1. ADMINSTRATIVE INFORMATION

- 1.1 SITE BACKGROUND
- 1.2 GENERAL IDENTIFICATION DATA
- 1.3 REGULATORY CLASSIFICATION
- 1.4 WELL DATA INJECTION WELL NO. 1
- 1.5 WELL DATA OBSERVATION WELL NO. 1
- 1.6 PROPOSED PERMIT APPROVAL CONDITIONS
- 1.7 QUALITY ASSURANCE/ QUALITY CONTROL

Mississippi Power Company's Victor J. Daniel Power Plant Location

EPRI

2. GEOLOGY

- 2.1 INTRODUCTION
- 2.2 REGIONAL GEOLOGY
- 2.3 LOCAL GEOLOGY
- 2.4 GEOCHEMISTRY
- 2.5 HYDROLOGY
- 2.6 MINERAL RESOURCES
- 2.7 SUMMARY

SOU

COMPANY

Energy to Serve Your World*

MISSISSIPPI

A SOUTHERN COMPANY

POWER

Site Characterization - Core Collection & Analysis

Tuscaloosa Formation Core Analysis (Massive Sand Reservoir)

			ū.				
		Sample	Permeability		Porosity,		Grain
Core	Sample	Depth,	millidarcies (mD)		Percent (%)		Density,
Number	Number	(ft)	To Air	Klinkenberg	Ambient	2500 psi	g/cm ²
3	3-1	8531.45	1450.0	1380.0	22.7	22.4	2.65
3	3-5	8535.50	2390.0	2300.0	24.5	24.2	2.64
3	3-9	8539.50	1930.0	1850.0	24.1	23.8	2.65
3	3-13	8543.45	652.0	614.0	19.7	19.4	2.67
3	3-17	8547.50	1460.0	1400.0	23.8	23.5	2.65
3	3-21	8551.50	936.0	888.0	23.2	22.9	2.65
3	3-25	8555.50	848.0	804.0	22.8	22.5	2.66
3	3-29	8559.50	1030.0	977.0	24.4	24.1	2.65
3	3-33	8563.50	641.0	603.0	23.4	23.1	2.65
3	3-37	8567.50	3390.0	3280.0	25.3	25.0	2.65
Quick Look Core Analysis							
		Quic			11/21313		
	Average values: 1230.0			1180.0	20.7	21.3	2.66
						•	
ΙΔΕΩ2664 PPT				MISSISSI	PPI SOUTHERN		

A SOUTHERN COMPANY

COMPANY

Energy to Serve Your World®

Southern Mississippi Hydrogeology

EPA defined "Low Salinity" waters (<10,000 mg/l) are protected and exist at a depth of about 1,600 to 2,800 feet bgs in Jackson County.

The freshwater (<1,000 mg/l) zone (potable) exists in shallower formations at less hen 1,000 feet bgs.

Observation Well: Reservoir Characterization

- Mud logging from 6,000 ft to TD
- Nearly 120 feet of whole core collected from three formations:
 - Selma Chalk (30'/27'), Marine Shale (28'/26'), and Massive Sand (60'/58')
- Core analysis with permeability (horizontal and vertical), porosity, grain density, capillary pressure, relative permeability, and mineralogy
- Wire-line logging included:
 - Halliburton's Triple Combo (gamma ray, resistivity, and porosity)
 - RST Cased Hole Neutron Log (baseline for water/gas saturation)
 - Cement Bond Log with 3D Cast V Evaluation
- Vertical Seismic Profiling (VSP):
 - Geologic description & baseline plume monitoring (time-lapse)

Injection Well: Reservoir Characterization

- Wire-line logging included:
 - Schlumberger's Platform Express Log (caliper, gamma ray, resistivity, porosity)
 - Mechanical Properties Log (in-situ stress/fracture gradient)
 - Combinable Magnetic Resonance (porosity/permeability)
 - Elemental Capture Spectroscopy (mineralogy)
 - Cement Bond Log with Cast V Evaluation
- Sidewall coring of the Marine Shale, Massive Sand and Washita-Fredericksburg Formations
- Well injection "pressure transient" test injection falloff pressure decline
- Reservoir fluid sampling flow reaction simulation/equilibrium models
- Mechanical Integrity Testing (MIT) casing, tubular & packer integrity

3. **RESERVOIR MODELING**

- 3.1 RESERVOIR MODELING OF THE INJECTION ZONE
- 3.2 MODEL DESCRIPTION
- 3.3 INJECTION ZONE STRATIGRAPHY AND LITHOLOGY
- 3.4 MODEL INPUTS
- 3.5 CO₂ TRAPPING MECHANISMS
- 3.6 GEOPHYSICAL SIMULATION RESULTS
- 3.7 LONG-TERM FATE OF INJECTED CO₂
- 3.8 MODELING SUMMARY

Reservoir Modeling CO₂ Injection/Plume (vertical view)

EPRI

COMPANY

4. AREA OF REVIEW

Location of Oil and Gas Wells Surrounding the Area of Review

5. WELL CONSTRUCTION

- 5.1 BACKGROUND
- 5.2 DRILLING AND CASING PROGRAM
- 5.3 DRILLING FLUIDS
- 5.4 CORING
- 5.5 PRESSURE TRANSIENT TESTING
- 5.6 COMPLETION PROGRAM
- 5.7 LOGGING AND TESTING PROGRAM
- 5.8 PROGNOSIS
- 5.9 INJECTION OPERATIONS
- 5.10 WELL CLOSURE AND POST-CLOSURE CARE

6. MONITORING AND VERIFICATION

- 6.1 INTRODUCTION
- 6.2 ASSURING WELL-INTEGRITY
- 6.3 MONITORING RESERVOIR PRESSURE
- 6.4 MONITORING CO₂ PLUME MOVEMENT
- 6.5 MONITOR FOR CO₂ SURFACE LEAKAGE
- 6.6 ADDITIONAL RESERVOIR CHARACTERIZATION TOOLS

General Measurement, Monitoring, and Verification Protocols to be Employed at the Mississippi Saline Reservoir Test Site

Well Integrity and Pressure Monitoring

The project will include a series of MMV activities to assure well integrity:

- To assure well integrity at the surface, we will: (1) install a pressure gauge on the wellhead to measure sustained casing pressure (CO₂ leakage in the well); (2) conduct continuous monitoring of annular and down hole pressure; and, (3) conduct near-surface soil gas measurements.
- To assure down-hole well integrity, we will: (4) use an Ultra Sonic Borehole Imager (advanced version of the Cement Bond Log) both after cementing and after CO₂ injection; and, (5) run a series of RST Logs to detect CO₂ above the reservoir seal.

CO₂ Monitoring & Verification Protocols

- <u>Soil Flux</u> Automated real-time LI-COR 8100 soil flux chamber monitoring
- <u>Tracer Injection</u> PFT's added at the wellhead to tag and track injected CO₂ with Praxair Seeper Trace[™] monitoring technology
- <u>CO₂ Isotopes</u> Isotopic sampling of CO₂ for determination of ¹³C signatures
- <u>Groundwater Sampling</u> Water quality for pH, salinity, metals, alkalinity, conductivity, and temperature
- <u>Seismic Profiling</u> VSP baseline and post-injection surveys
- <u>Reservoir Saturation Tools</u> Reservoir water/gas saturation
- <u>Reservoir Fluid Sampling</u> Field parameters, major cations/anions, trace metals/minor constituents, dissolved gases, redox indicators, isotopes, organics, etc.

Permit Approval Conditions

- Maximum injection pressure at the well head of 2,000 psi; well below a conservative fracture gradient estimated at .7772 psi per foot (2,700 psi)
- Daily confirmation of injected CO₂ stream; maximum injection rate of 300 gpm; high-purity 99% CO₂
- Tubing- positive casing string annulus must maintain a positive differential pressure of at least 100 psig and no more then 200 psig
- Successful mechanical integrity testing including radioactive tracer test, annulus pressure test, and differential temperature survey
- Static bottom hole pressure fall-off test in the target formation (massive sands of the Tuscaloosa Formation)
- Continuous recording of pressure in the injection well

