
DOE-NETL's Mercury R&D Program

EPRI Mercury Workshop

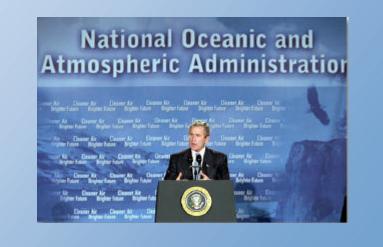
November 6-7, 2002 St. Louis, MO

Thomas J. Feeley, IIII National Energy Technology Laboratory

Potential Mercury Regulations

MACT Standards

- Likely high levels of Hg reduction
- Compliance: 2007


Clean Power Act of 2001

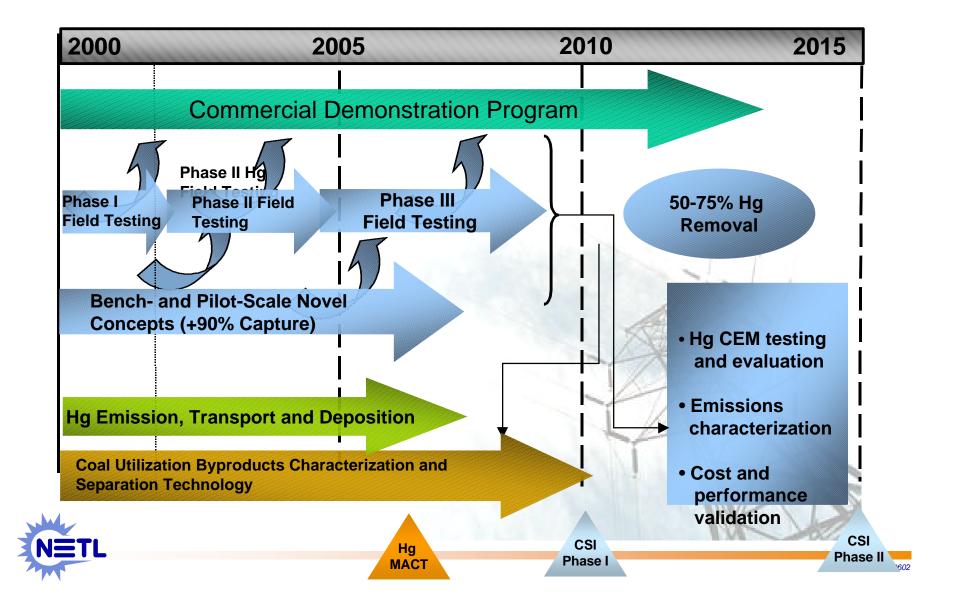
- 4-contaminant control
- 90% Hg reduction by 2007

President Bush Announcing Clear Skies Initiative February 14, 2002

Clear Skies Act of 2002

- 3-contaminant control
- 46% Hg reduction by 2010
- 70% Hg reduction by 2018
- Hg emission trading

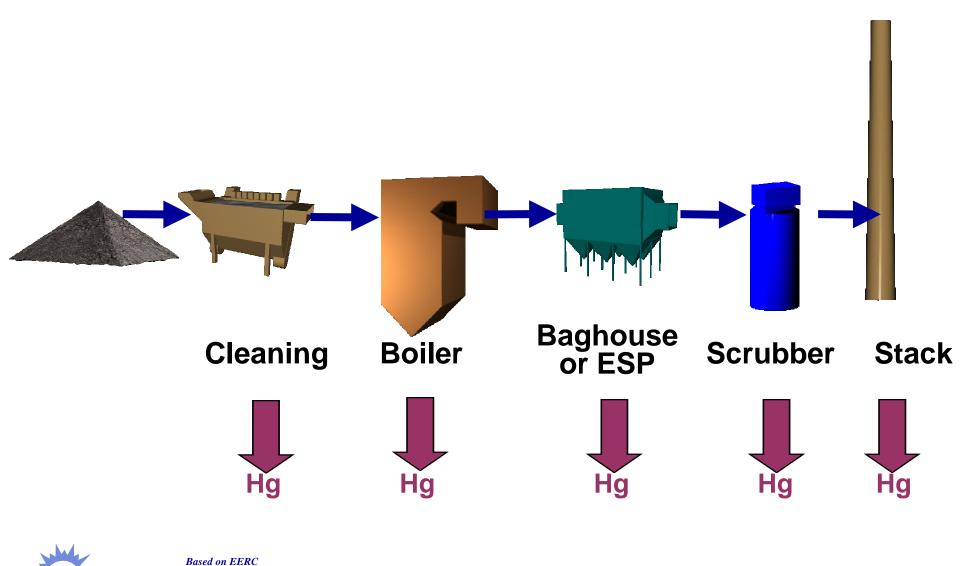
DOE-NETL's Mercury R&D Program


• Focus on:

- -Control technology development
- -Coal byproduct characterization
- Emissions characterization and methods development
- Deposition measurement
- Plume chemistry and transport
- -Supporting systems analysis

• Strong partnership with industry and EPRI

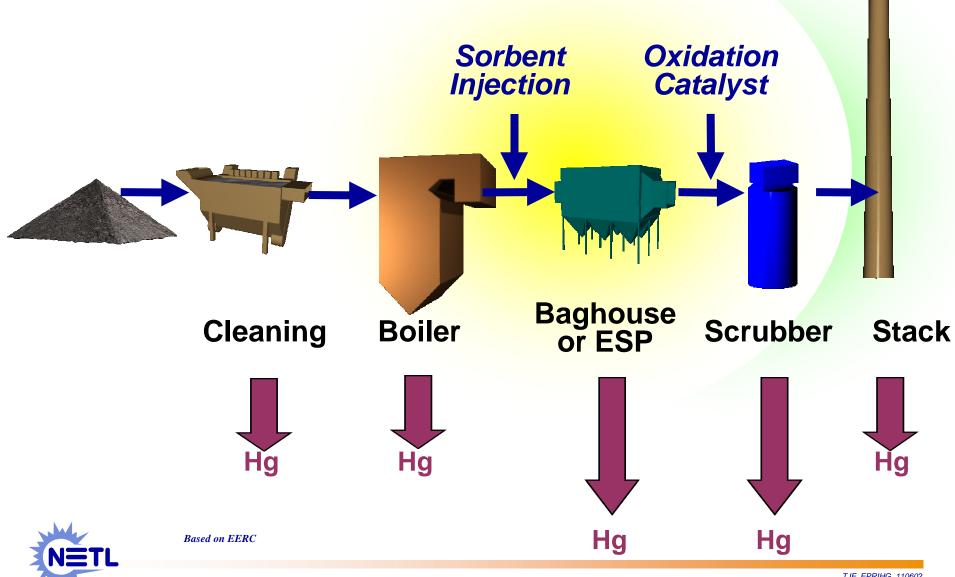
Hg Control Technology Roadmap


Estimated Funding for Mercury R&D

FY01	FY02	FY03 ^{1.}	FY04 ^{2.}
\$2,500,000	\$5,700,000	\$9,000,000	\$20,000,000

- 1. Does not include Senate (\$1,000,000) or House (\$4,000,000) add
- 2. Based on FY04 President's Budget

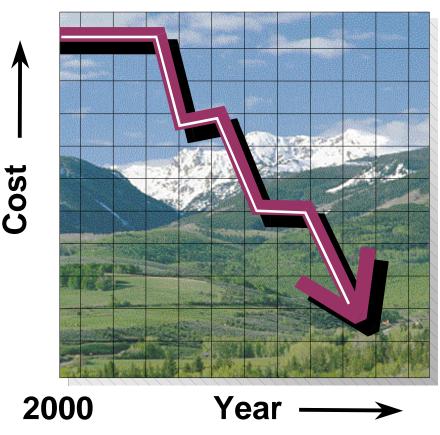
Mercury in a Power Plant



ised on EERC

TJF_EPRIHG_110602

Mercury Control Options



TJF_EPRIHG_110602

R&D Goals DOE Mercury Control Program

Have technologies ready for commercial demonstration:

- By 2005, reduce emissions 50-70%
- By 2010, reduce emissions by 90%
- Cost 25-50% less than current estimates

Baseline Costs: \$30,000 - \$70,000 / Ib Hg Removed

Six Mercury Control Field Tests

Technology / Utility Plant	Start Date
ADA-ES – Sorbent Injection Alabama Power – Gaston We Energies – Pleasant Prairie PG&E – Brayton Point PG&E – Salem Harbor	March 2001 September 2001 June 2002 September 2002
McDermott-B&W – Enhanced Scrubbing Michigan South Central Power – Endicott Cinergy – Zimmer	May 2001 October 2001

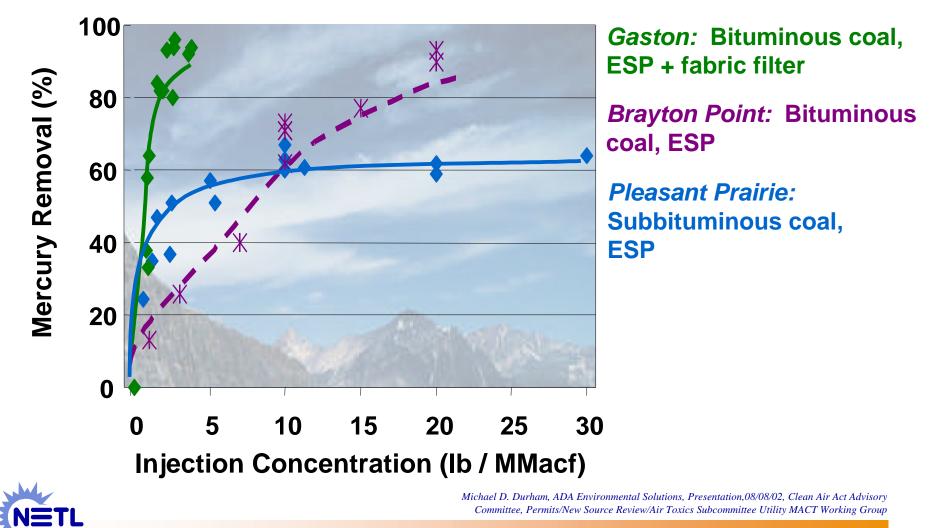
ADA-ES Field Test Sites

Alabama Power – Gaston

- 135 MW
- Low-sulfur bituminous coal
- ESP
- COHPAC fabric filter

We Energies – Pleasant Prairie

- 150 MW
- Subbituminous coal
- ESP


PG&E – **Brayton Point**

- 122 MW
- Low-sulfur bituminous coal
- Low-NO_X burners
- Two ESPs in series

Mercury Removal Trends Activated Carbon Injection

TJF_EPRIHG_110602

Long-Term Sorbent Injection Testing ADA-ES

- Initiate long-term (~9 months) testing of sorbent injection technology at Alabama Power's E. C. Gaston Power Station
- Evaluate performance of TOXECON[™] process
 -- pressure drop, bag strength/integrity, fly ash characteristics
- TVA, FirstEnergy, Allegheny Energy, Arch Coal, EPRI, Hamon Research-Cottrell, Ontario Power

Advanced Mercury Control Concepts

- Apogee Scientific
 - Advanced Hg sorbents
- CONSOL
 - Multi-pollutant control for Hg, SO₂, acid gases

• EERC

 Hybrid particulate control system

Powerspan

 Multi-pollutant control for Hg, SO₂, NO_x, particulates, acid gases

Southern Research Institute

 Calcium-based additives to control Hg

URS Group

 Catalyst to convert elemental to oxidized Hg

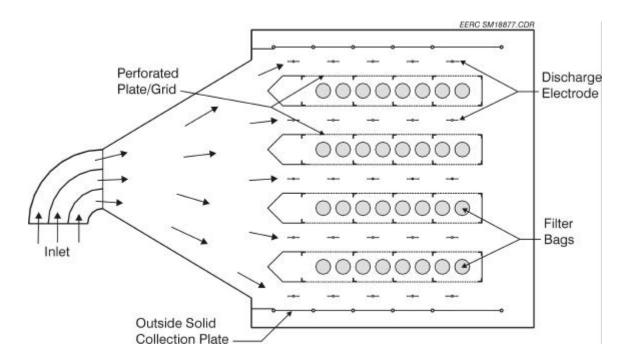
Designed to Achieve \geq **90% Hg Removal**

UNDEERC Advanced Hybrid Particulate Collector

• Evaluate sorbent injection

 Advanced hybrid particulate collector (AHPC)

• 200 acfm pilot-scale testing


- Subbituminous and high-sulfur eastern bituminous coal
- 9,000 acfm slipstream testing at Otter Tail Power
 - PRB coal with variable sorbent residence times
 - 3-month testing for mercury removals

AHPC Slipstream Test Unit at Big Stone Power Plant

AHPC Design Configuration

- ~ 90% of particles collected on ESP plates
- Less frequent bag cleanings = longer bag life

Advanced Hybrid Particulate Collector Results to Date

Preliminary slipstream tests at Big Stone

- ->90% Hg removal @ carbon:Hg of 2500:1
- -Unusually high levels of Hg_p (~55%) and Hg⁺⁺ (~38%) at AHPC inlet
- -~49% Hg removal across AHPC with C injection

Pilot-scale tests at UNDEERC

- -Same PRB coal as Big Stone; different Hg speciation
- -<5% Hg_p; 20-25% Hg⁺⁺, 70-75% Hg^o at AHPC inlet
- -Negligible Hg removal w/out C injection
- -Results of C injection tests now being evaluated

Low-Rank Coal Research Activities Catalytic Mercury Oxidation

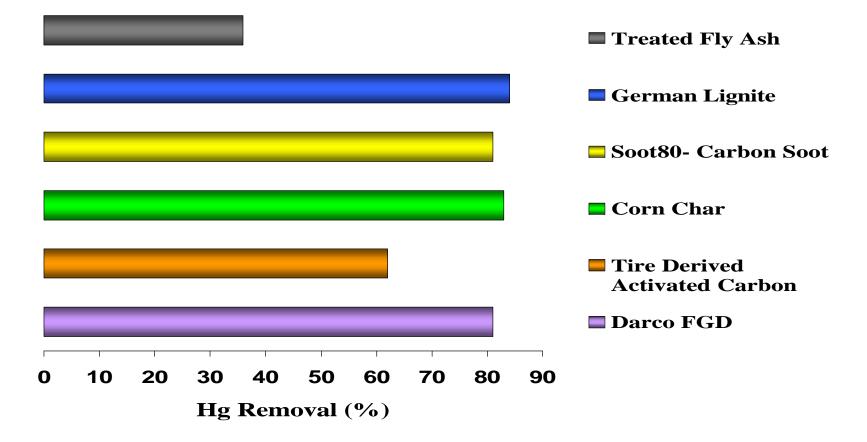
- URS developing mercury oxidation catalysts
- Slip-stream testing at two utility sites
 - -Great River Energy
 - Coal Creek Station (unit 1 of 2)
 - ND lignite w/ESP & Wet Scrubber
 - -City Public Service of San Antonio
 - J.K. Spruce Plant
 - Subbituminous coal

Great River Energy's Coal Creek Station, North Dakota

Sorbent-Based Technologies for Utilities Burning Lignite Coals

- Joint project with:
 - -UNDEERC
 - -SaskPower
 - -EPRI
 - -ND utilities
- Pilot- and full-scale slipstream testing of carbon-based sorbent injection

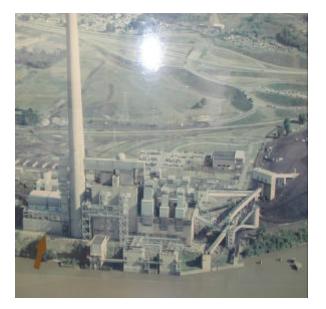
SaskPower's 562-MW Lignite-Fired Poplar River Power Plant


APOGEE Slipstream Evaluation of Hg Sorbents

- Evaluate alternatives to commercially available AC
 - Carbons prepared from high-organic sulfur coals, biomass, tires, and fly ash
- Portable pilot system configured as ESP or baghouse
- Testing at
 - Powerton Generating Station (Midwest Generation)
 - subbituminous coal
 - -Valley Power Plant (Wisconsin Electric Power)
 - bituminous coal + coke

APOGEE

Preliminary Data from Powerton Station



Parametric Testing at Injection rate of 1.5 lb/Mmacf for 20 minutes

POWERSPAN Corp. *Electro-Catalytic Oxidation Technology*

- Barrier discharge reactor to oxidize Hg and other pollutants (SO₂/NOx) for subsequent removal in ammonia scrubber
- Fine PM/aerosols captured in wet ESP
- Ammonium sulfate/nitrate fertilizer
 byproduct

FirstEnergy's R.E. Burger Plant

 5000 acfm slipstream testing at FirstEnergy's R.E. Burger Plant

POWERSPAN *Preliminary Results*

		ECO [™] Pilot Unit at FirstEnergy's R.E. Burger Plant
Emission	Removal	
SO ₂	>95%	
NOx	90%	
(0.4 lb/mmBtu inlet) Mercury	85%	
PM <3 microns	96-97%	Return Gas
Total PM	99.9%	Conventional Dry ESP ECD Reactor
		Inlet Gas Absorber Vessel Wet ESP

- High natural Hg⁺⁺ makes it difficult to assess ECO reactor performance
- Hg^o spiking tests ongoing; sampling difficulties encountered

CONSOL *Hg/Multi-Pollutant Control*

 Mercury capture with native fly ash at reduced flue gas temperatures

-225°, 260°, and 320° F

- Alkaline sorbent (Mg(OH)₂) injection to remove corrosive SO₃ upstreamof air preheater
- 4- 6 month long-term test at optimum conditions at Mitchell Station
 - -288 MW PC-fired unit
 - -High Sulfur bituminous coal

Allegheny Energy's Mitchell Station

Impact on By-products Could Be Significant

Fly Ash

- 63M tons / yr generated
- 32% used
- Utilization loss for concrete < \$390M impact

FGD By-product

- 25M tons / yr generated
- 19% used
- Utilization loss for wallboard < \$135M impact

Hazardous Designation of All By-products Would Cost \$11 Billion / Year

Coal Combustion Byproduct Research

- Focus on leaching and volatilization of Hg and other trace metals from coal byproducts;
 - University of North Dakota
 Energy and Environmental
 Research Center
 - -CONSOL
 - National Energy Technology Laboratory (Inhouse R&D)

Fly Ash and Scrubber Solids

TJF_EPRIHG_110602

Mercury Reactions in Plumes

- Participating in EPRI study of mercury speciation Plant Bowen plume
 - Instrumented aircraft measurements through Interagency Agreement with TVA
 - Stack speciation measurements through Cooperative Agreement with UNDEERC
- Initiating analogous project with EPRI at a yetto-be-determined power plant

Key Milestones

Milestone	Date
Issue phase II mercury field testing solicitation	Dec. 2002
Award phase II field testing cooperative agreement	Aug. 2003
Complete 9 month of testing at Alabama Power's Gaston Station	Oct. 2003
Complete slipstream testing of Electro-Catalytic Oxidation process at FirstEnergy's Burger Station	Oct. 2003
Complete leaching tests of coal byproducts from mercury control technology projects	Aug. 2003
Complete 14 month slipstream testing of oxidation catalyst at GRE Coal Creek Station	Feb. 2004

Observations From Field Tests

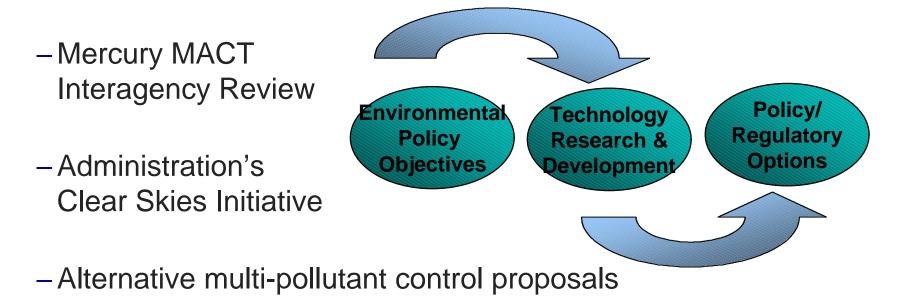
Activated carbon removes Hg

 Range of effectiveness depends on coal type and plant configuration

Many uncertainties remain

- -Low-rank coals
- -By-product use and disposal
- -Sorbent costs
- -Units equipped with ESPs
- -Downtime for startup

Uncertainties *Mercury Control Technologies*

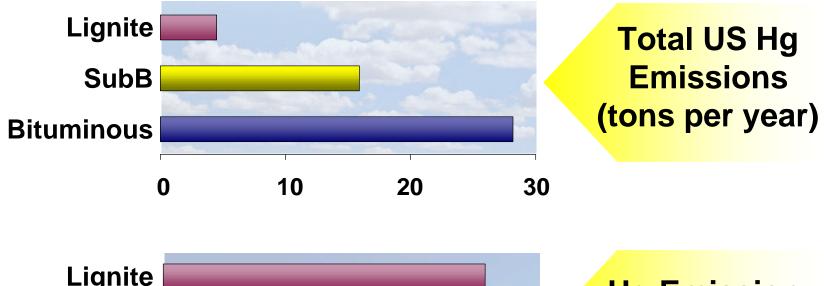

- Capture effectiveness with low-rank coals
- Balance-of-plant impacts
- By-product use and disposal

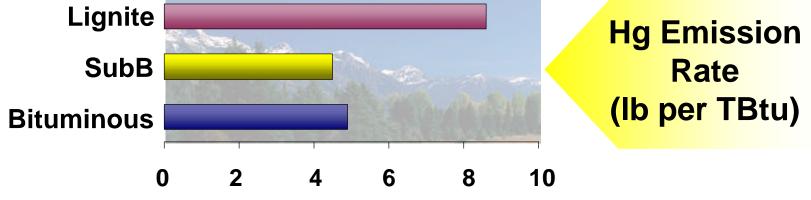
Policy and Regulatory Implications of R&D

• Results of research and subsequent cost and performance analyses critical to:

United Nation Environmental Programme (UNEP) Global
 Mercury Assessment

Industry Stakeholder Recommendations

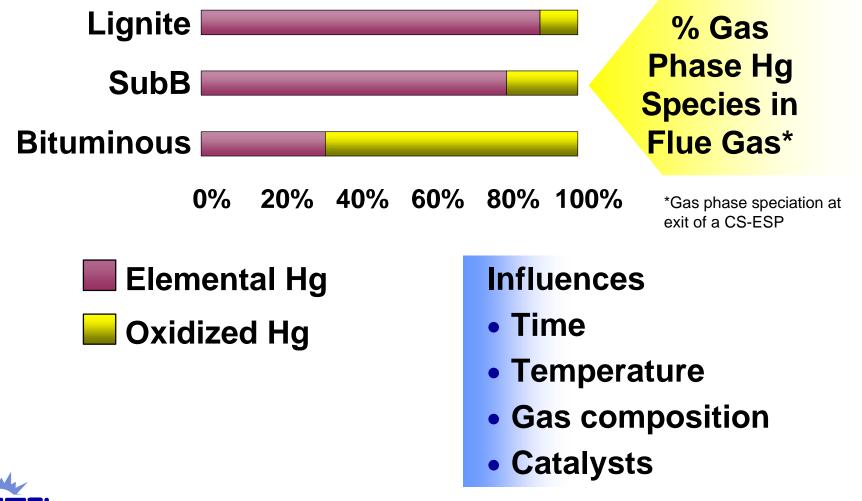

Subcategory	Stack Limit, Ib / Tbtu *	Overall Reduction	
Bituminous	2.2	73%	ST.
Subbituminous	4.2	31%	
Lignite	6.5	47%	
*Limits include only a cor and no other forms of var	nsideration of fuel variabili riability	ty	



Recommendations to the U.S. EPA Utility MACT Working Group, September 9, 2002

TJF_EPRIHG_110602

Mercury Emissions 2000 Data



NETL Boiler Database

TJF_EPRIHG_110602

Mercury Chemistry Trends

Mercury Workshops

- June 4, 2002 Washington, DC
 - -Jointly sponsored with EPRI
- August 27, 2002 Bismarck, ND
 - -In conjunction with Lignite Research Council
- September 9, 2002 Arlington, VA
 - -In conjunction with AQIII
- November 6-7, 2002 St. Louis, MO

 EPRI Hg Workshop

Mercury Control Technology R&D Phase II Field Testing Program

- FY 03 competitive solicitation
- Second phase of field testing at commercial coal-fired power plants
- Two-month or longer duration testing

Focus on broader suite of boiler
 configurations and coal-types (e.g., lignite)

Program Success Built on Partnerships

Jim Kilgroe (EPA), Scott Renninger (NETL), and George Offen (EPRI) discussing strategy NETL works closely with industry, EPA, and other stakeholders in planning and implementing its environmental control technology research program

For More Information...

• Visit our website at:

www.netl.doe.gov/coalpower/environment

TJF_EPRIHG_110602