

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Oxygen Electro-reduction on C22 and C276 Nickel Metal Alloy

Stephen P. Rogers*, Dominic Gervasio Arizona State University, Tempe, AZ & Joe H. Payer Case Western Reserve University, Cleveland, OH

> 210th ECS Meeting Cancun, Mexico Nov. 1, 2006

Acknowledgement and Disclaimer

- Support of the Science and Technology Program of the Office of the Chief Scientist (OCS), Office of Civilian Radioactive Waste Management (OCRWM), U.S. Department of Energy (DOE) is gratefully acknowledged. The work was performed under the Corrosion and Materials Performance Cooperative, DOE Cooperative Agreement Number: DE-FC28-04RW12252.
- The views, opinions, findings, and conclusions or recommendations of authors expressed herein do not necessarily state or reflect those of the DOE/OCRWM/OCS.

Outline

- Objective: determine if O_2 is reduced on C22 and C276 in 1<u>M</u> KOH
- Materials and methods

 C22 and C276 surface preparation
 O₂ reduction by CPRM method: standardized to Au disc Au ring
 O₂ reduction by CPRM method for C22 and C276
- Estimate of rate constants for O₂ reduction on C22 and C276
- Future Research
 - FTIR of C22 and C276 surface oxides
 - O₂ reduction in presence of nitrates and chloride
- Additional Acknowledgments

Oxygen Electro-reduction on C22 and C276 Nickel Metal Alloy

- Project Objective:
 - To establish if O₂ reduction occurs on alloys C22 and C276 in aqueous alkaline electrolyte.
 - Determine conditions and extent (kinetics) of O₂ reduction on C22 and C276.
 - Determine the sustained O₂ reduction potential(s) on hastelloys in alkaline media
 - Identify products of O₂ reduction and their rates of formation
 - Provide experimental results in a form suitable for inputting to computational methods for predicting alloy corrosion processes
- Approach:
 - Measure electrochemical behavior of fresh and aged alloys in aqueous alkaline (KOH) electrolyte in the presence or absence of O₂, with and without additives (KNO₃, Cl-, particles) at various temperatures.
 - Voltammetry with electrode in still solution
 - Rotating ring-disc electrode (RRDE)
 - Electrochemical impedance spectroscopy (EIS)
 - Electrochemical Fourier Transform Infrared (Echem-FTIR)

Nickel Metal Alloy wt% Compositions

Alloy Designation	UNS#	С	Со	Cr	Cu	Fe	Mn	Мо	Ni	Ρ	S	Si	v	w
Hastelloy(R) C276	N10276	4e-3	1.45	15.74	n/a	5.58	0.50	15.53	57.55	0.008	0.003	0.02	0.163	3.45
Hastelloy(R) C22	N06022	4e-3	0.72	21.00	n/a	3.90	0.23	13.30	57.90	0.011	0.004	0.026	0.013	2.90
Hastelloy(R) C2000	N06200	1e-3	0.05	22.71	1.54	0.65	0.23	15.64	59.12	0.003	0.004	0.043	n/a	n/a

n/a – not reported on analysis certificate.

Approach

THE biodesign INSTITUTE

Center for Applied NanoBioscience

ARIZONA STATE UNIVERS

- Planarized electrode Allied HiTech 8" polishing table: wet 800, 1200, 2400 grit SiC; wet 5um, 3um, 0.5um alumina
- Mirror surface finish Hand • polishing fixture: wet felt 1um, 0.3um, and 0.05um alumina slurry
- Prior to Echem Random hand •

polish: wet felt 0.05um alumina slurry; rinse in 95% EtOH, then 18.2 M Ω H₂O

Apparatus:

- Pine rotator (in blue)
- Jacketed Pyrex 5-neck cell
- Configured with bridged SCE reference
- Spectroscopic graphite auxiliary electrode
- RRDE (Au ring, hastelloy disc)
- Sparging tube
- PAR VMP2 controller w/ ver. 9.13 software
- Circulating glycol-H₂O (thermostat control: ±1° C)

Department of Energy • Office of Civilian Radioactive Waste Management

The Cyclic Potential Ring Measurement (CPRM) Method

Center for Applied NanoBioscience

ARIZONA STATE

Rotating Ring Disc Electrode (RRDE) technique:

- Continuously cycle the ring over a small potential range for oxidation;
- Concurrently, step potentiostatically the disc in a range for reduction.

Reproducible, "clean" ring surface for quantitative ring electrode detection; background subtraction for low level detection, and does not underestimate the role of H_2O_2 production.

N. R. K. Vilambi and E. J. Taylor,

J. Electroanal. Chem., **270** (1989) 61-77; *Electrochemica Acta.,* **34**, no. 10, (1989) 1449-1454.

 Quantitative description of peroxide formation during oxygen reduction on Au and Pt in alkaline media.

D. Gervasio, J. H. Payer,

in *"Fundamental Understanding of Electrode Processes, in Memory of Professor Ernest B. Yeager"*, Proceeding of the Electrochemical Society, Orlando, FL, J. Prakash, D. Scherson, M. Enayetullah and In-Tae Bae, Editors, (2003) 58–70.

• Kinetics of oxygen electro-reduction on steel by CPRM in alkaline media were investigated.

Cyclic Voltammetry Potential Range Surveys for CPRM Method

(Ar de-aerated 1M KOH @ 30° C, pH = 14, 500mV/s scan rate, 4900 rpm, 6^{th} cycle)

- Little to no slope around 0 mA shows good RRDE configuration.
- C22 & C276 have very similar responses w/ C276 having less metal oxide formation and reduction than C22.

www.ocrwm.doe.gov

THE biodesign INSTITUTE

Center for Applied NanoBioscience

Cyclic Potential Ring Measurement (CPRM) Method – Timing for Au-Au RRDE

THE DIODESIGN INSTITUTE

www.ocrwm.doe.gov g

Department of Energy • Office of Civilian Radioactive Waste Management

Cyclic Potential Ring Measurement (CPRM) Method Series Reduction of O_2 on Au in 1<u>M</u> KOH @ 30° C, pH = 14

Department of Energy • Office of Civilian Radioactive Waste Management

www.ocrwm.doe.gov 10

Cyclic Potential Ring Measurement (CPRM) Method for O₂ Reduction to H₂O₂ in 1<u>M</u> KOH @ 30° C, pH = 14 **Levich Plots**

• As the rotation rate increase, the limiting currents increase linearly with the square root of the rotational speed in accordance with Levich's equation.

Cyclic Potential Ring Measurement (CPRM) Method for O₂ Reduction to H₂O₂ in 1<u>M</u> KOH @ 30° C, pH = 14

 Our CPRM experiment repeats Vilambi's findings of 100% current collection in the potential range (-0.4V to -0.8V) for the first reduction in the series mechanism for O_2 on Au, and validates our methodology.

Cyclic Potential Ring Measurement (CPRM) Method – Timing for Au-Ni RRDE

Au ring potential cycled from -0.25V to 0.7V at 500mV/s;

www.ocrwm.doe.gov 13

Cyclic Potential Ring Measurement (CPRM) Method

Series Reduction of O_2 on Hastelloys in 1<u>M</u> KOH @ 30° C, pH = 14

THE DIODESIGN INSTITUTE

• A difference of ~0.1 V for H_2O_2 formation between C22 & C276.

www.ocrwm.doe.gov 14

Cyclic Potential Ring Measurement (CPRM) Method C276 Ni; 1<u>M</u> KOH @ 30° C, pH = 14; 2500 rpm

0.2 Au Ring Current, i_{o2} - i_{Ar} (mA) (current averaged from 0.5V - 0.6V Disc currents on C276 in 1M KOH on 14th cycle; scan: -0.25V to 0.7V @ 500mv/s) equilibrated with: • Ar. 0.1 • O₂, • H₂O₂ under Ar •O₂ reduction occurs in two waves 0 (-0.5 to -1; -1 to -1.4); **Disc Current (mA)** • H₂O₂ reduction occurs in one wave Disc Current in O -1 (-1 to -1.4); Disc Current in Ar Disc Current w/ 16mM H O Indicates a 2-step series reduction path for O_2 reduction to H_2O : -2 • first: $O_2 \rightarrow H_2O_2$ • second: $H_2O_2 \rightarrow H_2O$. -3 -1.6 -1.2 -0.8 -0.4 0 **Disc Potential (V vs. SCE)**

Department of Energy • Office of Civilian Radioactive Waste Management

Rate Constant Evaluation

THE biodesign INSTITUTE Estimated Rate constants for O₂ Reduction on C22 & C276 in 1M KOH @ 30° C; pH =14

Center for Applied NanoBioscience

 Assuming a series mechanism; & •Using CPRM disc data & the relations $j_{kinetic} = j_L j/(j_L - j)$, $j_{kinetic} = k_{exp}n[O_2]$.

• The estimated rate constants for H_2O_2 , k_2 , and H_2O_1 , k_3 , formation are greater for C276 than C22 for the same potential.

 Standardized and calibrated RRDE approach for O₂ reduction kinetics on hastelloy discs using the CPRM method of Vilambi & Taylor that used Au ring – Au disc;

• Oxygen reduction on C22 & C276 in alkaline water to peroxide onsets at about -0.6V; continues to -1.4V; maximizes at -1.1V (on C22) and -1.0V (on C276) vs. SCE;

- The $H_2O_2 \rightarrow H_2O$ onset at -1V vs. SCE; the limiting H_2O_2 current was ill-defined due to overlap with H_2 generation at more negative potentials;
- Estimated rate constants, k_2 and k_3 , from CPRM data for:

		<u>C22</u>	C276		
$i) O_2 \rightarrow H_2O_2$	@ -0.7V	0.001	0.013	(cm/s)	
<i>ii</i>) $H_2O_2 \rightarrow H_2O$	@ -1.2V	0.193	0.232	(cm/s)	

EChem-FTIR

THE biodesign INSTITUTE ARIZONA STATE UNIVERSI **Center for Applied NanoBioscience**

Luggin tip

Additional Acknowledgements

Design and fabrication assistance on the EChem-FTIR cell was provided by scientific glassware designer **Janice Kyle**, Dept. of Chemistry & Biochemistry at Arizona State University and by Sr. designer & instrument maker **Zoltan Farkas**, Dept. of Physics at Arizona State University.

