

Modeling Uranium Transport in Unsaturated Zone at Peña Blanca, Mexico

Presented to: GSA Annual Meetings

Presented by: Teh-Lung Ku University of Southern California

Date of presentation: **October 17, 2005** Location of presentation: **SPCC 257**

This presentation has been funded in whole or in part by the U.S. Department of Energy

Map of Sampling Site

El Sauz 1:50,000 Topographic Map (H13C46) North American 1927 datum

A Scheme of Rock-Water Interaction

3

Radionuclide Transport Model

Assumptions

1) Radionuclides reside in four pools: dissolved, colloidal, sorbed, and solid.

- 2) Radionuclides are released via dissolution and α -recoil at rate *P*.
- 3) Nuclide transport is retarded by sorption-desorption-precipitation.

Time rate of change of radionuclide concentration in groundwater:

$$\frac{dC^*}{dt} = P - \lambda R_f^* C^* \tag{1}$$

 $C^*=C+C_c$ = concentration in dissolved and colloidal pools and R_f^* is effective retardation factor (R_f^* = 1 for conservative tracer.)

Solving:
$$\frac{A^*}{P} = \frac{\left(1 - e^{-\lambda R_f^* \tau_w}\right)}{R_f^*}$$
(2)

 $A^*(=\lambda C^*)$ is radionuclide activity and τ_w is water-rock interaction time.

Derive R_{f}^{*} and τ_{w} from U-series isotopes in water.

Application to U Transport in Unsaturated Zone

For ²³⁸U, $(\lambda R_{f^*}\tau_w) \ll 1$, Eq. (2) can be simplified as:

$$A_{U238} = \lambda_{U238} \tau_w P_{U238}$$
 (3)

For ²³⁴U, alpha-recoil input (P_r) during a non-flushing period (τ_o) should be considered:

$$A_{U234} = \lambda_{U234} \tau_0 P_r + \lambda_{U234} \tau_w P_{U234}$$
(4)

Combining Eqs. (3) and (4),

$$\frac{A_{234U}}{A_{238U}} = \frac{a}{A_{238U}} + b$$
(5)

 $a = \lambda_{U234} \tau_o P_r$ and $b = (\lambda_{U234} P_{U234})/(\lambda_{U238} P_{U238})$, both can be determined by plotting (²³⁴U/²³⁸U) vs. 1/²³⁸U

Data from Pickett and Murphy (1999)

(a) Slope = a = 0.45 dpm/L ==>> $P_r = 9$ dpm/L/y Intercept = b = 2.1 ==>> $P_d = 8.3$ dpm/L/y

(b) Water transit time in vadose zone (τ_w): Seep water site: 6–29 days Perched water site: 0.4–0.5 years.

WM Office of Science and Technology and International T.L. Ku-GSA 2005 10/17/05, ppt

6

Additional Data from Dry Winter Season 2001-02

All Adit Waters from Unsaturated Zone

0031&

Conclusions

Removal of ²³⁴U and ²³⁸U from unsaturated-zone (UZ) solids takes place during major rainfalls.

➢ Waters from each of these rainfalls passing through the UZ can be modeled to have ²³⁴U/²³⁸U inversely related to [U].

➢ Given the non-flushing period between two rain events, the model can estimate the alpha-recoil input of ²³⁴U, dissolution rate of U, and water transit time in the UZ.

Further testing of the model requires sampling of UZ waters from discrete major rainfalls.

ACKNOWLEDGMENTS

U.S. DOE, Office of Civilian Radioactive Waste Management, Office of Science and Technology and International

