DOE's Perspectives on Carbon Capture and Storage – **Directions, Challenges, and Opportunities**

Carbon Capture and Storage

November 13-15, 2007 Austin, Texas

Thomas J. Feeley, III National Energy Technology Laboratory

250+ Year Supply at Current Demand Levels !

U.S. Fossil Fuel Reserves / Production Ratio

Sources: BP Statistical Review, June 2004, - for coal reserves data - World Energy Council; EIA, Advance Summary U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 2003 Annual Report, September 22, 2004 - for oil and gas reserves data.

C Capture & Storage, Austin, TX Nov. 13-15, 2007

Coal Use Linked to Economic Growth in United States!

Projected Fossil Energy Power Generation CO₂ Emissions

CCS – It's Not Just About Coal !!!

United States CO₂ Emissions

Carbon Sequestration Program Goals

Deliver technologies & best practices that validate:

- -90% CO₂ capture
- 99% storage permanence
- < 10% increase in COE (pre-combustion capture)</p>
- < 20% increase in COE (post- and oxy-combustion)</p>

Key Challenges to CCS

- Sufficient Storage & Capture Capacity ?
- Cost of CCS ?
- Permanence ?
- Infrastructure ?
 - Permitting
 - Regulatory framework
 - Public Acceptance
 - Liability
 - Best Practices

The Challenge:

Sufficient Storage Capacity ?

The Direction:

- Validate Storage Capacity to +/- 30% Accuracy
- Validate Ability to Capture > 90% CO₂

How Much CO₂ Are We Talking About?

• 1 million metric tons of CO₂:

- Every year would fill a volume of 32 million cubic feet
- Close to the volume of the Empire State Building
- U.S. emits roughly 6 billion tons (gigatons) of CO₂ per year
 - Under an EIA reference case scenario cumulative CO₂ emissions 2004-2100 are expected to be 1 trillion tons
 - Enough to fill Lake Erie with liquid CO2 almost twice

North America Geologic Storage Capacity (> 600 Year Storage Capacity for U.S. & Canada)

Source: Battelle, "A CO2 Storage Supply Curve for North America", September 2004, PNWD-3471

Technology Must Show Ability for Significant Capture

- To stabilize emissions, future emission reductions likely to be quite large
- Off the shelf capture technologies can already achieve greater than 90% capture of the CO₂ that it "sees"
- Emerging technologies must be at least that good
- 90% capture capability does NOT imply 90% capture requirement !!!

The Challenge:

Cost of CCS ?

The Direction:

- < 10% increase in COE (pre-combustion capture)
- < 20% increase in COE (post- and oxy-combustion)

Before CO₂ Can be Stored....it Must be Captured

Separation and concentration of CO₂ from fuel or flue streams:

Three general classes of capture technology:

- Pre-combustion (IGCC)
- Post-combustion
- Oxy-firing combustion

CCS Is Expensive !

- 5–30% parasitic energy loss
- 35–110% increase in capital cost
- 30-80% increase in cost of electricity

Effect of CO₂ Capture on Cost of Electricity (% Increase Resulting From CO₂ Capture)

Scale-Up Is An Issue

• 0.27 scf per minute

500 MW Commercial

Anticipated FY08 CO₂ Capture Solicitations

- Contingent upon FY08 funding and associated language, competitive C capture R&D solicitation(s) will be issued in the following areas:
 - Pre-combustion capture (i.e., IGCC)
 - Post-combustion and oxycombustion capture
- CCPI Round 3 Commercial Demonstration
 - Up to \$250 Million may be available
 - Demonstrate significant progress toward 90% carbon capture and less than 10% increase in the cost of electricity

The Challenge:

Permanence ?

The Direction:

- Develop tools, protocols & best practices
- Verify 99% storage retention

All Risks & Leakage Pathways Are Being Studied

Environmental Risks

- Increases atmospheric CO₂
- Accumulation of CO₂ pockets on earth
- Migration into other strata and contamination of fresh water
- Leakage of CO₂ into a marine environment
- Damage to nearby hydrocarbon resources
- Displacement of underground fluids
- Initiation of seismic activity

• Health and Safety Risks

- Human and animal exposure
- NIOSH defines CO₂ as a nontoxic, inert gas that displaces oxygen
- Work hazard

- Economic Risks
 - Enhanced oil recovery is a commercially proven process
 - Additional research needed
 - Liability

Once Injected, CO₂ is Difficult to Remove

Physical trapping

Residual phase trapping

Solution/Mineral Trapping

Gas adsorption

Japan CO₂ Injection Site ... Following Earthquake

- On 10/23/04, a 6.8 magnitude quake hit the Niigata Japan
- Epicenter was ~20 kms away from the Nagaoka CO₂ injection site
- Notably, there was no seismic activity observed during CO₂ injection before the earthquake.
- Absolutely no CO₂ leakage or well damage observed

Monitoring, Mitigation, and Verification Technologies & Protocols Are Emerging

The Challenge:

Infrastructure ?

The Direction:

- Put "first of kind" projects in place
- Develop protocols & best practices
- Regional Carbon Sequestration Partnerships

Regional Carbon Sequestration Partnerships

Creating Infrastructure for Wide Scale Deployment

Characterization Phase

• 24 months (2003-2005)

Validation Phase

- 4 years (2005 2009)
- Field validation tests
 - 25 Geologic
 - 11 Terrestrial

Deployment Phase

- 10 years (2007-2016)
- Up to 7 large volume injection tests

Regulatory Guidelines Emerging

- EPA taking a lead role
- EPA & DOE Working Group
- IOGCC Framework
 Released May 2005
- IOGCC Legal & Regulatory Framework Released in September 2007

First Ever National Sequestration Atlas

U.S. ~ 6 GT CO2/yr all sources

Saline Formations North American CO₂ Storage Potential

Unmineable Coal Seams

Hundreds of Years of Storage Potential

NETL

Available for download at http://www.netl.doe.gov/publications/carbon_seq/refshelf.html

(Giga Tons)

Sink Type	Low	High
Saline Formations	969	3,223
Unmineable Coal Seams	70	97
Oil and Gas Fields	82	83

NATCARB

National Carbon Sequestration Database and Geographical Information System

- Integrate data across **Partnerships**
- National perspective of sequestration potential
- **Decision support tools**
- Outreach tool
 - Web-site gets 200-400 unique visitors every month

http://fossil.energy.gov/

>

