

In-Situ Radionuclide Transport Near Nopal I Uranium Deposit At Peña Blanca, Mexico: Constraints From Short-Lived Decay-Series Radionuclides

Presented to: GSA 2005 Annual Meeting

Presented by: Shangde Luo Research Scientist Dept. of Earth Sciences Univ. of Southern California Los Angeles, CA 90089-0740

Oct. 17, 2005 Salt Lake City, Utah

This presentation has been funded in whole or in part by the U.S. Department of Energy

U-series Radioisotopes as a Natural Analog

- ²³⁸U series: 238 U (α , 4.5 by) $\rightarrow {}^{234}$ Th (β , 24,1 d) $\rightarrow {}^{234}$ U (α , 248 ky) $\rightarrow {}^{230}$ Th (α , 75.4 ky) $\rightarrow {}^{226}$ Ra (α , 1.6 ky) $\rightarrow {}^{222}$ Rn (α , 3.8 d) $\rightarrow {}^{210}$ Pb (β , 22.3 y) $\rightarrow {}^{210}$ Po (α , 138.4 d) $\rightarrow {}^{206}$ Pb
- ²³⁵U series: ²³⁵U (α , 0.71 by) \rightarrow ²³¹Pa (α , 32.8 ky) \rightarrow ²²⁷Ac (β , 22.0 y) \rightarrow ²²⁷Th (α , 18.6 d) \rightarrow ²²³Ra (α , 11.1 d) \rightarrow ... \rightarrow ²⁰⁷Pb
- ²³²Th series: ²³²Th (α , 14.2 by) → ²²⁸Ra (β , 5.75 y) → ²²⁸Th (α , 1.91 d) → ²²⁴Ra (α , 3.64 d) →... → ²⁰⁸Pb

S. Luo GSA 10/17/05.ppt

Conceptual Model

Three-pool radionuclide transport model (Ku et al. 1992, Luo et al. 2000)

In-situ retardation factor:

$$R_f = 1 + K = 1 + \frac{\overline{C}}{C} = 1 + \frac{k_1}{k_2 + \lambda}$$

Transport rate of groundwater

Transport rate of radionuclide

U-Series Radionuclide Transport Model

• Mass balance of a radionuclide in the dissolved and sorbed pools:

$$R_{f}\left(\frac{\partial C}{\partial t}\right) = P - R_{f}A - k_{p}C - Q \tag{1}$$

- Where *C* and *A* are concentration and activity of a nuclide in groundwater, *P* is supply rates by dissolution (P_d), alpha recoil (P_r), and in-situ production ($R_{f,p}^* \times A_p^*$), k_p is first-order precipitation rate constant, and *Q* is transport by groundwater.
- For short-lived radionuclides at steady state, Eq. (1) can be simplified as:

$$R_f = \frac{P}{A} \tag{2}$$

Location Map

A map of study area showing the sampling wells (red circles) near Nopal I **Uranium Deposit** at Peña Blanca, **Mexico**

S. Luo-GSA 10/17/05.ppt

5

El Sauz 1:50,000 Topographic Map (H13C46) North American 1927 datum

Sampling Techniques

Ra and Rn Isotope Measurements

Well ID	Rn-222		Ra-228		Ra-224		Ra-223		Ra-22	Ra-224/Ra-228			Ra-223/Ra-224					
	(dpm/L)		(dpm/m ³)		n ³)	(dpm/m^3)		(dpm/m ³)										
PB	1831	±	80	2614	±	69	4984	±	64	96	±	52	1.907	±	0.056	0.019	±	0.010
Pozos	1421	±	67	622	±	19	997	±	16	29	±	17	1.604	±	0.056	0.029	±	0.017
PB4	595	±	37	540	±	14	589	±	10	29	±	20	1.090	±	0.033	0.050	±	0.034

Pb-210 and Po-210 measurements

Well ID	Rn-222 (dpm/L)			Pl	Pb-210			Po-210				Po-210/Pb-210			
				(dpm/m ³)			(d)	(dpm/m ³)							
PB	1831	±	80	45.5	±	1.4	4.9	±	0.3	0.108	±	0.007			
Pozos	1421	±	67	3.2	±	1.2	0.69	±	0.07	0.216	±	0.084			
PB4	595	±	37	94.1	±	4.3	95.3	±	3.7	1.013	±	0.061			

Estimates of Alpha Recoil Input of Radon in Groundwater

Well ID	Pr (Rn-222)	Pr(Rn)/A(Rn)
	(atoms/minute/L)	
PB	871	0.476
Pozos	535	0.377
PB4	49	0.083

Estimates of In-Situ Retardation Factor for Ra, Pb, and Po

Well ID	R_f (Ra)	R_{f} (Pb)	R_{f} (Po)
	(10^3)	(10 ⁵)	(10 ⁶)
	0 40 1 0 00		
PB	0.43 ± 0.02	0.59 ± 0.03	5.5 ± 0.4
Pozos	1.68 ± 0.08	6.1 ± 2.3	28 ± 15
PB4	1.19 ± 0.08	0.069 ± 0.005	0.068 ± 0.007

Estimate of Mean Fracture Width

Well ID	Pr (Rn-222)	fracture width (d)				
	(atoms/minute/L)	(μ m)				
PB	871	0.23				
Pozos	535	0.37				
PB4	49	3.97				

Role of Colloids in Transporting Radionuclides in Groundwater

• Effective Retardation Factor:

$$R_{f}^{*} = 1 + K^{*} = 1 + \frac{\overline{C}}{C^{*}} = 1 + \left(\frac{K}{1 + K_{d}\{p\}}\right)$$
(3)

where $C^* = C_{dis} + C_{col}$, K_d is distribution coefficient of a nuclide between colloidal and dissolved pools, and {p} is concentration of colloids in groundwater.

• Transport Equation:

$$\frac{P}{A^{*}} = R_{f}^{*} + \frac{Q}{A^{*}} = R_{f}^{*} + \frac{1}{\lambda \tau_{w}}$$
(4)

where $A^* = A_{dis} + A_{col}$, *P* is supply rates by dissolution (P_d), alpha recoil (P_r), and insitu production ($R_{f,p}^* \times A_p^*$), and *Q* is transport in the dissolved and colloidal forms by groundwater.

Role of Colloids in Transporting Radionuclides in Groundwater (continued)

- Transport of radionuclides by colloids become less important with increasing radionuclide decay constant and/or water residence time in the aquifer.
- For 1/(λτ_w) << R_f^{*}, we have

$$\frac{P}{A^*} = R_f^* \tag{5}$$

This equation can be applied to short-lived particlereactive radionuclides, e.g., ²¹⁰Pb and ²¹⁰Po.

Conclusions

- No significantly high activities of radionuclides in the groundwater are found to be associated with the nearby uranium ore deposit.
- Migration rates of Ra, Pb and Po isotopes are determined respectively to be about three, three to five, and four to six orders slower than those of groundwater.
- Increased Pb-210 and Po-210 activities or decreased retardation factors of Pb and Po in well PB-4 are most likely attributable to the occurrence of colloids in the groundwater.

Conclusions (continued)

- Enrichment of the sorbed Ra isotopes on the rock fractures provides an important source of radon in groundwater.
- The low alpha recoil input in well PB-4 reflects the large fracture width of rocks in the aquifer.
- Future studies should focus on the behavior of radionuclides in recently drilled wells near the U deposit and the importance of colloids in transporting long-lived radionuclides in groundwater.

Acknowledgement

This work is supported by the U.S. DOE, Office of Civilian Radioactive Waste Management, Office of Science and Technology and International.

