

Testing the Concept of Drift Shadow at Yucca Mountain, Nevada

Presented to:

2006 International High-Level Radioactive Waste Management Conference

Authors:

James Paces Leonid Neymark Teamrat Ghezzehei Patrick Dobson

May 3, 2006 Las Vegas, Nevada

This presentation has been funded in whole or in part by the U.S. Department of Energy

Yucca Mountain Background

- Designated site for long-term isolation of high-level radioactive waste
- Proposed geologic repository located in a >400-m-thick zone of unsaturated volcanic tuffs
- Repository performance relies on multiple barriers
 - > Engineered barriers
 - > Natural barriers

- SURFACE On-300 Bod of a more of a mo
- Objectives of the OST&I Natural Barriers Thrust Area
 - Evaluate aspects of natural system that lead to enhanced repository performance

Drift Shadow Concept

- Capillary forces may prevent seepage of UZ water into rock openings at Yucca Mountain
 - Seepage exclusion" occurs at rock/air interface or at fracture junctions within the rock mass
- Should result in uneven distribution of water in the rock mass surrounding openings
 - > Zones of increased water saturation & flow rates
 - Zones of decreased water saturation & increased residence times (drift shadow)
- Benefits performance by increasing travel times beneath waste packages

Testing the Drift Shadow Concept

- Multiple OST&I Drift Shadow investigations
 - Laboratory & field experiments require scaling to low-flow conditions at Yucca Mountain
 - Studies of small natural voids require scaling to emplacement drift dimensions
- Use isotopic and chemical variations around natural, meter-scale cavities (lithophysae) in welded tuffs
 - > Whole-rock U-series compositions of tunnel-wall samples
 - > Pore-water compositions of underground dry-drilled core

Numerical Modeling

- Numerical simulations used to predict drift-shadow scaling
 - > Analytical solutions of Philip et al. (1989) used to simulate flow in a fracture-matrix continuum
 - > Allows advective-diffusive exchange between flow regimes
 - > Assumes no seepage into cavities
- Model results indicate that drift shadows should be present under cavities > ~70 cm in diameter

Tunnel-Wall Samples

Two areas with large cavities sampled from tunnel walls of repository horizon (Topopah Spring Tuff)

Spatial Distribution of Subsamples

Subsamples obtained using hand-held rotary hammer

Uranium-Series Isotopes

- U concentrations in host tuffs range from 4 to 5 µg/g
- Chemical behavior of U
 - > U in rock is present as insoluble tetravalent U⁺⁴
 - In UZ, rock U can oxidize to hexavalent U⁺⁶, which is highly soluble as uranyl complexes (UO₂CO₃ and UO₂OH⁺)
 - > Greater mobility of U relative to many other elements
- Natural radioactivity of U
 - > Three isotopes: ²³⁸U (99.27%), ²³⁵U (0.72%), ²³⁴U (~0.006%)
 - > ²³⁴U and daughter ²³⁰Th form by alpha decay from ²³⁸U

In rocks closed to transfer of mass, ²³⁴U/²³⁸U activity ratios (AR) are equal to 1.0 (secular equilibrium)

Effects of Water-Rock Interaction on U

- U is leached from rock mass over time leaving lower concentrations relative to other elements
- Alpha-recoil effects allow preferential leaching of ²³⁴U relative to ²³⁸U
 - > ²³⁴U/²³⁸U activity ratios (AR) > 1.0 in water and < 1.0 in rock
- Degree of U and ²³⁴U loss depends on water-to-rock mass ratio in rocks with uniform properties

General Whole-Rock U Characteristics

- Rock has different U characteristics in different areas
 - > Higher U and ²³⁴U/²³⁸U AR in ECRB Cross Drift samples
 - > Lower U and ²³⁴U/²³⁸U AR in ESF samples
- Differences in both U concentration and ²³⁴U/²³⁸U AR are consistent with different water fluxes in different areas

Whole-Rock Chemical Compositions

- Could U variations reflect differences in primary magmatic compositions?
- Same samples analyzed for major & trace elements by XRF
 - Concentrations overlap in both ECRB and ESF samples
- No significant primary compositional differences
- Observed U variations are caused by secondary processes

Differences in Physical Properties

- U leaching and ²³⁴U loss by recoil processes depend on available surface area
- Physical properties measured from Tptpmn and Tptpll units in core from nearby boreholes
 - > Relative water saturation
 - > Dry bulk density
 - > Porosity
- Substantial overlap in most properties
- Differences in porosity cannot explain U characteristics

Whole-Rock ²³⁰Th/²³⁴U Relations

- ²³⁴U/²³⁸U and ²³⁰Th/²³⁸U AR are similar: ²³⁴U/²³⁰Th AR ≈ 1.0
- Data indicate leach rates were slow enough to maintain radioactive equilibrium between ²³⁴U and daughter ²³⁰Th
 - Consistent with steadystate leach models and ²³⁸U leach constants of 1-5×10⁻⁸ yr⁻¹
 - Similar value obtained from U concentrations
- Data imply both leaching and sorption processes are limited by similar rates of mass exchange

Distribution of ²³⁴U/²³⁸U in Tunnel-Wall Samples

- All whole-rock samples have ²³⁴U/²³⁸U AR < 1.0</p>
 - > Indicates ubiquitous flow and preferential ²³⁴U removal
 - δ²³⁴U notation used to emphasize small variations
- Patterns of ²³⁴U distribution beneath cavities vary
 - Decreased flow (drift shadow)
 - > Increased flow
 - No systematic effect beneath smallest cavities (consistent with numerical model)

²³⁴U/²³⁸U in Walls & Ceilings

- Cavity walls and ceilings analyzed to evaluate leaching effects in areas of greater flow
 - **Greatest ²³⁴U depletion from cavity walls**
 - > Intermediate ²³⁴U depletion from cavity ceilings
- Data support concept that more water flows through rock on sides of cavities

Differences in ²³⁴U Depletion

- Greater long-term water fluxes around ESF 29+79 and ESF 30+18 relative to ECRB 16+15 and 16+17 based on:
 - **Creater U loss and ²³⁴U depletion in whole-rock samples**
 - > Thicker secondary mineral coatings on cavity floors
- Greater ²³⁴U depletion beneath ESF 30+18 related to seepage
 - > Thick calcite-silica coating reflects long-term seepage accumulation
 - > Data imply that drift shadows are not likely where seepage is common
- Drift shadow effects are more prevalent in ECRB cavities with only minor mineral coatings

3- to 4-cm-thick mineral coating on floor of ESF 30+18

Pore-Water Samples

- New 6-m-long boreholes drilled between ECRB stations 16+10 and 16+18 (lower lithophysal zone)
- Core beyond 2-m-deep dry-out zone was preserved for pore-water extraction by ultra-centrifugation
- Lithophysal cavities located by downhole video logging
- Drift shadows should have lower moisture contents and higher pore-water solute contents than adjacent rock

Moisture Content & Pore-Water Chemistry

- Preliminary results from a single 2-m-long core section
 - > 22 moisture measurements, 13 pore-water extractions

Pore-Water Profiles

Solute concentrations correlate with moisture contents

- Lowest solute concentrations in cavity-floor samples
- > Evaporative concentration in fragmented core (dry-drilled)
- ²³⁴U/²³⁸U AR results
 - > Unaffected by drilling air
 - Lower values than in most other pore-water samples
 - Variations similar to CI; consistent with higher water/rock mass ratios beneath cavity

Conclusions

- Numerical simulations predict small drift shadows beneath meter-scale lithophysal cavities
- Whole-rock U-series data document areas of greater and lesser UZ water flow through densely welded tuffs
 - > Consistent with low rates of long-term, steady-state U loss
- Tunnel-wall samples show evidence for
 - > Diversion of flow around natural cavities (drift shadow)
 - > Flow focusing beneath cavities where seepage is common
- Drift shadows are likely to develop beneath cavities with low seepage fluxes
- Preliminary pore-water data show systematic differences around a lithophysal cavity

Moisture contents, chemistry, and ²³⁴U/²³⁸U AR values

References

- J.R. PHILIP, J.H. KNIGHT, and R.T. WAECHTER, 1989, "Unsaturated Seepage and Subterranean Holes: Conspectus, and Exclusion Problem for Cylindrical Cavities," Water Resources Research 25, 16
- L. FLINT, 1996a, "Table G-1: Laboratory material properties and water contents measured on core samples from drill hole USW SD-7," in C.A. RAUTMAN and D.A. ENGSTROM, "Geology of the USW SD-7 Drill Hole, Yucca Mountain, Nevada," *Sandia Report* SAND96-1474 UC-814, Sandia National Laboratories, Albuquerque, New Mexico
- L. FLINT, 1996b, "Table G-1: Laboratory material properties and water contents measured on core samples from drill hole USW SD-9," in C.A. RAUTMAN and D.A. ENGSTROM, "Geology of the USW SD-9 Drill Hole, Yucca Mountain, Nevada," *Sandia Report* SAND96-2030 UC-814, Sandia National Laboratories, Albuquerque, New Mexico
- L. FLINT, 1996c, "Table G-1: Laboratory material properties and water contents measured on core samples from drill hole USW SD-12," in C.A. RAUTMAN and D.A. ENGSTROM, "Geology of the USW SD-12 Drill Hole, Yucca Mountain, Nevada," *Sandia Report* SAND96-1368 UC-814, Sandia National Laboratories, Albuquerque, New Mexico

