

Uranium Elemental and Isotopic Constraints on Groundwater Flow Beneath the Nopal I Uranium Deposit, Peña Blanca, Mexico

Presented to: 2005 GSA Annual Meeting

Presented by: Steve Goldstein Mike Murrell Ardyth Simmons

October 17, 2005 Salt Lake City, Utah

This presentation has been funded in whole or in part by the U.S. Department of Energy

Relationship to Yucca Mtn.

- Groundwater velocity is an important parameter influencing radionuclide transport at Peña Blanca and Yucca Mountain.
- Groundwater hydrology at Peña Blanca is poorly understood: speed and direction.
- Specifically identified need: conduct artificial tracer studies at Peña Blanca to detect SZ groundwater flow and transport.
- This study uses natural U as a tracer of groundwater flow.
- SZ groundwater velocity information is directly used by models of radionuclide transport, including TSPA.

Outline

- Saturated Zone Uranium Data
 - > Concentrations [U] and isotopics (²³⁴U/²³⁸U)
- Modeling
 - > One-Dimensional (1-D) Dispersion/Advection
- Conclusions
 - > Limited groundwater flow and mixing are apparent

Sample Locations

El Sauz 1:50,000 Topographic Map (H13C46) North American 1927 datum

NA04-001

Panoramic View of New PB Wells

U Isotopic Results

Multiple Components for U

7

U Isotopic Summary

- PB-1 and PB-2 isotopically similar, suggesting interconnectivity.
- PB-3 has distinct composition and therefore may be located on a different flow path.
- Generally, regional wells have distinct isotopic characteristics indicating limited mixing over larger length scales (km).
- Newly drilled wells PB-1, PB-2, and PB-3 have elevated U concentrations which are decreasing over time (next slides).

U Time Series

1-D Advection-Dispersion Model

- Model Assumptions
 - > U introduced as a slug at t=0, x=0
 - > U is a conservative tracer over short timescales (months-year)
 - > Analytical solution in Bear (1979)
- Relative U concentration (C) controlled by position (x), time (t), groundwater velocity (V), and dispersion (D_h)
- At point of U introduction (x=0),

 $C_2/C_1 = (t_1/t_2)^{0.5} exp\{V^2(t_1-t_2)/4D_h\}$

Knowing C₂, C₁, t₂, and t₁, one can obtain a relationship between velocity and dispersion for each of the three wells:

 $V = \{In[(C_2/C_1)(t_2/t_1)^{0.5}]4D_h/(t_1-t_2)\}^{0.5}$

Velocity-Dispersivity Relationship

Velocity-Dispersion Correlations from Lab and Field Studies

- Field and laboratory data from Klotz et al. (1980).
- Field site (Upper Bavaria, Germany) is composed of gravels with mean grain size of ~5 mm.
 - Lines 1-5: Lab tests based on natural mixtures of more homogeneous sands with grain size of 0.1 to 1 mm.
 - Lines 6-9: Lab tests based on natural mixtures of gravels from Bavaria
 - > Line 10: Field tests in Bavaria

Velocity Constraints

Modeling Uncertainties

- Field relationship between velocity and dispersion at Peña Blanca
 - German site is fairly typical of most aquifers (Gelhar et al. 1992).
 - > Limestone aquifer data would provide a better approximation.
- Non-conservative behavior for U
 - > U removal from solution would lower required flow velocity.
 - > U addition to solution from rock-water interaction (aside from U slug) would increase required flow velocity.

Summary

- U isotopic data indicate multiple (4 or more) components for U in saturated zone water over various length scales (50 m to km).
 - > Limited subsurface mixing apparent
- Decreasing U concentrations in the wells require limited flow and dispersion.
 - > V ~ 20 m/yr
 - > $D_h \sim 4 \times 10^{-3} \text{ cm}^2/\text{s}$
- Additional work with artificial tracers would better establish flow velocity and direction at this site.

Acknowledgements

- Ignacio Reyes and Rodrigo de la Garza, Universidad Autonoma de Chihuahua
- Alfredo Rodriguez, Instituto de Ecologia
- Ron Oliver and Andy Nunn, LANL
- Pat Dobson, LBL
- U.S. DOE, Office of Civilian Radioactive Waste Management, Office of Science and Technology and International

