

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Radionuclide Association with Alteration Phases

Source term release and transport phenomena

Presented to: DOE-CEA Technical Exchange Meeting

Presented by: Jeffrey A. Fortner Argonne National Laboratory

February 9, 2005 Las Vegas, NV

Objectives

- What is known about solid-state chemistry of trace radionuclides in a uranium-dominated system?
- Will sequestration of radionuclides reduce dissolved concentrations in the environment?
- Can one predict, from initial conditions of spent fuel in a repository, the retention of these radionuclides into alteration phases?

Structure of Spent Nuclear Fuel (SNF)

Mix of grains, grain boundaries, fission gas, and "gap" regions

Images courtesy Hanchung Tsai, Argonne National Lab

$SNF = UO_2 (\sim 98\%) + \sim 2\%$

Н																	Не
Li	Be											в	С	Ν	0	F	Ne
Na	Mg													Ρ	s	CI	Ar
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ва	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac															
				Се	Pr	Nd	Ρm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Department of Energy • Office of Civilian Radioactive Waste Management Jeffrey A. Fortner- DOE-CEA Technical Exchange Meeting, February 2005

Radionuclides in Fuel Alteration Phases

- Uranium oxide fuel in a waste repository is expected to behave analogously to natural uranium deposits
- However...man-made elements (Np, Tc, Pu, etc.) have few natural analogs.
 - What happens to the neptunium, plutonium, technetium as spent nuclear fuel corrodes?
 - Can laboratory measurements predict behavior over geologic scales of time and distance?

Alteration Phase Paragenesis

Department of Energy • Office of Civilian Radioactive Waste Management Jeffrey A. Fortner- DOE-CEA Technical Exchange Meeting, February 2005

Np Sequestration:Background

- <u>Burns et al. (1997)</u> noted similar crystal chemistry of neptunyl [Np(V)O₂⁺] and uranyl [U(VI)O₂⁺²] ions and hypothesized Np sequestration into U minerals.
- <u>Burns et al. (2004)</u> demonstrated Np incorporation into Nacompreignacite (Na₂[(UO₂)₃O₂(OH)₃]₂(H₂O)₇) and uranophane (Ca(UO₂)₂(SiO₃OH)₂(H₂O)₅) - but <u>not</u> meta-schoepite (UO₃·2H₂O) or β -(UO₂)(OH)₂.
- <u>Buck et al. (2004)</u> demonstrated Np incorporation for studtite $[(UO_2)(O_2)(H_2O)_2](H_2O)_2$ and uranophane.
- <u>Douglas *et al.* (2005)</u> added Np to *Na-boltwoodite* (Na(UO₂) (SiO₃OH) \cdot 1.5(H₂O)₅).
- Finch and Kropf (2004) documented Np substitution into α -U₃O₈ up to Np_{0.33}U_{2.67}O₈.
 - Role of charge balancing

Other evidence for Np in alteration phases

 Argonne unsaturated tests on oxide spent fuel released Np ~ congruently with U (which formed copious alteration phases)

Light and electron micrographs of corroded SNF

Pu enrichment in rind on corroded SNF

- Less-soluble Pu, Am, lanthanides, Zr, etc. retained in rind on fuel surface
- Described in detail by Buck et al., 2004
- Note surviving 5-metal ε-particles

Department of Energy • Office of Civilian Radioactive Waste Management Jeffrey A. Fortner- DOE-CEA Technical Exchange Meeting, February 2005

8

Trace element x-ray fluorescence spectroscopy at the Advanced Photon Source

Department of Energy • Office of Civilian Radioactive Waste Management Jeffrey A. Fortner- DOE-CEA Technical Exchange Meeting, February 2005

The Bent Laue X-ray Energy Analyzer

FIG. 1. A sketch of the "logarithmic bent Laue analyzer" concept.

Karanfil, L. D. Chapman, G. B. Bunker, Z. Zhong, R. Fischetti, C. U. Segre, and B. A. Bunker, 2001

Altered CSNF: Bent Laue Analyzer XRF

Fluorescence spectra from a fuel uranyl alteration phase using a conventional solid-state detector.

Note the large background at the Np fluorescence energy (13.945 keV) owing to the presence of copious uranium.

Fluorescence spectrum from a fuel uranyl alteration phase using the bent Laue analyzer.

Note the greatly improved resolution and background rejection at the Np-L₃ energy.

Upper limits on Np into Schoepite

Vapor-reacted fuel alteration phases

•Peak-to-peak error bars represent 1 part neptunium in 3000 parts uranium.

•Detailed analyses indicate that neptunium is present at less than 1 part in 5000.

Department of Energy • Office of Civilian Radioactive Waste Management Jeffrey A. Fortner- DOE-CEA Technical Exchange Meeting, February 2005

Np in corroded CSNFwith alteration products

(sodium/silicate) groundwaterreacted fuel with alteration phases. Still, very little (but not zero!) Np in altered region

Np XANES

www.ocrwm.doe.gov 13

Are ε-phase particles corroding?

Tc-bearing metal alloy particles

Scanning electron micrograph showing Mo- and Tc-rich ε particles concentrated on the surface of a corroded UO₂ fuel grain, with acicular uranium (VI) silicates nearby. The ε -particles have persisted 9 years of exposure to dripping groundwater, 90°C, 100% RH

Mo fluorescence

Mo and Tc EXAFS

Observations

- Np will likely be incorporated into uranyl alteration phases- *however*, Np(IV) in fuel may be stable at the CSNF corrosion potential.
 - Delayed onset of U/Np phase formation.
 - NpO₂ may be an estimator of dissolved concentration.
- Tc in metallic phases may likewise be slow to oxidize while fuel is intact.
- Pu and other sparingly soluble elements likely to form distinct phases.

Acknowledgements

- Jim Cunnane, Bob Finch, Jeremy Kropf, and the staff of MRCAT and the APS.
- Jeff Emery and Mark Clark for Hot Cell facilities work.

