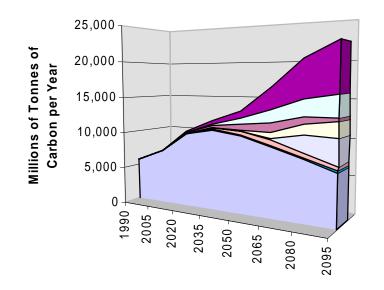

Regional Partnerships in Terrestrial Carbon Sequestration – A "Hands-On" Workshop

Workshop Objectives

- National Climate Change Technology Initiative Improve the Science Establish Government-Industry Partnerships
- Reforestation & C Sequestration Practices & Procedures with Many Benefits
- Understand Regional Issues & Needs
- Technology & Information Exchange

The Global Challenge*



*Information on this slide has been provided by Pacific Northwest National Laboratory.

Carbon Management

Gigaton Carbon Impact of Technology Systems

	Global	United States
Low-Carbon Fuels Production, Capture, & Sequestration	186	27
BioEnergy	90	15
Soil Sequestration	51	6
Stationary Fossil Power Capture & Sequestration	51	5
Energy Efficiency	42	14
Solar	34	0
Conservation ("Doing with Less")	17	12
Nuclear	13	0

- Low Carbon Fuels Production, Capture, & Seq.
- □ BioEnergy Production
- Soil Sequestration
- □ Stationary Fossil Power Capture & Seq.
- □ End-Use Efficiency & Conservation
- 🗖 Solar
- Nuclear
- **□**550ppm

Just what is a Gigaton of Carbon? 1 Gt C = 1 billion metric tons C = 10^{15} g C

• Forest or grassland ~50,000 km² ~2× area of Vermont +

Liquid CO₂ ~4 billion m³ ~3 days of Mississippi River flow ~150× Lake Champlain (VT, NY)

DOE Consortium for Research on *Enhancing*

Carbon Sequestration in Terrestrial Ecosystems

http://csite.esd.ornl.gov <u>CSiTE Coordinators</u>: Gary Jacobs, ORNL & Blaine Metting, PNNL

Oak Ridge, Pacific Northwest and Argonne National Laboratories, Colorado State University, Ohio State University, North Carolina State University, Cornell University, Texas A&M University, University of Washington, Kansas State University, Virginia Polytechnic Institute & State University, Rodale Institute, USDA Agricultural Research Service, Joanneum Institute for Energy Research, Austria

<u>NETL Project Participants</u>: Jim Amonette PNNL, Tony Palumbo ORNL, Jim Burger, VPI, Rattan Lal, Ohio State University, Keith Paustian, Colorado State University **CSiTE:** A research consortium developing science-based understanding to *enhance* and demonstrate carbon sequestration

Mission: Discover & characterize links between critical pathways and mechanisms to create larger & longer-lived C pools

Approach Multiple-scale research, simulation, and assessment <u>Result</u> Science, partnerships, and technology transfer

<u>NETL – CSiTE Project</u>

Enhancing Carbon Sequestration and Reclamation of Degraded Lands with Fossil Fuel Combustion Byproducts

Research Tasks:

- Evaluate the Use of Soil Amendments
- Understand Effects on Soil N Cycling
- Identify Physical & Chemical Factors Affecting Soil C Sequestration
- Technology & Information Exchange Partnership Building