

Testing the Concept of Drift Shadow with X-ray Absorption Imaging Experiments

Presented to: High Level Radioactive Waste Management Conference

Presented by: Susan J. Altman Sandia National Laboratories

May 1, 2006 Las Vegas, Nevada

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

This presentation has been funded in whole or in part by the U.S. Department of Energy

Contributors

- Clifford K. Ho
- Aleeca Forsberg
- William Peplinski
- David Bronowski
- Fotini Walton

- Background and Objectives
- Test Approach
- Results
- Next Steps

- Capillary diversion around tunnel may cause "drift shadow" effect
- Current Performance Assessment assumes flux under the drift the same as flux away from the drift
- With evidence of drift shadow, may be able to decrease the flux under the drift in future performance assessment calculations
- Decreased flux leads to decreased transport of radionuclides immediately beneath the repository
- IMPROVE PERFORMANCE
- Evaluate flow distribution around and beneath cavity in fractured tuff using X-ray absorption imaging

- Test Approach
- Results
- Next Steps

Experimental Procedure

Data Analysis

Alternative Test Designs

Test Approach

Results

Next Steps

Summary of Results

- Ran 17 successful experiments
 - > 12 on the In-Plane Fracture System
 - **5 on the Multi-Fracture System**
- Determined porosity of multi-fracture samples
- Discharge data give evidence for drift shadow
- X-ray images give evidence for drift shadow

Ran 17 Successful Experiments

Date Run	Test #	Flow Rate (ml/min)	Fracture Aperture (μm)	Test Duration (min)	Mass Balance Error (%)	Cum. Mass into Drift (%)
In-Plane Fracture Tests						
07/27/2005	5P	0.01	100	485	10	0.9
07/27/2005	5P	0.01	250	485	-6.4	0.0
10/20/2005	3B	0.01	500	360	4.2	1.8
06/2/2005	2P	0.05	100	320	11	0.6
06/2/2005	2P	0.05	250	320	10	1.2
05/10/2005	1P	0.09	100	126	7.9	0.2
05/10/2005	1P	0.09	250	126	1.6	0.3
08/24/2005	2B	0.10	250	300	10.4	0.2
06/22/2005	3P	0.12	100	132	9.9	0.9
06/22/2005	3P	0.13	250	132	9.7	0.3
10/12/2005	7P	0.24	250	213	7.2	0.1
10/12/2005	7P	0.23	500	213	11.2	0.1
Multi-fracture Tests						
08/17/2005	1B	0.01	100	421	-10.0	3.0
02/17/2005	1M	0.1	100	141	3.8	0.8
02/17/2005	1M	0.1	250	141	3.4	0.3
05/25/2005	3M	0.1	250	146	11.4	0.5
08/24/2005	2B	0.1	100	300	8.7	0.5

- Suite of flow rates
 - > 0.01 0.25 ml/min

Suite of fracture apertures

- > 100, 250, and 500 μm
- Mass balance errors generally less than 10%
- Percent of inflow discharging into the drift generally less than 1%

Discharge Data Give Evidence for Drift Shadow

- Less than expected discharge (if flow was vertical) through port under the drift.
- Discharge under the drift decreases with increasing fracture aperture.
- Majority of discharge through ports 3 and 4 (ports away from the drift).

X-Ray Images Give Evidence for Drift Shadow

- Tracer being diverted around the drift
- Tracer shedding off the drift and not under the drift
- Capillary fringe at the bottom of the test cell for tests with higher flow rates

500 μm aperture fracture

250 μ m aperture fracture

Summary of Results

- These studies provide quantitative and visual evidence that only a fraction of the total percolation flux is available for transporting radionuclides immediately beneath the repository
 - > Evidence for a capillary barrier
 - > Evidence for a drift shadow
- Experimental design needs to be improved to minimize the capillary barrier effects along the lower boundary of the test cells
- Heterogeneities in the system lead to different discharge distributions than would be expected in a homogeneous system
- Further assessment is needed in order to quantify the amount and variability of flux below the drift
- Decreased flux under the drift could impact performance assessment at Yucca Mountain

- Test Approach
- Results

Next Steps

Future Work Will Focus on Modeling

- Perform numerical simulations of experiments using current conceptual models of flow through fractures (e.g., DKM)
- Provide verification of relevant model features and processes observed in experiments
- Conduct parametric analyses to understand and verify impacts of flow rate, aperture size, and possibly heterogeneities on drift-shadow effect

