

Arizona Utilities CO₂ Storage Pilot

Regional Carbon Sequestration Partnerships Initiative Review Meeting

Pittsburgh, Pennsylvania October 7, 2008

John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov

Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720

WESTCARB region has major CO2 point sources

WESTCARB Region Large Point-Source CO₂ Emissions 2002 data Oil Refineries
 Power Plants
 Cement and Lime

WESTCARB region has many deep saline formations – candidates for CO₂ storage

WESTCARB also created GIS layers for oil/gas fields and deep coal basins

Source: DOE Carbon Sequestration Atlas of the United States and Canada

westcarb.org

West Coast Regional Carbon Sequestration Partnership

West Coast Regional Carbon Sequestration Partnership

Arizona Utilities CO2 Storage Pilot project partners

A UniSource Energy Company

- Arizona Public Service Company
- Salt River Project
- Tucson Electric Power
- Arizona Electric Power Cooperative
- National Rural Electric Cooperative Association
- Peabody Energy
- **Electric Power Research Institute**
- Lawrence Berkeley National Laboratory
- Lawrence Livermore National Laboratory
- California Energy Commission
- U.S. Department of Energy

EPRI - Site Selection and Project Support

Storage potential of Arizona geologic provinces

- Significant capacity in Colorado Plateau Province
- Limited capacity in Basin and Range Province
- Minor capacity in Central Highlands Province

Project Site at Arizona Public Service Company Power Plant between Holbrook and Joseph City

- Colorado Plateau location is scientifically interesting and has large CO₂ storage potential
- Potential high salinity, carbonate reservoir formation
- Thick, low permeability cap rock
- Cooperative project partner that owns surface and subsurface rights
- Near major highway, power line
- Controlled access to drill site

Geologic section in southern Colorado Plateau

West Coast Regional Carbon Sequestration Partnership

Exploratory well to confirm suitability of site

Geology at Project Site

340

740

1.040

1,865

1.885

2,525

3,075

3.575

3.775

1.000-

2.000

3,000-

4,000

Source: Errol L. Montgomery & Associates

Source: Sandia Technologies, LLC

Evaluation of USDW above seal

westcarb.org

Source: Errol L. Montgomery & Associates

West Coast Regional Carbon Sequestration Partnership

Scientific Objectives

- Determine injectivity and storage capacity of the reservoir
- Show that surface and borehole geophysical techniques can monitor the trapping of the injected CO₂ in the subsurface
- Assess and maintain caprock integrity

- Demonstrate safe storage of CO₂ in porous carbonate formations containing non-potable saline water beneath thick, low permeability seal
- Develop, calibrate, and validate multiphase flow models for CO₂ injection into saline formations typical of the Colorado Plateau in northeastern Arizona

Test Plan

- Numerical simulation of CO2 injection
- Drill and log a single well ~4,000 feet (1,200 m) deep near the APS Cholla Power Plant fly ash pond
- Ensure TDS of reservoir formation >10,000 mg/L
- Step-rate injection test to determine maximum safe injection pressure
- Short huff-puff test with a few tons of CO2 to estimate residual saturation, and test water-CO2 interaction (using tracers)
- Inject 2,000 tons of commercial-grade CO2
- Sample fluids and tracers with U-tube system; chemical analysis
- Pre- and post-CO₂ injection monitoring
 - Reservoir Saturation Tool (RST) logs
 - Distributed Thermal Perturbation Sensor (DTPS) logs
 - Vertical seismic profile (VSP) surveys
- Release pressure in well and flow back fluids (water, CO₂, phasepartitioning tracers); analyze interactions

TOUGH2* simulation of CO₂ injection

Uniform high permeability $k_{h} = k_{v} = 100 \text{ mD}$

0

-200

-600

0

(#) N -400

Naco (U)

Naco (L)

Naco (U)

Martin

Jerome

500

-400

-600

200

1000

Injection -700

£-500

N

Naco (L)

Martin

Jerome

X (ft)

1500

600

400

X (ft)

At end of injection

800

2000

2000

2000

2000

700

1000

TOUGH2 simulation of CO₂ injection

High horizontal permeability Low vertical permeability

Formation	Thickness	<i>k_h</i> (mD)	<i>k_v</i> (mD)
Upper Naco	76 m (250 ft)	10	1
Lower Naco	76 m (250 ft)	100	3
Upper Martin	21 m (69 ft)	100	3
Jerome	40 m (131 ft)	700	20

- 2,000 tonnes injected over 30 days (0.8 kg/s) into Jerome Member of Martin Formation
- Depth = 1,100 m (3,700 feet)
- P = 10.3 MPa (1500 psi) [hydrostatic]
- = 54°C (129°F) [normal gradient]
- Porosity = 10%
- Hysteretic effects included:
 - Residual saturation for drainage, $S_{ar} = 0\%$
 - Residual saturation for imbibition, $S_{ar} = 25\%$

TOUGH2 simulation of pressure during CO₂ injection

Pressure in reservoir formation at injection depth

2,000 tonnes injected over 15 days (1.6 kg/s) into Jerome Member of Martin Formation

- Depth = 1,100 m (3,700 feet)
- P = 10.4 MPa (1558 psi) [hydrostatic]
- T = 54°C (129°F) [normal gradient]

• Porosity = 10%

westcarb.org

• Residual saturation for drainage, $S_{ar} = 0\%$

EST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

U-Tube System – continuous water, CO₂, and tracer samples at reservoir pressure

U-tube and check valve strapped to production tubing

Frio Brine CO₂ Pilot, Texas

Source: Barry Freifeld, LBNL

VEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

Distributed Thermal Perturbation Sensor (DTPS) for tracking CO₂ migration in the subsurface

NW07-010

Thermal conductivity measurements during and after CO₂ injection to monitor the distribution of CO₂ near the well

- The DTPS consists of a borehole-length electrical resistance heater and fiber optic distributed temperature sensor
- Constant heating is applied along the borehole, then is turned off. The temperature sensor measures the decay
- The low thermal conductivity of CO₂ versus water allows for estimates of CO₂ saturation
- The DTPS has been successfully tested at the CO2SINK project in Germany

Source: Barry Freifeld, LBNL

EST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

Permitting

- DOE Environmental Questionnaire/NEPA Approved by DOE
- US EPA Region 9, UIC permit application Submitted for Class V Experimental Well
- Aquifer Protection Program permit, Arizona Department of Environmental Quality – Application submitted
- Drilling permit, Arizona Oil & Gas Conservation Commission – to be submitted

ADEQ Aquifer Protection Program (APP) Permit

- All aquifers are designated as Drinking Water Aquifers
- Aquifer a geologic unit with sufficient permeable to produce
 5 gallons of water per day
- Water quality is not specified in law or regulation (no TDS limit)
- Use Best Available Demonstrated Control Technology (BADCT)
- Point of Compliance is the location down-dip where water quality returns to background level

Proposed APP Permit Conditions Point of Compliance: 400 ft (122 m) up dip from well Injection Well 4.000 3.000 VSP 2.000 Model predictions form basis of 1,000 Point of Compliance (POC) bree Componen -1 000 Seismic Receiver -2.000 Injection -3.000 Well -4 000 5 000 Verification: ∇ Lateral POC determined Base of fresh water by VSP Vertical POC determined by RST well logs Injection zone ← Vertical POC monitoring of pressure **Confining layer** & temperature Naco (L) Martin Well logs Lateral POC Jerome (400 ft, 122 m) westcarb.org

VEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

Arizona Utilities CO₂ Pilot Summary WESTCARB has ...

- Completed a hydrogeologic study
- Selected a site for the AZ pilot test
- Added new industry partners
- Characterized the hydrogeology
- Modeled CO2 plume size and formation pressure
- Received NEPA approval from DOE
- Submitted APP and UIC permit applications
- Engaged in public outreach to the community through public meetings
 ...and will begin
- Drilling and testing in January 2009

westcarb.org

Storing Carbon Dioxide to Fight Global Warming: Arizona Utilities CO₂ Storage Pilot Project

Holbrook, Arizona, August 1, 2007, 6:30-8:00 p.m.

Purpose

This informational meeting is being held to discuss plans for a research project to test "carbon sequestration," a promising new technology that can keep carbon dioxide (CO₂) away from the atmosphere to curb global warming. Also known as CO₂ storage, carbon sequestration involves injecting CO₄ about ' mile underground into porous geologic formations suitable for secure long-term storage. In Arizona, well-scaled, deep-lying formations such as limestone, mudstone, and sandstone are excellent candidates for CO₂ storage. The depth and high salinity of the watter in these formations rule out the practicality of using it for human consumption or agriculture. The proposed CO₂ storage test in northeast Arizona will inject a small amount of commercial-grade CO₂ into a dedicated well equipped with sensitive monitoring instrumentation. This will allow researchers to "see" the CO₂ as it is absorbed into the porous rocks. Successful subsurface geologic tests would help confirm the feasibility of ultimately storing CO₂ captured from nearby power plants, which could be required by future regulations.

Everyone is welcome to attend the meeting to learn and ask questions about our proposed project. [Please see our Q & A section on the back of this announcement.]

WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP