes
12	a good point that we need to be very involved in the
13	Oconee review, because that will demonstrate NRR's
14	concern.
15	DR. KRESS: On how they
16	MR. SNODDERLY: Right. Do they have the
17	tools, do they have the capability to do that?
18	CHAIRMAN APOSTOLAKIS: And we can
19	MR. SNODDERLY: So we will have to
20	DR. BONACA: Yes, I think that's great.
21	MR. SNODDERLY: have follow-up and find
22	out when that schedule is and where and make sure we
23	schedule that.
24	DR. BONACA: Remember, designing this
25	upgrade for Oconee.
I	I

(202) 234-4433

	191
1	CHAIRMAN APOSTOLAKIS: Framatome.
2	DR. BONACA: Okay. But, you know, I mean,
3	I think we will learn a lot from them.
4	CHAIRMAN APOSTOLAKIS: Oh, yes. Anything
5	else?
6	DR. BONACA: No, nothing.
7	CHAIRMAN APOSTOLAKIS: Good. Well, I
8	think my views were made clear more or less, but I
9	want to say that yes, I'm very pleased myself that the
10	staff is doing this. By and large, it is a very good
11	program, plan and I'm looking forward to seeing the
12	revised schedule that you gentlemen are working on
13	now. I also have serious doubts about the usefulness
14	of all this metric thing that was presented. It was
15	yesterday. Actually, I have more than doubts, but I
16	just want to say doubts. I don't think it's useful at
17	all.
18	DR. KRESS: The fault density?
19	CHAIRMAN APOSTOLAKIS: What?
20	DR. KRESS: The fault density, you meant?
21	CHAIRMAN APOSTOLAKIS: No, the other one
22	with I don't know, the Maryland one.
23	DR. BONACA: Yes.
24	CHAIRMAN APOSTOLAKIS: The metrics. I
25	don't see how that can help a decision-maker. Well,
I	

(202) 234-4433

	192
1	I have problems with the fault injection when they
2	start developing failure rates, but I think a good
3	thing about this meeting and the last meeting we had,
4	but especially this one, is I think we are beginning
5	to understand each other much better. But there are
6	some fundamental issues that bother me. And, you
7	know, you gentlemen showed some appreciation for some
8	of them anyway.
9	DR. KRESS: I thought they needed a better
10	definition of fault and a specific comment.
11	CHAIRMAN APOSTOLAKIS: Yesterday?
12	DR. KRESS: Yes. You know, you're trying
13	to determine the number of remaining faults by some
14	process, which I thought might be reasonable. But
15	it's the denominator that goes into that that bothers
16	me. And I think you need to think about that
17	denominator.
18	CHAIRMAN APOSTOLAKIS: Any time anybody
19	does a historical to determine the number of remaining
20	faults, you should be awfully skeptical.
21	DR. KRESS: Yes, but it's you know, the
22	numbers
23	CHAIRMAN APOSTOLAKIS: But it is a
24	difficult issue.
25	DR. KRESS: The denominator worried me
I	I

(202) 234-4433

	193
1	more than that.
2	CHAIRMAN APOSTOLAKIS: So I think today's
3	presentations were not presentations, the substance
4	of it was much better. Some of the stuff was
5	presented yesterday, not all of it. A lot of it was
6	good, too. So I think we are on our way and we're
7	going to review the rest of the plan and then write a
8	letter on the plan itself. But also, what is not
9	clear in my mind is how we're going to comment on the
10	individual projects now.
11	So, at some point, I mean, you know, this
12	is research. Do they have to come to us? They don't
13	have to, do they? Professor Aldemir finished at
14	present three new reports to issue. I don't think the
15	staff is there is a mandatory for them to come to
16	us, unless we request it.
17	MR. SNODDERLY: For review, right, unless
18	we request to review the new reg reports.
19	CHAIRMAN APOSTOLAKIS: Steve?
20	MR. ARNDT: You're right. It's a decision
21	of the staff whether to issue publications or not.
22	Now, not necessarily Professor Aldemir's work, but any
23	of our work. If it goes into regulatory
24	implementation, a Reg Guide or a revision of the SRP,
25	then you need to come to. The point, however, is, as
l	I

(202) 234-4433

	194
1	we mentioned earlier in the day, there are certainly
2	times where we would want your input on decision
3	points and directions and things like that.
4	CHAIRMAN APOSTOLAKIS: Okay.
5	MR. ARNDT: Either in this forum or in
6	another forum and we'll work with Eric to try and do
7	that.
8	CHAIRMAN APOSTOLAKIS: So it would be sort
9	of a participatory review.
10	MR. ARNDT: Right.
11	CHAIRMAN APOSTOLAKIS: Which I think is
12	fine with the Committee.
13	MR. KEMPER: Can I ask a specific Bill
14	Kemper here. Yes, what I would like to do is we're
15	going to get together and kind of discuss our projects
16	and maybe identify those milestones where another
17	engagement with you all would be appropriate. Okay?
18	CHAIRMAN APOSTOLAKIS: Sure.
19	MR. KEMPER: So we're going to have to
20	take this to heart.
21	CHAIRMAN APOSTOLAKIS: Very good.
22	MR. KEMPER: And really value the
23	interaction here. You have given us some real good
24	things to think about. And, obviously, it makes us
25	feel a lot more comfortable knowing that we're on the
	I

(202) 234-4433

	195
1	path that you all are comfortable with.
2	CHAIRMAN APOSTOLAKIS: Yes.
3	MR. KEMPER: As opposed to violently
4	opposed to, you know, before we go public with that.
5	CHAIRMAN APOSTOLAKIS: Wonderful.
6	Anything else? Well, thank you gentlemen again. This
7	has been very useful and this meeting of the
8	Subcommittee is adjourned.
9	(Whereupon, the meeting was concluded at
10	5:23 p.m.)
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	