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Abstract

This paper introduces a new data set for the analysis of productivity in U.S.

manufacturing. It consists of data on production and input levels when the

plants in an industry operate at capacity. The estimates are consistent with those

obtained using data on actual operations from the ASM. As an application, I use

this data to estimate the rate of growth of technological change that is embodied

in equipment capital. The estimates imply a larger role of equipment investment

and embodied technological change on economic growth than is conventionally

assumed.
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1 Introduction

This paper introduces a new data set for the analysis of productivity in U.S. manu-

facturing. It consists of data on production and input levels when the plants in an

industry operate at capacity. This data originates in the Survey of Plant Capacity

(SPC) and is partly used by the Federal Reserve Board to calculate industrial capacity

utilization. I demonstrate here that the implementation of econometric production

functions using this data leads to results comparable to those obtained with the con-

ventional data on actual operations such as those in the NBER-CES Manufacturing

Productivity database that originate mostly in the Annual Survey of Manufactures. An

advantage of the dataset used here is that it contains information on capital utilization

as captured by its workquarter. Various studies have argued that failure to account for

variable capital utilization contaminates measures of technological change.1

As an application, I use this data to estimate the rate of growth of technological

change that is embodied in equipment capital. The fundamental idea that more recent

vintages of capital may embody technological advances that make them \better" than

older vintages was introduced by Johansen (1959) and Solow (1960).2 An important

implication of this idea is that investment is essential in order to reap the bene�ts from

some part of technological progress.

A series of recent papers has explored the importance of embodied technological

change for economic growth. Hulten (1992) and Greenwood et al. (1997), among

others, calibrate the rate of growth of embodied technological change using producer

durable equipment price indexes constructed by Gordon (1990) to re
ect improvements

in quality. They compare these to oÆcial indexes assumed to contain no quality ad-

justment and arrive at an estimate of about 3 to 3.5 percent per year.

1The original concern was voiced by Jorgenson and Griliches (1967). More recent contributions
are surveyed in Fernald and Basu (1999) and Beaulieu and Mattey (1996).

2\Better", or equivalently \of higher quality", means displaying higher productivity after adjusting
for wear and tear.
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The approach in this paper is to estimate directly this rate of growth using an

econometric production function framework. In the language of the duality theory of

production, I work with the primal problem without relying on measures of prices. The

framework used here has been proposed by Nelson (1964) and the estimates obtained

are much higher than the price-base ones indicating an even larger role for embodied

technological change than is conventionally accepted.

2 The Framework

The production of gross output in an industry is described by the following equation:

Yt = Ztf(UtKt; Lt;Mt) (1)

where, Zt is a factor that captures disembodied technological change, Lt is labor input,

Mt is materials input, Kt = Ks
t +Ke

t is the sum of the capital stock of structures and

equipment respectively, and Ut is the rate of utilization of capital in production. The

capital stocks are the outcome of past investment decisions by industry �rms and of

depreciation due to use according to the following equations:

Ks
t =

1X
i=1

(1� dst�i)I
s
t�i; (2)

and

Ke
t =

1X
i=1

(1� det�i)I
e
t�iqt�i: (3)

It is assumed that investment, I, becomes productive with a lag of one period, that

is, there is \time to build". The index q measures the technical eÆciency of di�erent

vintages of equipment. Note that in equation (1) I am making the assumption that

there is no embodied technological change in structures.

The production function given by (1) is essentially a description of how a mix

of inputs, one of them being technology, leads to a certain amount of output being

produced. It is conventionally used to describe actual, that is observed, operations
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but it does not have to be limited to such an application. In particular, �rms do not

usually operate at full capacity but �nd themselves utilizing only part of their capacity

to produce output.3 Suppose that �rms or plants gave us information on the inputs

they would choose if they were to operate at capacity and how much output they would

produce as a result (at curent levels of technology). Conceptually, the functional form

in (1) should describe operations at capacity as well. Thus, the �rms in the industry

have the capacity to produce according to the following equation:

Y c
t = Ztf(U

c
tKt; L

c
t ;M

c
t ) (4)

where Lc and M c are the levels of labor and material inputs when capital is utilized

at capacity. Note that capital utilization at capacity, U c
t , may not be equal to one.

Capacity utilization is then de�ned as

cut = Yt=Y
c
t : (5)

Assuming that the production function is Cobb-Douglas,

f(K;L;M) = K�L�M
 ; (6)

then equation (4) becomes:

log(Y c
t ) = � log(U c

t ) + � log(Kt) + � log(Lc
t) + 
 log(M c

t ) + log(Zt); (7)

where

log(Ks
t ) = log

 
1X
i=1

(1� dst�i)I
s
t�1

!
(8)

and

log(Ke
t ) = log

 
1X
i=1

(1� det�i)I
e
t�1qt�1

!
: (9)

The �rst task of this paper is to estimate (7) together with (8) and (9) using data

on capacity operations. These estimates are then compared to results from estimating
3See Corrado and Mattey (1997) for a discussion of various issues surrounding variable capacity

utilization as well as a review of related studies.
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(1) in logs together with (8) and (9). These two approaches should be equivalent,

the main di�erence being that the two data sets describe di�erent levels of production

operations.

The Age of the Capital Stock

Nelson (1964) restricts embodied technological change to have a constant growth

rate and derives a relationship between this rate and the e�ect of average capital age on

productivity. Let qt=qt�1 = (1+ �); for all t. Then, one can show that, approximately,

Ke
t =

tX
i=1

(1� det�i)I
e
t�iqt�i = B(1 + �)tkket [1 + �(a0 � at)]; (10)

where kket =
Pt

i=1(1� det�i)I
e
t�i denotes the stock of capital equipment unadjusted for

quality change, ai is the average age of the equipment stock at time i, and B is a

constant that depends on � and a0:

Substituting from (10) into (7) and approximating log(1+�(a0�at)) with �(a0�at),

I obtain

log(Y c
t ) = � log(U c

t ) +� log(Ks
t + kket ) + � log(Lc

t) + 
 log(M c
t ) + ��(a0� at) + log(Zt);

(11)

after suppressing a linear time trend term. According to Nelson's (1964) framework

negative e�ects of average capital stock age on productivity provide evidence of embod-

iment. Furthermore, the negative of the coeÆcient on the age term from such regession

is equal to the share of capital times the rate of embodied technological change.

3 Data

This paper uses data on actual and capacity operations of manufacturing industries at

the three-digit SIC level. The data cover the years 1974 to 1988 and are aggregates

computed from plant-level data contained in the Survey of Plant Capacity (SPC) and

the Annual Survey of Manufactures (ASM). Some regressions use only data from actual

operations and those span the years 1958 to 1996.
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The SPC collects data on fourth-quarter production levels and operations on a sub-

sample of plants in the Annual Survey of Manufactures (ASM). From 1974 to 1988

there were three panels in the years 1974-78, 1979-83, and 1984-88. On average, eight

to nine thousand plants per year were surveyed for the SPC about actual, preferred,

and practical operations. For each of the three panels, there were six to seven thousand

plants that provided data for the entire period. The SPC was modi�ed following the

1988 survey and some of the variables used in the analysis here became unavailable.

Capacity De�nitions

The concepts of capacity conveyed to the survey respondents are de�ned as follows.

Practical Capacity: \The greatest level of output this plant can achieve within

the framework of a realistic work pattern, a normal product mix, and the schedule,

machinery, and equipment already in place and ready to operate."

Preferred Level of Operations: \An intermediate level of operations between actual

operations and practical capacity that you would prefer not to exceed because of costs

or other considerations. Implicit in the idea of a preferred level of operations is the

theory that there is a preferred level of operations at which pro�ts are maximized. This

is a level where marginal revenue equals marginal costs. The preferred level should not

exceed practical capacity."

The second de�nition is the one I use in this paper as it corresponds quite closely

to economic concepts of capacity.4 Survey responders indicate the level of production,

production worker hours, and the workweek of capital both for actual and capacity

operations for the fourth quarter of the year. Capacity utilization is de�ned as the

ratio of production levels at actual and capacity operations. Workweek is calculated

as hours worked per day times the days worked per week.

4This is also the de�nition used by the Federal Reserve Board (FRB) in constructing estimates of
capacity utilization. See Corrado and Mattey (1997) for a description of FRB methods and Doyle
(1999) for evidence that the \preferred" measure of capacity aligns well with economic concepts of
productive capacity that incorporate cost considerations. Practical capacity, on the other hand, seems
closer to an engineering notion of capacity best described as \running the machines all out."
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The variables for capacity utilization, capital input, and actual workweek are from

the FRB. All other data used here is from the NBER-CES Productivity Database (see

Bartelsman and Gray, 1996) except for capacity levels of the workweek and production

hours, which are available only at the Center for Economic Studies (CES) of the Census

Bureau. The procedure I use to construct industry aggregates is described in the Data

Appendix. Capacity output is constructed as the ratio of gross output to capacity

utilization.

I also use a set of instrumental variables in some estimations. This consists of

quarterly innovations to the Federal Funds rate (lagged one year) and a measure of

activity in \downstream industries." The last one is available at the 3-digit SIC level

and for years 1978 to 1994 only.

4 Empirical Results

I present results pooling all industries together. Table 1 contains the results of OLS

estimation of a production function. The �rst two columns use data on capacity oper-

ations while the next two use data on actual operations. Two speci�cations are used:

one that allows for variations in the workweek of capital and another one that does

not. Regressions include intercept and linear time trend.

The results are roughly consistent across the two data sets. The coeÆcient on

materials seems to be larger than expected, at least judged by the materials' share in

output. Controlling for variation in capital utilization has the e�ect of reducing the

coeÆcient on capital though it does so much more for data on actual operations. A

related observation is that the coeÆcient on the workweek is very close to that on

capital with capacity data but insigni�cant with actual-operations data.

Endogeneity bias

It is well-known that there may be biases in OLS estimation of production functions,

as in Table 1, due to endogeneity. More concretely, the productivity shock, log(Zt),
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may be correlated with the level of inputs. To the extent that this shock has limited

serial correlation and capital is quasi-�xed the problem is most severe for the labor and

materials input. Presently, there is no good �x for this problem.

Griliches and Ringstad (1973) have proposed a procedure to evaluate the robust-

ness of OLS estimates to endogeneity problems. Their suggestion is to constrain the

coeÆcients of labor and materials to their shares in total cost, calculated from available

industry data, but allow the coeÆcent on capital to be estimated. I use this approach

in order to detect possible biases. As may be seen in the �rst column of Table 2, the

coeÆcient on capital does not change very much, which is reassuring. The coeÆcient

on its workweek, however, increases by 50 percent and so does its standard error. Since

the results are mixed, I explore instrumental variables as an alternative.

Some researchers have advocated the use of instrumental variables in order to iden-

tify the production function coeÆcients. Hall (1990) and Burnside et al. (1995) pro-

posed various aggregate-level instruments whereas Shea (1993) and Bartelsman et al.

(1994) constructed industry-speci�c instruments. In particular, the Bartelsman et al.

(1994) instrument is a weighted average measure of economic activity in \downstream

industries" that demand the output of the industry in question as intermediate input.

I consider the following list of variables as potential instruments: the price of oil,

defense spending, the political party of the president, quarterly innovations to the

Federal Funds rate and downstream demand level. The aggregate-level instruments

su�er from very low relevance to the industry-speci�c input variables. Shocks to the

Federal Funds rate seem to be the least o�ending of these so I utilize them. The

downstream demand variable is very relevant, as would be expected, since it is industry-

speci�c. Table 3 shows the �rst-stage regressions with the instrument set of four

quarters of Federal Funds shocks (lagged by a year) and the downstream-demand. The

associated R2s and F-statistics are rather low foreshadowing imprecise, and possibly

biased, estimates. One may wonder, then, whether \the cure may be worse for the

patient than the disease."
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The second and third column of Table 2 con�rm this fear with estimates displaying

very high standard errors. However, the actual estimates are not very di�erent from

those of OLS.5 This provides an indication that, perhaps, the OLS estimates are not

severely biased.

Embodied Technological Change

I proceed now to estimating �, the rate of embodied technological change. The esti-

mate of �, is about 10 percent, obtained by dividing the coeÆcient on capital age by the

coeÆcient on capital in Table 4. This estimate is much larger than the estimates based

on comparisons of price indexes. It implies a larger role of equipment investment and

embodied technological change on economic growth than is conventionally assumed. It

also implies that the productive capital stock of equipment is currently mismeasured

as it does not re
ect substantial improvements in quality through investment in new

vintages. Clearly, more research would be useful in assessing the robustness of the high

� estimate found here with alternative data and speci�cations.6

Conclusions

Summing up, the concrete lesson from this paper is that data on industrial pro-

ductive capacity from the SPC is suitable for production function estimation. In fact,

the estimates are quite similar to those obtained using data on actual operations from

the ASM. This �nding is reassuring for users of the Federal Reserve Board's published

measures of capacity utilization, based on the same SPC data.

5Again the worst o�ender is the coeÆcient of the workweek.
6Sakellaris and Wilson (2000) take a step in that direction. They construct a large data set of

plant operations and estimate the growth rate of embodied technological change without resorting to
the approximations inherent in Nelson's (1964) approach.
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Table 1.  Estimates of Production Function Parameters: 
       U.S. Manufacturing Industries (3-Digit SIC) 
  
Variables Capacity Operations Actual Operations 
 A B C D 
Labor 0.201 

(0.009) 
0.257 

(0.009) 
0.250 

(0.006) 
0.254 

(0.007) 
Capital 0.185 

(0.009) 
0.137 

(0.011) 
0.133 

(0.006) 
0.127 

(0.008) 
Materials 0.614 

(0.011) 
0.665 

(0.012) 
0.638 

(0.008) 
0.639 

(0.008) 
Workweek of Capital  0.140 

(0.016) 
 0.016 

(0.013) 
RMSE 0.243 0.241 0.191  0.191 
# Observations 1988 2835 
Note:  The data used describe productive operations at capacity levels (columns A and B) 
or observed levels (columns C and D).  The estimating equation is (7) in the text.  The 
capacity-operations sample spans  years 1974 to 1988, whereas the actual-operations 
sample spans years 1958 to 1996. 
  
 
 
Table 2.  Estimates of Production Function Parameters: 
       U.S. Manufacturing Industries (3-Digit SIC) 
   
Variables Restricted Shares Unrestricted Shares 
 OLS IV IV 
Labor -- -- 0.312 

(1.470) 
Capital 0.169 

(0.014) 
0.187 

(0.420) 
0.130 

(0.966) 
Materials -- -- 0.526 

(1.346) 
Workweek of Capital 0.214 

(0.049) 
0.388 

(1.380) 
0.355 

(0.842) 
R-Squared 0.137 0.004 0.175 
# Observations 1988 1434 1434 
Note:  The data used describe productive operations at capacity levels.  The first two 
columns restrict the coefficients of labor and materials to their shares in total cost as 
calculated from available industry data.  The instrument set used in IV estimation consists 
of  a constant, trend, four quarterly shocks to the Federal Funds rate (lagged one year) 
and a measure of  “downstream demand” for industry output.  The sample for the OLS 
estimation is 1974 to 1988, whereas for the IV estimation it is 1978 to 1988. 
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Table 3.  Instrument Relevance 
 
Endogenous Variable R-Squared F-value P-value 
Capital Workweek 0.010 2.520 0.020 
Labor 0.020 4.902 0.000 
Capital 0.009 2.241 0.037 
Materials 0.007 1.687 0.121 
Note:  Relevance statistics of  instrumental variables obtained by regressing  various 
input variables on the instrument set.  The instrument set includes a constant, trend, 
federal funds shocks (lagged), and a measure of “downstream demand”.   Input variables 
are measured at capacity levels of operations.  
 
 
 
Table 4.  Estimates of Embodied Technological Change: 
       U.S. Manufacturing Industries (3-Digit SIC) 
 
Variables  
Labor 0.256 

(0.009) 
Capital 0.139 

(0.011) 
Materials 0.665 

(0.012) 
Workweek 0.153 

(0.016) 
Average Equipment Age -0.014 

(0.005) 
RMSE 0.236 
# Observations 1988 
Note:  OLS estimation of equation (11) in the text.  All variables are measured at 
capacity levels.  The sample spans years 1974 to 1988. 
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Data Appendix 
This paper uses data at the three-digit SIC level.  The data on actual levels of operations span  the years 1958-96, 
whereas the data on capacity levels of operations span the years 1974-88.   

Survey of Plant Capacity (SPC) 

The data on capacity levels of operation come from the U.S. Census Bureau’s Survey of Plant Capacity (SPC).  The 
SPC collects data on fourth-quarter production levels and operations on a sub-sample of plants in the Annual Survey 
of Manufactures (ASM).  The ASM provides statistics about U.S. manufacturing plants on an annual basis, drawing 
upon data from a panel of respondents that is selected every five years.  About three-quarters of plants in the SPC 
remain in the sample for an entire ASM panel.  From 1974 to 1988, there were three panels in the years 1974-78, 
1979-83, and 1984-88.  On average, eight to nine thousand plants per year were surveyed for the SPC about actual, 
preferred, and practical operations (see Table 1).  For each of the three panels, there were six to seven thousand 
plants that provided data for the entire period.  The SPC was modified following the 1988 survey to include 
questions on full production capability instead of preferred and practical operations.   
 
Table 1: Capacity Definitions 
Capacity Definition Time Period 
Practical Capacity Greatest level of output this plant can achieve within the 

framework of a realistic work pattern, a normal product mix, and 
the schedule, machinery, and equipment already in place and 
ready to operate.   

 

1974-88 

Preferred Level of Operations An intermediate level of operations between actual operations 
and practical capacity that you would prefer not to exceed 
because of costs or other considerations.  Implicit in the idea of 
a preferred level of operations is the theory that there is a 
preferred level of operations at which profits are maximized.  
This is a level where marginal revenue equals marginal costs.  
The preferred level should not exceed practical capacity.  

 

1974-88 

Full Production Capability The maximum level of production that this establishment could 
reasonably expect to attain under normal operating conditions. 

1989-present 

Source: U.S. Census Bureau’s Survey of Plant Capacity MQ-C1 Form and Instructions 
 
Table 2: Assumptions Used in Computing Capacity Estimates 
Assumption Preferred Practical Full 
1) Do not consider overtime pay, availability of labor, materials, utilities, etc. to be 
limiting factors.        

 x x 

2) Assume a product mix that was typical or representative of your production during 
the current quarter.  If your plant is subject to considerable short-run variation assume 
the product mix of the current period.     

x x x 

3a) Assume the number of shifts and hours of plant operation that can be reasonable 
attained by your plant in your community. 

x x  

3b) Do not assume number of shifts and hours of plant operations under normal 
conditions to be higher than that attained by your plant over the last five years.          

  x 

4) Consider only the machinery and equipment in place and ready to operate.  Do not 
consider facilities or that would require extensive reconditioning before they can be 
made operable.     

x x x 

5) Assume normal downtime, maintenance, repair and cleanup. x x x 
6) Do not assume increased use of production facilities outside the plant in excess of 
the proportion that would be normal during the time period covered by this survey. 

x x  

7) Assume the availability of labor, materials, utilities, etc., sufficient to utilize the 
machinery and equipment that was in place at the end of the year.          

x x  

Source: U.S. Census Bureau’s Survey of Plant Capacity MQ-C1 Form and Instructions 
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ASM Variables Used: 

The following series are created from the National Bureau of Economic Research (NBER) / Center for Economic 
Studies (CES) Manufacturing Productivity Database for the years 1958 to 1994 and the Federal Reserve Board’s 
(FRB) ASM data for the years 1995 and 1996: cost of materials, cost of energy, gross output1, number of employees, 
number of production employees, inventories, new capital investment, payroll, shipments, value added, and wages.  
Price deflators for shipments, materials, energy, and new capital investment were also taken from the NBER-CES 
Manufacturing Database.  

 

Capital Input 

The following describes the construction of industry-level capital input.  For each year,  the industry-level capital 
expenditures are split among 35 asset categories.  This is accomplished with an iterative matrix balancing (RASing) 
technique that employs the industry-level investment data as column controls and utilizes NIPA data on asset-level 
capital expenditures as row controls for the 35 asset categories.  Data derived from BEA’s Capital Flows Tables 
(CFTs) provide initial asset-by-industry investment shares for the iterative procedure.  For each industry, asset-level 
net capital stocks are created by adjusting for asset-specific physical depreciation as described in Gilbert and  Mohr 
(1996).  Industry-level capital input estimates are constructed as a rental price-weighted Tornqvist index of net 
capital stocks, q(i,t),  in the 35 asset categories.    The rental price is calculated using the following equation: 

p(i,t) = q(i,t)*[r(t)+(d(i,t)-f(i,t))]*[(1-u(t)z(i,t)-k(i,t))/(1-u(t))] 
q(i,t)=chain-weighted investment price deflator for asset i in time t 
d(i,t)=the rate of economic depreciation for asset i in time t 
f(i,t)=expected real capital gain for asset i in time t 
u(t)=corporate income tax 
k(i,t)=investment tax credit for asset i in time t 
z(i,t)=present value of expected tax depreciation 

 
 

Capacity Output 

Capacity equals gross output/capacity utilization.  This paper uses a series that is constructed by overlaying full 
production capacity utilization rates (post 1988) with preferred utilization rates (pre-1989) and aggregating to the 3-
digit level using value added.  Both are published by the Federal Reserve Board. 
 

Workweek of Capital at Capacity 

Workweek at capacity equals actual workweek (provided by Norman Morin at the FRB) over workweek utilization 
(constructed from SPC data at the CES).   The workweek of capital was available from the SPC for the years 1974-
88 only. Actual workweek is defined as actual hours worked per day times the actual days worked per week.  
Capacity workweek was defined in a similar manner.  Actual and preferred workweek were aggregated to the 4-digit 
industry level using the following weight for each plant: SPC weight * total employment (ASM) / shift; where shift 
is an assigned variable based on the reported actual workweek.  If actual workweek is less than 58.5 hours then shift 
equals one; if actual workweek is greater than 58.5 hours and less than 101.5 hours then shift equals two; and if 
actual workweek is greater than 101.5 hours then shift equals three.  The actual and preferred workweek were 
aggregated to the 3-digit level using value added weights.  The ratio of actual to capacity workweek, in other words 
workweek utilization, was formed at the 3-digit level. 
 
Labor input at Capacity 

Labor input at capacity equals actual labor input (from the NBER-CES Productivity Database) over the labor 
utilization (constructed from SPC data at the CES).   Actual labor input was imputed using the formula: (Production-
worker Hours)*(Total Payroll/ Production-worker Payroll).   Labor utilization refers to production-worker hours 
only as this is the only available information in the SPC data.  Actual to capacity ratios were formed for production 

                                                           
1 Gross output is constructed by summing the value added series to the cost of materials series. 
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worker hours at the plant level.  This production-worker-hours ratio was aggregated to the 4-digit level using the 
SPC weight.   Actual employment hours (from the NBER-CES Database) were then used as weights to aggregate to 
the 3-digit level.   

 
Materials Input at Capacity 
 
The SPC does not contain information on materials use at capacity operations.  I made the assumption that materials 
utilization was equal to labor utilization for each plant-year observation.  Materials input at capacity, then, equals 
actual materials input (from the NBER-CES Productivity Database) over the labor utilization (constructed from SPC 
data at the CES).   
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