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General ObjectivesGeneral Objectives

Less conservatism in seepage predictions

More realistic performance estimate of natural barrier

Prepare Thermal Hydrological Near-Field/In-Drift Model  
Develop a multi-scale, coupled seepage model that accounts for 
natural convection processes in the emplacement drifts

Use TOUGH2 code for rock mass and MULTIFLUX code for in-drift 
processes 

Apply an efficient NTCF methodology for coupling in-rock and in-
drift model elements

Study two application scales:
Mountain-scale/drift-scale model to provide temperature and relative 
humidity evolutions along representative drifts

Small-scale, high-resolution seepage model to evaluate evaporation 
impact on seepage predictions

Study the Impact of Natural Convection on Seepage with
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Goals of Current StudyGoals of Current Study

Configure a thermal-hydrological – natural-ventilation 
model for simulating temperature, humidity, and 
condensate distributions in the coupled domains of 
in-drift airspace and near-field rockmass.  Rokmass 
model: TOUGH2, in-drift model: MULTIFLUX (MF)

Obtain meaningful results from the model for a 
practical application in which the beneficial effects of 
unheated drift sections are analyzed. 

Study the sensitivity to the axial dispersion 
coefficient with the model.
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Coupled Modeling with MULTIFLUX and TOUGH2Coupled Modeling with MULTIFLUX and TOUGH2

MULTIFLUX

MF
CFD

Textbook 
EmpiricalFLUENT

Rock ModelsConvection Models

OUTPUT:
Temperature field Humidity field

Heat flow field Moisture flow field

User’s selection and transport 
coefficient/parameters determination

User’s selection for NTCF surrogate 
model-building

Lumped-parameter CFD NTCFDISAC

CFD –Computational Fluid dynamics

LBNL – Lawrence Berkeley National Laboratory

NTCF – Numerical Transport Code Functionalization

TOUGH2  (LBNL)
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Mountain-Scale-to-Drift-Scale ModelMountain-Scale-to-Drift-Scale Model

Current  model example:
Number of drift sections in 3D mountain slice: 24
Number of drift sections in WP-scale NTCF model: 454

P-Name-Meeting XX/XX/XX.pptP-Name-Meeting_XX/XX/XX.ppt

Mountain-Scale 3D Mountain Slice

P2

Unheated
Emplaced section

Unheated

TOUGH2 
model domain

Scaled-down NTCF 
rockmass model or 
embedded, fine-scale 
TOUGH2-based NTCF 
model

Emplacement period

Individual waste 

packages

WP-Scale

Drift-Scale
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Mountain-Scale NTCF matrix modelMountain-Scale NTCF matrix model

T , P : wall temperature and partial vapor pressure vectors
qh, qm : heat and moisture fluxes from TOUGH2
Tc , Pc : central input boundary conditions
qhc, qmc : central output fluxes from TOUGH2, for T=Tc and 

P=Pc

hh , hm : dynamic admittance matrices for heat flow
mh , mm : dynamic admittance matrices for moisture flow

( ) ( )ccc PPhmTTThhqhqh −⋅⋅+−⋅+=

( ) ( )ccc PPmmTTTmhqmqm −⋅⋅+−⋅+=
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NTCF Model Fit Against Input TOUGH2 DataNTCF Model Fit Against Input TOUGH2 Data
 Heat Flux along the  Drift (W/m) 

Year 100 Year 500 Year 2000 Year 5000

Mois ture Flux x 106 along the  Drift (kg /s -m ) 
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Energy Balance Equation in the CFD Model of MFEnergy Balance Equation in the CFD Model of MF
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The energy balance equation in the CFD model of MF for “x” 
directional flow in “dy” by “dz” cross-section is:

where, 

vi    - velocity 

ρ - density of moist air

c   - specific heat of moist air

- latent heat source or sink for condensation or evaporationhq&
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Moisture Transport Convection-Diffusion 
Equation in the CFD Model of MF

Moisture Transport Convection-Diffusion 
Equation in the CFD Model of MF
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The simplified moisture transport convection-diffusion 
equation in the CFD model of MF for “x” directional flow in 
“dy” by “dz” cross-section is:

where, 

vi          - velocity 

D      - molecular or eddy diffusivity for vapor

- moisture source or sink due to condensation or evaporation

- vapor flux in superheated steam formcmq&
smq&
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In-Drift Lumped-Parameter CFD Model ConceptIn-Drift Lumped-Parameter CFD Model Concept

In-Drift Heat Flow Processes (Simplified Diagram)

P-Name-Meeting XX/XX/XX.pptP-Name-Meeting_XX/XX/XX.ppt
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In-Drift Lumped-Parameter CFD Model ConceptIn-Drift Lumped-Parameter CFD Model Concept

In-Drift Moisture Flow Processes (Simplified Diagram)

P-Name-Meeting XX/XX/XX.pptP-Name-Meeting_XX/XX/XX.ppt
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Sectional view of the emplacement drift with un-
sealed and sealed-off unheated sections

Sectional view of the emplacement drift with un-
sealed and sealed-off unheated sections

(a)

Waste package

In-drift airway

Moisture transfer connection 
seal-off

(b)

Moisture transfer connection seal-off

Waste package
In-drift airway
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Simplified Logic Flow Chart of Coupling In-Drift 
CFD and In-Rock NTCF Model Elements

Simplified Logic Flow Chart of Coupling In-Drift 
CFD and In-Rock NTCF Model Elements

Airway Heat, Moisture, 
and Air Transport

Computational Fluid 
Dynamic (CFD) model

Rock mass model:
NTCF (Numerical Transport

Code Functionalization) model 
based on TOUGH2

Coupler

Temperature, humidity, airflow, 
and condensate histories
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Results: Temperature and Relative Humidity on 
the Drift Wall, Un-Sealed Unheated Drift Sections
Results: Temperature and Relative Humidity on 

the Drift Wall, Un-Sealed Unheated Drift Sections
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Results: Temperature and Relative Humidity on 
the Drift Wall with Sealed-off Unheated Sections
Results: Temperature and Relative Humidity on 
the Drift Wall with Sealed-off Unheated Sections
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Axial distribution of (a) drift wall temperature, (b) relative humidity, and (c) 
condensation rate using an axial moisture dispersion coefficient of 0.1 m2/s

(a
)

(b
)

(c
)

solid line: unheated 
sections not sealed 

dashed line: 
unheated sections 

sealed off
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Axial distribution of (a) drift wall temperature, (b) relative humidity, and (c) 
condensation rate using an axial moisture dispersion coefficient of 0.004 m2/s

(a
)

(b
)

(c
)

solid line: unheated 
sections not sealed 

dashed line: 
unheated sections 

sealed off
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Future Model: Proposed, Variable Dispersion 
Coefficient in the CFD Model Element

Future Model: Proposed, Variable Dispersion 
Coefficient in the CFD Model Element
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Fit of Dispersion Coefficient Values (m2/s) between 
Proposed and Published Results by Webb and Itamura

0.0810.10.0040.004proposed

0.10.10.0040.004
published 

resultsOutside 
Drip Shield

0.0080.0090.0040.004proposed

0.0090.0070.0070.006
Published

resultsUnder 
Drip Shield

3000 Yrs1000 Yrs3000 Yrs1000 Yrs

With Temperature TiltWithout Temperature Tilt
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Observed Natural Convection EffectsObserved Natural Convection Effects

More drying of rock mass and 
later rewetting (delay of 
seepage)

Smaller potential for seepage 
and less seepage magnitude
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ConclusionsConclusions

A fully-coupled, in-drift and near-field, in-rock model is configured 
and applied for the solution of a complex thermo-hydrologic-airflow 
problem at YM.

As a coupled thermal-hydrologic model exercise, the beneficial 
effect of elongated, unheated emplacement drift sections at both
ends was studied and comparatively evaluated.  

No condensation was found around the WPs, and an improvement 
to the results for a drift arrangement without the long unheated
sections was achieved in the high axial dispersion coefficient case. 

Lower condensation rates and fewer condensation locations in the
emplacement drift are predicted with the present model than those 
obtained using an approximate, and basically uncoupled 
condensation model.
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Conclusions (Continued)Conclusions (Continued)

The current result illustrates the benefit of maintaining unheated, low-
temperature sections in the drift airspace in order to lower the relative 
humidity in the active emplacement drift section. 

Significant sensitivity to the axial dispersion coefficient in the 
emplacement drift is found.  This fact underlines the importance of a fast-
running, efficient modeling method, since input data variations will likely 
be needed in future studies and design exercises.

The range of the values for axial dispersion coefficient arches over three 
orders of magnitude from molecular diffusion to turbulent dispersion in an 
emplacement drift.  

In order to reduce uncertainties, it will be important to use location-
specific, temperature-field dependent coefficients in the lumped-parameter 
CFD model instead of overall constants for the entire drift in future studies 
using a dispersion coefficient model example proposed in the current 
paper. 
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Support MaterialSupport Material
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Natural convection processes in 
emplacement drifts will create 
evaporative potential over long 
drift sections

BackgroundBackground
Seepage of water into emplacement drifts is important 
for performance assessment (PA)

Seepage predictions in PA are currently conducted 
using a conservative assumption of 100% relative 
humidity (RH) in emplacement drifts (no evaporation)

Significant reduction in 
seepage rates possible 0
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Logic Flow Chart of the Coupled SimulationLogic Flow Chart of the Coupled Simulation
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Embedded High-Resolution Seepage ModelEmbedded High-Resolution Seepage Model

P-Name-Meeting XX/XX/XX.pptP-Name-Meeting_XX/XX/XX.ppt

TOUGH2 
REFINED 
SEEPAGE 
MODEL 
DOMAIN

ROCKMASS 
MODEL 

DOMAIN

DRIFT 
WALL

TOUGH2

NTCF
Model

MULTIFLUX

NTCF
Model

SCALED NTCF 
MODEL TO 
MATCH WP-
SCALE IN-DRIFT 
MODEL DOMAIN

DRIFT 
WALL

EMBEDDED NTCF 
MODEL FROM 
REFINED TOUGH2 
MODEL FOR FINE-
SCALE RESPONSE


