

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Review of Wilson data and synthesis tests

Presented to: DOE-CEA Technical Exchange Meeting

Presented by: Judah Friese Matthew Douglas Pacific Northwest National Laboratory

Tuesday, February 8, 2005 Las Vegas, NV

"Wilson Tests" Outline

Description of "Wilson Tests"

- Series 1
 - De-ionized water at room temperature
- Series 2
 - J-13 water at room temperature
- Series 3
 - J-13 water at 85°C and 25°C
- Radionuclide release limitation
 - Synthesis tests

"Wilson Tests"

Goal

- Measure radionuclide release from SNF with various defects in the cladding
- Cladding defects tested:
 - Bare fuel
 - 150 μ m wide slit 2 cm long
 - Two laser drilled holes \approx 200 μ m diameter
 - − One laser drilled hole \approx 200 µm diameter
- Sampling interval:
 - 1, 5, 15, 30, 60, 90, 120, 180, 240 days

•Total Measured Release as a Fraction of Inventory (10⁻⁵)

Component	Bare Fuel	Slit Defect	Holes Defect	Undefected
Uranium	28.0	0.078	< 0.041	< 0.018
239 Pu+ 240 Pu	28.0	0.341	0.069	0.027
²⁴¹ Am	21.7	0.208	< 0.030	< 0.011
²⁴⁴ Cm	30.0	0.76	0.039	0.008
²³⁷ Np	54	2.2		
137 Cs	300	142.1	85.6	0.041
⁹⁹ Tc	230	12.1	<6.7	

Conclusions

- U, Pu, Am, Cm release congruently under all conditions
- ²³⁷Np data was not good enough to determine congruent release
- Cs was rapidly released, with additional release from the grain boundary inventory
- ⁹⁹Tc released was one order of magnitude greater than the actinides in bare fuel tests
 - Three orders of magnitude in defected cladding tests

"Wilson Tests" Series 1 con't

- Uranium saturation occurred at 1 ppb
 - 18Å filtration removed U, Am and Cm from "solution"
- Grain boundary dissolution is the major source of release for ⁹⁹Tc
- Leaching behavior is influenced by mircostructural phenomena
 - Irradiation time
 - Temperature
 - Fission gas release

- 5 cycles
 - Test vessel emptied, acid striped before original fuel returned and test started again with fresh J-13 water
- Conclusions
 - Actinide concentrations reached steady-state rapidly in each cycle
 - Pu, Am and Cm concentrations are dependent on filtration

- Approximate actinide steady-state concentrations are:
 - U 4E-6 to 8E-6 M
 - Pu 8.8E-10 to 4.4E-9 M
 - Am 1.5E-10 M
 - Cm 2.6E-12 M
 - Np 2.4E-9 M
- Fission produced nuclides did not reach saturation
- Calcite and haiweeite were two secondary phases observed by XRD in the tests

- Three cycles at 85°C and 25°C
- Conclusions
 - Actinide concentrations reached steady-state levels in all cycles
 - Attributed to a steady-state between fuel dissolution and secondary-phase formation
 - Uranium-bearing secondary phases were found in significant amounts
 - Uranophane, haiweeite, soddyite
 - Lower actinide concentration in 85C tests attributed to faster kinetics for the formation of solubility-limiting secondary phases

- Pu, Am and Cm were filter dependent, Np was independent of filtration technique
- Fission products were continuously released, with ⁹⁰Sr the only nuclide measured that indicated its concentration was limited by solubility
- Test vessel corrosion occurred at 85C.
 - Uranium concentration dropped
 - Tc below detectable levels

Cycle behavior

Uranium Release from "Wilson Tests"

Uranium Release from Series 2 Tests

Uranium Release from Series 3 Tests

Other SNF data

Radionuclide incorporation into uranyl alteration phases

Isomorphous replacement by a foreign constituent in the structure of a U(VI) phase

Adapted from Burns, P.C. et al. (2003).

Synthesis of α -uranophane

Preparation from Nguyen et al., J. Chem. Thermodynamics, 24, 359-376 (1992)

Neptunium effect on color...

U(VI) silicate, 3000 μ g/g Np

U(VI) silicate, No Np

Morphologies of solids by SEM

Solution Np:U = 0.02, 6300 μ g/g Np in solid

Department of Energy • Office of Civilian Radioactive Waste Management JI Friese and M Douglas DOE-CEA Technical Exchange Meeting 02/08/05

No Np in synthesis

Neptunium in U(VI)-peroxides

Studtite: 6500 µg/g Np

Metastudtite: Dissolved U

Metastudtite: Dissolved Np

- Release of Np exceeds congruent dissolution of U
- Heterogeneity/particle-size of solids likely influence dissolution behavior
- Np does not appear to associate with the reprecipitated phase
- Uranyl peroxides appear to be stable in batch systems, without a H₂O₂ source
- While there is some evidence consistent with solid solution formation, other factors including poor crystallinity and amorphous phases may not reduce dissolved concentrations as expected

Acknowledgments

- PNNL's Yucca Mountain Project, US Department of Energy – Office of Civilian Radioactive Waste Management
- US DOE's Office of Science, Basic Energy Sciences Program
- NSF IGERT Grant DGE-9972817 to the Center for Multiphase Environmental Research at WSU

