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ABSTRACT 
An understanding of the role of methane hydrates in the global carbon cycle, and in past and future climate 
change, is dependent on an understanding of methane consumption in hydrate-associated environments. In 
the marine environment, a dual-component microbial biofilter consumes up to 80% of methane produced. 
Throughout most of the world’s ocean the primary component of this biofilter, anaerobic methane oxidation 
within sediment, prevents significant amounts of methane from leaving the seafloor. However, in areas of 
elevated methane production, this sedimentary component is overwhelmed, and methane is released to the 
water column [1]. The water column component of the marine biofilter for methane is arguably the largest 
uncharacterized global sink for methane. The goal of our work is to utilize a combined geochemical and 
molecular biological approach to develop a quantitative understanding of methane consumption in the 
marine water column of the Southern California Bight. Here we will present geochemical data showing that 
degree of basin enclosure, and basin-scale circulation patterns, are first order controls on methane oxidation 
rates in the Santa Monica Basin (SMB). We will also present genetic data elucidating similarities and 
differences in methanotrophic communities in distinctive horizons within the SMB water column 
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NOMENCLATURE  
[L] liters  
[m] meters 
[µm] micrometer 
[nM] nanomolar (nanomoles per liter) 
[τ] turnover time   
 
BACKGROUND 
In the open ocean methane concentrations 
range between 0.5-5 nM, tending to be 
slightly oversaturated in surface waters, and 
at or below equilibrium saturation at depth 
[1,2,3].  This difference in saturation state is 
due to microbial methane consumption 
(methanotrophy) within the water column. 
Estimates of methane turnover times in the 
deep ocean are in the range of 15-50 years 
[2,3]. In areas with locally elevated methane 
concentrations, including hydrothermal 
vents and hydrocarbon seeps, turnover times 
as low as 2 weeks to 1.5 years have been 
reported [4,5]. While methane oxidation rate 
measurements made in a few discrete areas 
have provided evidence for the importance 
of the water column methane biofilter [4, 5, 
6,7,8,9], primary controls on the rate and 
extent of consumption remain 
uncharacterized.  
 
There have been a handful of studies 
identifying methanotrophic bacteria in the 
open ocean, coastal areas, and oxygen 
minimum zones [10,11,12,13,14]. However, 
no studies have quantitatively profiled 
methanotrophic communities or investigated 
links between community 
structure/composition and rate/extent of 
methane oxidation.  Hydrocarbon seep 
environments, including those off-shore of 
Southern California, provide a natural 
laboratory for investigating these 
populations, their level of activity under 
varying conditions, and controls on their 
efficacy.  
 
STUDY SITE, SAMPLING, METHODS 
The SMB is located on the coastal side of 
the Southern California Borderland, as part 
of an interconnected system of 13 submarine 
basins ranging in depth from about 590 to 
nearly 2600 m (Figure 1). The SMB is 

approximately 100 km long, 40 km wide and 
900 m deep. During the SEEPS’07 (Studies 
of the Ecology and Evolution of Petroleum 
Systems) cruise, the water column overlying  
a hydrate-associated mound in the SMB was 
sampled in a series of seven vertical casts 
over a period of three (nonconsecutive) 
days. The venting feature targeted by this 
investigation has been described by others 
[15,16,17], and provides an ideal study site 
for our investigation of the buffer zone 
between marine methane hydrate and the 
atmosphere. 
 

 
 
Figure 1 – The basins of the Southern 
California Borderland. Map obtained from 
GeoMapApp (www.marinegeo.org/geomapapp)  
 
The SMB is connected with the San Pedro 
Basin and San Diego Trough to the South, 
the Santa Catalina and Santa Cruz Basins to 
the west and the Santa Barbara Basin to the 
north (Figure 1). The SMB sill depth is    
747 m, below this depth water is restricted 
from lateral mixing with the other basins 
and with the open ocean. Between           
700-747 m connections with the San Pedro 
Basin/ San Diego Trough and Santa Cruz 
Basin open, allowing bottom water to flow 
through the basin.                                                            
 
At 600 m the western connection between 
the Santa Monica, Santa Catalina and Santa 
Cruz Basins begins to open, allowing 
mixing of intermediate waters.  



 

 
 
 
 
 
 

Figure 2 – Location of vertical casts conducted during the SEEPS’07 cruise in the Santa Monica 
Basin. The hydrate associated mound lies directly under station #3. Map obtained from 
GeoMapApp (www.marine-geo.org/geomapapp). 
 
 
At water depths less than 200-250 m surface 
waters of all of the basins, except the Santa 
Barbara Basin which is restricted on its 
southern edge by the Channel Islands, are 
fully interconnected. Generally, surface 
waters in this region have a northern origin 
and flow, in the Southern California eddy, 
equatorward as the California Current and 
poleward as the California Countercurrent, 
while bottom waters have a southern origin 
and flow poleward as an undercurrent 
[18,19]. 
 
In July, 2007, samples for determination of 
ambient methane concentrations and 
methane oxidation rates and for 
methanotrophic community analyses were 
collected throughout the water column at 
five stations (Figure 2), a total of three casts 
were conducted at station #3. Methane 
concentrations of an equilibrated N2 
headspace were measured on a gas 
chromatograph equipped with a flame 
ionization detector [5]. Methane oxidation 
rate measurements were made using a 
tritium-tracer method, based on measuring 
the fraction of radiolabeled methane 
converted to water by aerobic 
methanotrophy (CH4 + 2O2   CO2 + 2H2O 
+ {biomass}) [5]. Following a defined 
incubation period (approximately 24 hours), 
the activity of the radiolabeled product      
(3H-H2O) was measured, and a fractional 
turnover rate calculated.  Methane oxidation  

 
 
rates were calculated as the product of the 
fractional turnover rate and ambient 
methane concentration. Turnover times were  
calculated as the inverse of the fractional 
turnover rate. Ten 20 L water samples for 
methanotrophic community analyses were 
collected. A peristaltic pump was used to 
filter these samples through a 3 µm pre-filter 
and 0.2 µm sterivex filter in series. Filters 
were preserved in a sucrose storage buffer, 
and DNA was extracted using a 
phenol/chloroform purification method. Two 
key genes (encoding for pmoA and Type I 
16S rRNA) have been amplified, and clone 
libraries have been constructed. The pmoA 
gene encodes for the alpha-subunit of the 
first key enzyme in aerobic methanotrophy, 
particulate methane monooxygenase. This 
gene was targeted with a commonly used 
primer pair A189/mb661 [20,21]. A portion 
of the 16S rRNA gene that is conserved 
among known Type I methanotrophs was 
amplified with the primer set TypeI R/TypeI 
F [22].  Sequence analysis, amplification of 
other methanotroph-specific genes and semi-
quantitative community profiling of these 
genes across all samples is underway; up-to-
date data will be presented at the conference.    
 
PRELIMINARY FINDINGS  
Preliminary analysis of methane 
concentration and oxidation rate data shows 
a strong link between physical 
oceanography and methanotrophic activity 



in this semi-enclosed, coastal basin. 
Although our sampling program targeted a 
specific venting feature, our results elucidate 
trends that appear to be controlled by broad-
scale circulation patterns. 
 
Concentration and oxidation rate profiles at 
the five sampling stations, and on all three 
days at station #3, are strikingly similar. 
Methane concentrations show maxima 
below sill depth (747 m; 10-40 nM) and at  
50 m; (10 nM). Methane concentrations are 
stable, and range from 2.5-5 nM, between 
700-50 m and above 50 m. Turnover time 
(τ) is the time required to fully deplete the 
sample methane pool at the observed 
oxidation rate. While this measure has 
important caveats in extrapolation to 
environmental settings, it is a useful way to 
compare methanotrophic activity between 
samples with known methane 
concentrations.  Four distinct horizons are 
apparent from turnover time profiles. Below 
sill depth, rapid turnover times are observed, 
on the order of 3 weeks to 1.5 months. 
These are some of the shortest turnover 
times yet reported for the marine water 
column. Just above sill depth, turnover times 
begin to increase (representing a decrease in 
methanotrophic activity) with decreasing 
depth. This approximately linear increase 
continues to 500 m (τ = 2 years). Between 
500 m and 200 m turnover times show a 
nearly linear decrease (increase in activity) 
to a minimum of 4 months. Above 200 m, 
turnover time is on the order of 1-2 months, 
except at the    50 m mixed layer methane 
maxima where anomalously long turnover 
times are observed (6 months to 3 years). 
Interestingly, the four distinct horizons 
observed in turnover time data also 
correspond to distinctive regions observed in 
temperature, salinity and oxygen 
concentration profiles. It is evident from 
these profiles that waters below sill depth 
have uniform characteristics in the area 
sampled, and that three distinct water 
masses exist between sill depth and the sea-
surface.  
 

Our interpretation of these observations is 
that the three distinct horizons observed 
above sill depth define southern bottom 
waters, northern surface waters and a broad 
mixing zone between these two distinct 
water masses. This interpretation is 
supported by previously published work 
[18,19]. The close correlation, between 
transition zones in property profiles and 
depth at which basin enclosure decreases, 
presents the question of the role of basin-
scale circulation as a control on the activity 
of the water column methane biofilter.  
 
We postulate that the differences in the trend 
of methanotrophic activity (increasing vs. 
decreasing) with decreasing depth are 
indicative of community concentration, 
dilution and seeding. Below sill depth, 
methanotrophic bacteria thrive. They have a 
consistent supply of carbon and energy, and 
advection of the active community away 
from their local energy source is limited by 
complete basin enclosure; these are 
concentrated communities.  
 
Above sill depth bottom waters flow through 
the basin, from the San Diego Trough, 
towards the Santa Cruz Basin. As depth 
decreases, the San Pedro and Santa Cruz 
basin connections widen, and the area 
through which these waters flow increases. 
Bottom waters flowing through the basin 
from the south appear to have low 
methanotrophic activity. This could be 
because these waters have not been in recent 
contact with a sustained source, and are thus 
methane depleted, and unable to sustain a 
methanotrophic community. We hypothesize 
that increased flow of these waters through 
the basin dilutes the methanotrophic 
community between 700 and 500 m depth. 
We plan to test this hypothesis with 
quantitative methanotrophic community 
profiling.  
 
At 500 m there is distinct transition to higher 
variability in temperature, salinity and 
oxygen with depth, this zone extends to 
approximately 200 m water depth. A broad 
mixing region in this depth range is 



characteristic of the SMB [18,19]. In this 
zone, both the mixing ratio of northern to 
southern water and methanotrophic activity 
increase with decreased depth, suggesting 
that surface waters of northern origin seed a 
methanotrophic community in intermediate 
waters of this region. The seed community 
may be derived from either the Santa 
Barbara Basin or the Santa Monica Bay 
coastal environment. This hypothesis will be 
tested with comparisons of community 
composition and source water 
methanotrophic activity between these three 
sites.  
 
Methanotrophic activity in waters above 
200m is likely controlled by the reportedly 
dynamic [23] mixed layer methane 
maximum, however the relationship 
between this concentration maxima and the 
correlative turnover time minimum is not yet 
understood. More detailed analyses of 
surface circulation patterns, an investigation 
of the methanotrophic community, and 
comparison with other surface water sites 
(including the Santa Barbara Basin) will 
likely increase our understanding of controls 
on methane consumption in this depth 
interval.   
 
CONCLUSIONS 
Our observations in the SMB water column 
emphasize the importance of physical 
oceanographic characteristics and processes 
to the potential for microbial methane 
consumption in the marine water column. 
The contrast observed between methane 
concentration and methane turnover time 
profiles suggests that while methane 
concentration is a first-order control on 
methanotrophic activity, community 
concentration, dilution and seeding control 
the broad scale efficacy of methane 
consumption. These processes are dependent 
on local geologic methane sources, source 
area bathymetry and current patterns in and 
around areas of elevated methane flux from 
the seafloor.  
 
We are currently expanding our 
understanding of these processes in the SMB 

with a semi-quantitative genetic screening 
approach and through a comparison (both 
geochemical and molecular) with the Santa 
Barbara Basin.  The next step that we will 
pursue in addressing water column biofilter 
efficacy in this area is quantitative 
methanotrophic community profiling over 
space and time.  
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