

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Spent Nuclear Fuel: Research Needs

Presented to: Goldschmidt Conference

Presented by: **Rod Ewing & Mark Peters University of Michigan & Argonne National Laboratory**

May 22nd, 2005 Moscow, Idaho

Office of Science and Technology and International (OST&I)

Mission

" Provide advanced science and technology to continually enhance our understanding of the repository system and to reduce the cost and schedule for the OCRWM mission."

Office of Science and Technology and International (OST&I)

Major Elements

- **Targeted Thrusts**
- **Advanced Technology**
- **International Collaborations**

Office of Science and Technology and International (OST&I)

Targeted Thrusts

- **Natural Barriers**
- **Materials Performance**
- **Radionuclide "Getters"**
- Source Term

Importance of Spent Nuclear Fuel

Rationale

- Spent nuclear fuel is the major source (>95%) of the radioactivity
- At the longest times, the behavior of spent nuclear fuel will continue to control the release of the activity

Source Term Targeted Thrust of OST&I

Integration

Research program is focused on the changing conditions over time, identifying the critical processes within each time interval, and with attention to the *radionuclides* that are the major contributors to dose

Integration

- Time
- Critical Processes
- Radionuclide Inventories
- Pathways to Radionuclide Release

Source Term Targeted Thrust Critical Processes

- Kinetics of waste form corrosion
- Formation of secondary, alteration phases
- Sorption/reduction on the surfaces of near-field materials
- Formation and mobility of colloids

Radionuclides of Interest

²³⁸U, ²³⁴U, ²³³U,

²³⁹Pu, ²³⁷Np, ²⁴¹Am,

²²⁶Ra, ¹²⁹I, ⁹⁹Tc, ⁷⁹Se, and ³⁶Cl

(prior to breach of waste package)

Source Term Targeted Thrust (early waste package failure)

(waste package failure at longer times)

Pathway to Release for Actinides (²³⁷Np, ²³⁹Pu, ²⁴¹Am)

R. Ewing, Goldschmidt Conference, May 22, 2005

Pathway to Release for Fission Products (129I)

Source Term Targeted Thrust Research Areas

- **Objective enhance the understanding of the** release mechanisms of key radionuclides from spent nuclear fuel (SNF) and explore technical enhancements
- **Engineered materials and radionuclide** sequestration
 - Corrosion effects on chemistry and radionuclide release processes
- Secondary alteration phases
 - Effects of environment on the formation, evolution, and radionuclide incorporation
- Matrix dissolution
 - Oxidation and dissolution of SNF and evolution of surface conditions

Source Term Targeted Thrust Present Research Areas

- Sequestration of radionuclides (SNL, ANL, PNNL)
- Impact of secondary alteration phases of SNF on mobility of Np and Pu (Notre Dame)
- Deliquescence and decay heat effects on source term (ANL)
- **Dissolution mechanisms and rates (PNNL)**
- Chemistry and coordination structure of radionuclides (ANL)
- Corrosion of SNF: The long-term assessment (University of Michigan)

Source Term Targeted Thrust Solicitation for Proposals 2005

- Secondary alteration phases and radionuclide release
 - stability and thermochemistry
 - solubility
 - energetics of radionuclide incorporation
 - structural studies
 - sorption/desorption mechanisms
 - kinetics of precipitation and dissolution
- International source term programs for collaboration on understanding release of key radionuclides

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Recent Results

1307

Recent Advances

- **Crystal-chemistry and structure of Np-compounds (P. Burns at Notre Dame)**
- **Radiation effects in U⁶⁺-phases** (S. Utsunomiya at University of Michigan)

R. Ewing, Goldschmidt Conference, May 22, 2005

Crystal Chemistry of Np⁵⁺

$K_4[(NpO_2)(SO_4)_2]Cl$

Np⁵⁺ Crystal Chemistry

Unpublished

Alteration and oxidation of UO₂

R. Ewing, Goldschmidt Conference, May 22, 2005

SAED of the transition in various U⁶⁺-phases during Kr²⁺- irradiation at 25 °C

Department of Energy • Office of Civilian Radioactive Waste Management R. Ewing, Goldschmidt Conference, May 22, 2005 from liebigite

Boltwoodite under Kr²⁺ irradiation (1.4 dpa)

Department of Energy • Office of Civilian Radioactive Waste Management R. Ewing, Goldschmidt Conference, May 22, 2005

Radiation effects of U⁶⁺-phases

Cumulative dose in uranophane

T (year)	D_{α} (α -decay events/mg)	dpa
10,000	1.80E+13	0.00090
100,000	1.80E+14	0.0090
1,000,000 Dose contribution by 1	1.80E+15 wt% of ²³⁹ Pu (Pu/U=0.018	0.090 3)
T (year)	$D_{\alpha}(\alpha$ -decay events/mg)	dpa
10,000	6.30E+15	0.27
100,000	2.38E+16	1.01
1,000,000 Dose contribution by 0	2.54E+16 .02 wt% of Np (Np/U=0.00	1.08 0036)
T (year)	D _α (α-decay events/mg)	dpa
10,000	1.00E+13	0.00050
100,000	9.88E+13	0.0050
1,000,000	8.73E+14	0.044

Conclusions

U⁶⁺-phases with ²³⁹Pu (1 wt.%) may accumulate substantial radiation doses (~1.0 displacement per atom) during 100,000 years.

Under oxidizing conditions, multiple cycles of radiation-induced decomposition to UO₂ followed by alteration to U⁶⁺-phases may lead to the loss of incorporated radionuclides.

Extra Slides

Source Term Targeted Thrust (present activities)

