

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Dry Air Oxidation of Commercial Spent Nuclear Fuel

Presented to: DOE/CEA Technical Meeting

Presented by: Brady Hanson Geologic Disposal Support Project, Manager Pacific Northwest National Laboratory

February 8, 2005 Las Vegas, NV

WHY IS OXIDATION OF CONCERN?

- Fuel integrity/dispersibility
 - Clad unzipping
 - Increase surface area
- Retention of radionuclides
- Dissolution kinetics

OXIDATION LEADS TO CLAD UNZIPPING

Fig. 4. Split defect 559 mm from the top of rod PB-PH462-E3 after 5962 h at 229°C in unlimited air.

Einziger and Cook, Nuc. Tech. 69(1985)55-71.

Kohli et al., Nuc. Tech. 69(1985)186-197

Department of Energy • Office of Civilian Radioactive Waste Management Brady Hanson, DOE/CEA Technical Meeting, 2/08/2005, dry oxidation.ppt

EPRI NP-4524, April 1986, p. 3-20

OXIDATION INCREASES SURFACE AREA

X3,300

10Pm WD32

1239

20KV

GENERALIZED CURVE FOR SPENT FUEL OXIDATION

(Hanson, PNNL-11929, July 1998)

CSNF OXIDATION EXHIBITS STRONG TEMPERATURE DEPENDENCE

Turkey Point Fuel (Burnup~27 MWd/kgM), Bare fragment oxidation. Duplicate tests run at 250, 283, and 295°C

REVIEW OF UO₂/CSNF OXIDATION

- Spent fuel oxidation differs from unirradiated UO₂
 - UO_{2.4} phase (cubic) vs. U₃O₇ (tetragonal)
 - No "simultaneous" U₃O₈ formation, i.e., "plateau" behavior
 - 5 to 50 times faster initial oxidation rate (open grain boundaries, but Gd-doped unirradiated exhibits the same behavior)

CSNF OXIDATION CHARACTERISTICS

- Rapid oxidation of the grain boundaries
- Oxidation of the bulk grains to UO_{2.4} before any U₃O₈ is observed (true for low burnup?)

 $UO_2 \Rightarrow U_4O_9 \Rightarrow U_3O_8$

- Possible intermediate phases
- Grain-size dependence
- Arrhenius temperature dependence
- Resistance to further oxidation at lower temperatures (plateau behavior)
- Oxidation to U₃O₈ (O/M~2.70-2.75) which is ~30% less dense

Note grain boundary oxidation and fragment friability at UO_{2.41} (255°C)

www.ocrwm.doe.gov

CHANGES TO FUEL DURING IRRADIATION

- Pellet cracking due to thermal cycling
- Grain growth towards pellet center
- Fission gas bubbles/diffusion to grain boundaries/gap
- Radiation (field, damage to crystal, thermal annealing)
- Densification then pellet swelling
- Oxygen potential dictates phase partitioning, but also diffusion limited

SPENT FUEL ≠ UNIRRADIATED UO₂

- UO₂ with substitutional and interstitial "impurities"
- Increase in oxygen potential with increasing burnup, but buffered by Mo and scavenging of O by Zr
- Charge balance maintained by oxidation of U or loss of O
- Sintered UO₂ behaves differently

BURNUP DEPENDENCE OF CSNF OXIDATION

Oxidation behavior of LWR fragments of different burnup oxidized at 305°C

$$t_{2.4} = k_{2.4} \exp(Q_{24}/RT)$$

where

 $t_{2.4}$ is the time to oxidize from UO_2 to $UO_{2.4}\ (h)$

 $k_{2.4}$ is the pre-exponential factor for the UO $_2$ to UO $_{2.4}$ transition (h)

Nominal Case: 1.40×10⁻⁸

Bounding Case: 2.93×10⁻⁹

 Q_{24} is the activation energy (105 kJ mol⁻¹)

R is the universal gas constant (8.314 J mol⁻¹ K⁻¹)

and T is the temperature (K = $273+T(^{\circ}C)$).

Minimal (if any) burnup dependence, mostly temperature and grain size.

$UO_{2.4} \Rightarrow UO_{2.75}$

Burnup, MWd/kg M

Figure 5.11. Time to Oxidize LWR Fragments from UO_{2.45} to UO_{2.50} at 305°C as a Function of Burnup (Burnup from ¹³⁷Cs Analysis)

(Hanson, PNNL-11929, July 1998)

45

50

RESONANCE ABSORPTION \Rightarrow HBS

Figure 2.5. Radial Burnup Profile in ATM-104 Fuel with a Pellet Average Burnup of 44.3 MWd/kg M Measured by EPMA [69]

(Hanson, PNNL-11929, July 1998)

www.ocrwm.doe.gov 14

Department of Energy • Office of Civilian Radioactive Waste Management Brady Hanson, DOE/CEA Technical Meeting, 2/08/2005, dry oxidation.ppt

Figure 2.4. Radial Profile of Plutonium in ATM-104 Fuel Measured by EPMA [69]

CUMULATIVE ELEMENTAL YIELDS (%)

Element	²³⁵ U	²³⁹ Pu	²⁴¹ Pu
Sr	9.35	3.45	2.52
Y	4.82	1.69	1.22
Zr	36.76	21.03	16.58
Мо	24.47	22.96	19.92
Тс	6.07	6.16	6.08
Ru	11.44	17.83	20.04
Rh	3.03	6.94	6.73
Pd	1.60	15.79	22.44
Cs	19.41	21.26	20.67
Ba	12.90	12.86	13.31
La	6.36	5.54	6.22
Ce	12.05	10.31	10.48
Nd	20.72	16.22	18.03

RELATIONSHIP OF OXIDATION TO HBS

- Formation of High Burnup Structure (HBS)
 - Local burnup ~65 MWd/kg M
 - Average burnup ~45 MWd/kg M
 - Restructure of grains, change porosity characteristics
- If soluble dopants can delay or prevent the movement of the uranium planes in oxidation, can they delay or prevent the grain restructuring as well?
 - Pinning of dislocation loops
- Related to lattice parameter?

Figures from Allen and Homes, Journal of Nuclear Materials 223(1995)231-237

Fig. 2. The oxygen concentration and packing sequence of the atoms in UO_2 and α -U₃O₈.

CRYSTAL LATTICE ENERGY

$$U = -\frac{ANZ^{+}Z^{-}e^{2}}{r_{0}} \left(1 - \frac{1}{n}\right)$$

where

- A= Madelung constant
- U = the equilibrium lattice energy
- N = Avogadro's number
- r₀ = the equilibrium distance between ions
- n = the Born exponent for ionic repulsion.
- Madelung constant is a geometric factor to account for ionic attraction/repulsion from infinite series of nearest neighbor interactions

Ion	Ionic radius (pm)	Ion	Ionic radius (pm)
Am ³⁺	109	O ²⁻ (IV)	138
Ba ²⁺	142	Pr^{4+}	96
Ce ⁴⁺	<mark>97</mark>	Pu ⁴⁺	96
Cm ³⁺ (VI)	97	Rb^{1+}	161
Cs ¹⁺	174	Sr^{2+}	126
Eu ³⁺	106.6	U^{4+}	100
Gd ³⁺	<mark>105.3</mark>	U ⁵⁺ (VII)	84
La ³⁺	<mark>116.0</mark>	U ⁶⁺	86
Mo ⁴⁺ (VI)	65.0	Y ³⁺	<mark>101.9</mark>
Nd ³⁺	<mark>110.9</mark>	Zr ⁴⁺	<mark>84</mark>
Np^{4+}	98	S m ³⁺	107.9

Ionic Radii from RD Shannon, Acta Cryst. A32(1976)751-767.

PELLET FABRICATION (NERI)

Prepress pellets at 83 MPa

Crush & sieve

Press at 500 MPa

 \downarrow

Wet mill for 24 hours

Sinter for 24 hours at 1570°C under 4% H₂

ISOTHERMAL TGA OF La-DOPED UO₂ AT 325°C

Brady Hanson, DOE/CEA Technical Meeting, 2/08/2005, dry oxidation.ppt

ISOTHERMAL TGA OF Gd-DOPED UO₂ AT 325°C

Brady Hanson, DOE/CEA Technical Meeting, 2/08/2005, dry oxidation.ppt

CHARGE BLOCKING EFFECT

- Non-uranium cations as substitutions in the U lattice act as net negative charges, making oxidation (and electron transfer) more difficult
 - +2 and +3 are "negative" themselves and lead to oxidation of U to maintain charge balance
 - +4 such as Pu and Zr are "negative" in that they will not/can not oxidize to higher states
 - Each substitution affects its 8 nearest neighbor O²⁻ and 12 nearest neighbor U ions (Madelung for fluorite)
 - Each unit cell of UO₂ or U₄O₉ has 14 U ion clouds
 - At 10 wt% Gd₂O₃ doping ⇒ 14 at% Gd ⇒ 2 U in every unit cell have Gd as substitution and 2 U have oxidized to U⁵⁺ (or possible oxygen vacancy)

CONCLUSIONS

- **CSNF** oxidation is primarily a function of T, Burnup, grain size
- **Higher burnup fuels** show significant resistance to U_3O_8 formation
- Lattice energy, charge blocking and electron transfer effects
- What are the implications for dissolution rate?

Figures from Tennery and Godfrey, J Am. Cer. Soc. 56[3](1973)129-133

Fig. 3. Isothermal oxidation of (U,Pu)O2, oxides B and D.

Fig. 6. Oxidation of (U,Pu)O, oxides A, B, and D, with programed heating.

