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WHY IS OXIDATION OF CONCERN?

• Fuel integrity/dispersibility
– Clad unzipping
– Increase surface area

• Retention of radionuclides
• Dissolution kinetics
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OXIDATION LEADS TO CLAD UNZIPPING

Einziger and Cook, Nuc. Tech. 69(1985)55-71.

EPRI NP-4524, April 1986, p. 3-20

Kohli et al., Nuc. Tech. 69(1985)186-197
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OXIDATION INCREASES SURFACE AREA

Opens grain boundaries and can release volatile fission products



GENERALIZED CURVE FOR SPENT FUEL 
OXIDATION
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(Hanson, PNNL-11929, July 1998)



CSNF OXIDATION EXHIBITS STRONG 
TEMPERATURE DEPENDENCE

(Einziger & Strain, Nuc. Tech. 75(1986)82-95)
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Turkey Point Fuel (Burnup~27 MWd/kgM), Bare fragment oxidation.
Duplicate tests run at 250, 283, and 295°C
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REVIEW OF UO2/CSNF OXIDATION

• Spent fuel oxidation differs from unirradiated
UO2

– UO2.4 phase (cubic) vs. U3O7 (tetragonal)
– No “simultaneous” U3O8 formation, i.e., “plateau” 

behavior
– 5 to 50 times faster initial oxidation rate (open grain 

boundaries, but Gd-doped unirradiated exhibits the 
same behavior)
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CSNF OXIDATION CHARACTERISTICS
• Rapid oxidation of the grain 

boundaries
• Oxidation of the bulk grains to 

UO2.4 before any U3O8 is 
observed (true for low burnup?)

UO2 ⇒ U4O9 ⇒ U3O8

• Possible intermediate phases
• Grain-size dependence
• Arrhenius temperature 

dependence
• Resistance to further oxidation 

at lower temperatures (plateau 
behavior)

• Oxidation to U3O8 (O/M~2.70-
2.75) which is ~30% less dense

Note grain boundary oxidation and
fragment friability at UO2.41 (255°C)
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CHANGES TO FUEL DURING IRRADIATION
• Pellet cracking due to 

thermal cycling
• Grain growth towards 

pellet center
• Fission gas 

bubbles/diffusion to 
grain boundaries/gap

• Radiation (field, damage 
to crystal, thermal 
annealing)

• Densification then pellet 
swelling

• Oxygen potential 
dictates phase 
partitioning, but also 
diffusion limited
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SPENT FUEL ≠ UNIRRADIATED UO2

Burnup, MWd/kg M
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• UO2 with substitutional
and interstitial 
“impurities”

• Increase in oxygen 
potential with increasing 
burnup, but buffered by 
Mo and scavenging of O 
by Zr 

• Charge balance 
maintained by oxidation 
of U or loss of O

• Sintered UO2 behaves 
differently



BURNUP DEPENDENCE OF 
CSNF OXIDATION
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UO2 ⇒ UO2.4
t2.4 = k2.4 exp(Q24/RT)

where

t2.4 is the time to oxidize from UO2 to 
UO2.4 (h)

k2.4 is the pre-exponential factor for 
the UO2 to UO2.4 transition (h)

Nominal Case:  1.40×10-8

Bounding Case:  2.93×10-9

Q24 is the activation energy (105 kJ 
mol-1)

R is the universal gas constant 
(8.314 J mol-1 K-1)

and T is the temperature (K =273+T(°C)).

Minimal (if any) burnup dependence, 
mostly temperature and grain size.
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UO2.4 ⇒ UO2.75
t2.75 = k75 exp({Q75

0+α×Burnup}/RT)
t2.75 is the time to oxidize from UO2.4 to UO2.75 (h)

k75 is the pre-exponential factor for the UO2.4 to 
UO2.75 transition (h)

Nominal Case:  4.84×10-14

Bounding Case:  1.48×10-14

Q75
0 is the corresponding Arrhenius activation 

energy (150 kJ mol-1)

α=1.0 kJ mol-1 per MWd/kg M
(as high as 1.4 kJ mol-1)

Burnup is the local burnup of the sample 
(MWd/kg M)

R is the universal gas constant 
(8.314 J mol-1 K-1)

T is the temperature (K =273+T(°C)).

Figure 5.11.  Time to Oxidize LWR Fragments from UO2.45 to UO2.50 at 305°C
                      as a Function of Burnup  (Burnup from 137Cs Analysis)
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RESONANCE ABSORPTION ⇒ HBS

Figure 2.4.  Radial Profile of P lutonium in ATM-104 Fuel Measured by EPMA [69]
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Figure 2.5.  Radial Burnup Profile in ATM-104 Fuel w ith a Pellet Average 
                    Burnup of 44.3 M W d/kg M  Measured by EPMA [69]        
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CUMULATIVE ELEMENTAL YIELDS (%)
Element 235U 239Pu 241Pu 

Sr 9.35 3.45 2.52 

Y 4.82 1.69 1.22 

Zr 36.76 21.03 16.58 

Mo 24.47 22.96 19.92 

Tc 6.07 6.16 6.08 

Ru 11.44 17.83 20.04 

Rh 3.03 6.94 6.73 

Pd 1.60 15.79 22.44 

Cs 19.41 21.26 20.67 

Ba 12.90 12.86 13.31 

La 6.36 5.54 6.22 

Ce 12.05 10.31 10.48 

Nd 20.72 16.22 18.03 
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RELATIONSHIP OF OXIDATION TO HBS

• Formation of High Burnup 
Structure (HBS)
– Local burnup ~65 MWd/kg M
– Average burnup ~45 MWd/kg M
– Restructure of grains, change 

porosity characteristics

• If soluble dopants can delay 
or prevent the movement of 
the uranium planes in 
oxidation, can they delay or 
prevent the grain 
restructuring as well?
– Pinning of dislocation loops

• Related to lattice parameter?
Figures from Allen and Homes, Journal of 

Nuclear Materials 223(1995)231-237
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CRYSTAL LATTICE ENERGY

where 
A= Madelung constant
U = the equilibrium lattice energy
N = Avogadro’s number
r0 = the equilibrium distance

between ions
n = the Born exponent for ionic

repulsion.
• Madelung constant is a 

geometric factor to account for 
ionic attraction/repulsion from 
infinite series of nearest 
neighbor interactions

Ionic Radii from RD Shannon, Acta Cryst. A32(1976)751-767. 

Ion Ionic radius (pm) Ion Ionic radius (pm) 

Am3+ 109 O2− (IV) 138 

Ba2+ 142 Pr4+ 96 

Ce4+ 97 Pu4+ 96 

Cm3+ (VI) 97 Rb1+ 161 

Cs1+ 174 Sr2+ 126 

Eu3+ 106.6 U4+ 100 

Gd3+ 105.3 U5+ (VII) 84 

La3+ 116.0 U6+ 86 

Mo4+ (VI) 65.0 Y3+ 101.9 

Nd3+ 110.9 Zr4+ 84 

Np4+ 98 Sm3+ 107.9 
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PELLET FABRICATION (NERI)

Vacuum dry
at 100°C for

24 hours

⇒

Prepress pellets
at 83 MPa

Crush & sieve

Press at 500 MPa

⇓
Wet mill for 24 hours

Sinter for 24 hours
at 1570°C under
4% H2
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ISOTHERMAL TGA OF La-DOPED UO2 AT 325°C



20Brady Hanson, DOE/CEA Technical Meeting, 2/08/2005, dry oxidation.ppt

ISOTHERMAL TGA OF Gd-DOPED UO2 AT 325°C



21Brady Hanson, DOE/CEA Technical Meeting, 2/08/2005, dry oxidation.ppt

CHARGE BLOCKING EFFECT
• Non-uranium cations as 

substitutions in the U lattice act as 
net negative charges, making 
oxidation (and electron transfer) 
more difficult
– +2 and +3 are “negative” themselves 

and lead to oxidation of U to maintain 
charge balance

– +4 such as Pu and Zr are “negative” in 
that they will not/can not oxidize to 
higher states

– Each substitution affects its 8 nearest 
neighbor O2- and 12 nearest neighbor 
U ions (Madelung for fluorite)

– Each unit cell of UO2 or  U4O9 has 14 U 
ion clouds

At 10 wt% Gd2O3 doping ⇒ 14 at% Gd
⇒ 2 U in every unit cell have Gd as 
substitution and 2 U have oxidized to 
U5+ (or possible oxygen vacancy)
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CONCLUSIONS

• CSNF oxidation is 
primarily a function of
T, Burnup, grain size

• Higher burnup fuels 
show significant 
resistance to U3O8
formation

• Lattice energy, charge 
blocking and electron 
transfer effects

• What are the 
implications for 
dissolution rate?

Figures from Tennery and Godfrey, 
J Am. Cer. Soc. 56[3](1973)129-133
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