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ROUND ROBIN RESULTS − UO2

• PNNL, LLNL, 
Whiteshell 

• Differ by a factor of 
2 – 5

• Shape of the 
curves are quite 
different

• Frit size/material
– PNNL 2 µm SS

– WL 5 µm SS

– LLNL ?? Teflon

– (Röllin et. al. Teflon 
vs. SS)

Gray et al., Proc. International High Level Waste Management Conference, 1994

PNNL sample subjected to 3 
previous water chemistries 
prior to the data reported here
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SURFACE CHEMISTRY EFFECT

Alteration layer
from Wilson test
stayed “intact”
even after 148
days in a flow-
through test.

Disappeared
after another 
~130 days

∴Reuse of
samples is not 
recommended

Gray and Wilson, PNL-10540, December 1995
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ALTERATION PHASE EFFECT ON 
DISSOLUTION RATE

No significant 
change in rate
observed in the
Wilson⇒SPFT 
test, but does
it make sense?

Tait & Luht, 1997:  “When the leachant was switched to the standard carbonate
solution, the dissolution rate increased by over an order of magnitude, but was 
highly erratic, suggesting that adsorbed silicate or secondary phases may 
continue to affect the dissolution rate.”
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FRIT SIZE EFFECT

Wiersma & Mickalonis, WSRC-TR-98-00290 (U), August 1998

PNNL used 2 µm stainless steel frit; SRS had no frits

SRS dissolution rate was 10× that of PNNL
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REANALYSIS OF SNF LEACHATES

• CSNF and DOE (MOX, metallic) fuels tested
– Frit sizes 0.5 µm – 5 µm 

• Leachates acidified to pH<2 (typically <1)
• Total U concentration using Kinetic 

Phosphorescence Analysis (KPA)
• Archived samples reanalyzed (1 month-1.5 years)
• [U] increased in every case, sometimes as much as 

a factor of 20+, average of 20%
• Polynuclear chains, colloids, complexes 

(carbonates), U(IV) or U(V)
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EFFECT OF DISSOLVED OXYGEN, 
TEMPERATURE AND RADIOLYSIS?

URANIUM DISSOLUTION RATE
Y9C-4L  (20 mM, pH = 8)
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Y9C-4L (20 mM, pH = 8)

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Time (days)

C
um

ul
at

iv
e 

U
 fr

ac
tio

n

URANIUM CUMULATIVE RELEASE
Y9C-4H (20 mM, pH = 8)
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URANIUM DISSOLUTION RATE
Y9C-4H (20 mM, pH = 8)
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H2O2 not stable at high temperatures, other recombination?
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EFFECT OF OTHER VARIABLES

URANIUM DISSOLUTION RATE
Y9C-6L  (0.2 mM, pH = 8)
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IMPROVEMENTS TO SPFT TESTS
• Leachant pre-

equilibration
(pre-heat, sparge)

• Continuous
– Mixing
– Sparging
– pH
– Dissolved O2

• High precision ovens
• High quality pumps
• All SS piping
• Consistent analysis

time for leachates
• Uniform frit size
• Fresh samples
• Sample characterization
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DECREASING NORMALIZED RATE
• Under most conditions 

cumulative release was only a 
few percent

• Only 2 cases under alkaline 
conditions where extent of 
reaction>20%

• Decreasing normalized rate is 
typical, but if SA was 
increasing the rate should be 
increasing
– Only data on post- vs. pre-

dissolution SA show significant 
(factor of 50-350) increase
(Hanson & Stout, MRS 2004)

Wormy texture
– Loss of high-energy features

• Not a uranium alteration 
phase effect

⇓
Fuel chemistry

URANIUM DISSOLUTION RATE
Y3-4H
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LOW pH SPFT RESULTS
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CUMULATIVE RELEASE LOW pH SPFT

• Flowthrough tests using ATM-106 (~50 MWd/kg, 23 year decay, 18% fission 
gas release) powders (10-25 µm) in de-ionized water with HNO3 added, 
sparged with CO2-free air, at 25°C.  Not washed, pre-equilibrated water, 
flow up.
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SOLIDS CHARACTERIZATION
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STUDTITE FORMATION

• Pump failure for about 2 
days on pH 7 sample.

• Sample had 12.6% 
cumulative U release

• Pump restarted and test 
ran an additional 10 days 
(additional 1% reaction)

• XRD identified as studtite

• Is the radiolysis from the 
sample itself or 
background in hot cell?
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XRD OF LOW pH SPFT SAMPLES
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DISCUSSION OF LOW pH RESULTS

• Rates (both normalized to initial surface area and 
cumulative release) for pH 2, 3, and 4 show a 
decrease by factor of ~2 after ~30% and again after 
~60% reaction.

• Below pH 5, some areas enriched in Zr, Pu, and 
Mo. (Note that cumulative release  for pH 6 and 7 
was ~14%, all others>25%)

• All samples show enrichment of ε-phases.
• Broad peaks on upper end of UO2 peaks is fitted by 

U4O9, but that phase is not expected to exist under 
these conditions.  Possible Pu/Zr/Mo/U oxide 
phase.
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FUEL CHEMISTRY SIMPLE MODEL

• Using radiochemical data for U and Pu, and 
accounting only for Pu and Zr, about half of the 
necessary surface area reduction is modeled.
– Total [Pu] and [Zr] in spent fuel is about 2 at%
– Assume Zr released at same rate as Pu (1/6-1/3 that of U)
– Pu+4 or Zr+4 affects 12-nearest neighbor U

Net negative charge delays oxidation (O-2 transport and 
interstitial location)
Limits the ability of U to be in +5 or +6 state
Donor-acceptor site blocking
Less soluble and decreases surface area
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GRANDSTAFF THEORY

• Effect is both a surface 
area effect- if the dopant is 
less soluble or dissolves 
slower than the UO2, then 
it will build up on the 
surface and decrease the 
effective surface area until 
“excavated”- and a semi-
conductor effect –
impurities alter ability for 
electron transfer 

• Dopants can make UO2either more p-type or n-
type

• U3O8 is n-type so
dissolves fast.

(Grandstaff, Economic Geology, 71(1976)8 pp1493-1506
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CORROSION MECHANISM

• Habashi and Thurston
developed a model for 
dissolution kinetics 
– A1=SA of cathodic zone
– A2=SA of anodic zone
– Assumption of constant surface 

area only valid for very small 
total reaction

• With fuel chemistry variations 
(change in oxygen potential) 
is it possible for A2 to 
significantly decrease?

• Even at the microscopic level, 
this shows that the entire 
exposed surface area can not 
be undergoing anodic 
dissolution

(Habashi & Thurston, energia nucleare, vol 14, 4(1967)238-244)
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DONOR/ACCEPTOR SITE EFFECTS

Fission products and actinides will alter the U(IV)/U(V) or U(V)/U(VI) relationship
especially at higher burnups (after sufficient decay) and extended corrosion.

Shoesmith, JNM 282(2000)1-31.
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NORMALIZED DISSOLUTION RATES
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• The two ATM-106 
samples differ in rate 
by the same factor as 
specific surface area, 
but changing SA 
changes rate in 
wrong direction.

• Appears ATM-105 
(lowest burnup) has 
fastest rate, but is 
that just due to the 
very small specific 
surface area?

• No increase in rate 
even though 
normalized to a fixed 
initial surface area.

Dissolution rates of spent fuel in aerated water containing 
2E-2 M carbonate/bicarbonate, pH=8, at 25°C

Hanson & Stout, MRS 2004
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CUMULATIVE RELEASE
• The two ATM-

106 samples 
now identical.

• ATM-104 same 
as 106 when 
corrected for 
early oxidation.

• Appears ATM-
105 (lowest 
burnup) has 
slowest rate.

• No increase in 
rate over time.

• Smoothes out 
fluctuations, but 
assumes 
constant 
parameters in-
between data 
points.
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SURFACE AREA AND RADIOLYSIS
Burnup Dependence- U Cumulative

T= 25 C, 2E-2 Carbonate, 0.2 Oxygen, pH=8
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S&T FUTURE WORK

• Previous tests focused on the effects of water chemistry
• S&T focus is on

– Fuel chemistry
Doped UO2

RADFUEL

– Radiolysis effects
– Effective surface area
– Dependence on water flux/contact mode
– Effect of secondary phases on matrix corrosion
– Eventually to perform spent fuel tests

Partitioning of Tc and other radionuclides
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