

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Modeling the Effects of Crevice Former, Particulates, and the Evolving Surface Profile in Crevice Corrosion

Presented at:

Critical Factors in Localized Corrosion 5: Symposium in Honor of Hugh S. Isaacs The 210th Meeting of the Electrochemical Society

Presented by: Arun S. Agarwal, U. Landau, Xi Shan and J. H. Payer Case Western Reserve University

November 1, 2006 Cancún, Mexico

Acknowledgement and Disclaimer

 Support of the Science and Technology Program of the Office of the Chief Scientist (OCS), Office of Civilian Radioactive Waste Management (OCRWM), U.S. Department of Energy (DOE) is gratefully acknowledged. The work was performed under the Corrosion and Materials Performance Cooperative, DOE Cooperative Agreement Number: DE-FC28-04RW12252.

 The views, opinions, findings, and conclusions or recommendations of authors expressed herein do not necessarily state or reflect those of the DOE/OCRWM/OCS.

Crevice Corrosion

Crevice corrosion may occur in restricted regions due to transport limitations, followed by a build-up of a highly corrosive **chemistry**, capable of dissolving the metal. The dissolution rate is potential-dependent.

Critical Solution Chemistry within a Crevice

- Active corrosion starts at a "critical" distance within the crevice
- Anodic current produced by this electrode length (X) is small
- Majority of current along X is produced at the corroding site

Department of Energy • Office of Civilian Radioactive Waste Management A. S. Agarwal_ECS_210 Meeting_10/01/06.ppt

OBJECTIVES

Model the **OHMIC** (IR) effects on current & potential distributions:

1. Crevice former irregularities (protrusions) and metal roughness

Crevice Former Irregularities and Metal Roughness

- Roughness on crevice former/ metal substrate ~ order of crevice gap (G_a) .
- Narrow passages along the rough surface \rightarrow resistance to current flow & high IR
- GOAL: An equivalent smooth crevice accounting for roughness in terms of a modified crevice gap (G_a)

Department of Energy • Office of Civilian Radioactive Waste Management A. S. Agarwal_ECS_210 Meeting_10/01/06.ppt

Constriction Factor Accounting for Roughness

porosity (ε) and the constriction factor (τ).

Department of Energy • Office of Civilian Radioactive Waste Management A. S. Agarwal_ECS_210 Meeting_10/01/06.ppt

www.ocrwm.doe.gov

Decoupled Anode Model

Sample Calculations

Critical Parameters Evaluated:

- 1. Effect of constriction (ζ)
- 2. Length, X = 10*G_a, 100*G_a
- 3. Total anodic current
- 4. Conductivity

Constriction factor analysis adequately accounts for roughness effects

Another Sample Calculation

Constriction factor (τ) analysis adequately accounts for roughness effects

Other Complex Systems can be Analyzed

OBJECTIVES

Model the **OHMIC** (IR) effects on current & potential distributions:

1. Crevice former irregularities (protrusions) and metal roughness

Effect of Particles Under Crevice Former

Increase in vol. fraction of particles decreases κ_{eff} , which increases the ohmic resistance and lowers the anode current

Conductivity Adjustment Accounting for Particles Under Crevice Former

Equivalent conductivity reasonably accounts for particulates.

www.ocrwm.doe.gov 14

OBJECTIVES

Model the **OHMIC** (IR) effects on current & potential distributions:

1. Crevice former irregularities (protrusions) and metal roughness

Effect of Particulates (Corrosion Products)

Corrosion products (crevice corrosion tests):

- Fine particulates (~microns)
- Loosely attached to base metal
- Consist of metal oxides (inert)

Probable effects of solid corrosion products:

- Increase ohmic resistance to corrosion of underlying metal
- Affect the corrosion evolution profile
- Form a tighter crevice gap

Increase in Corrosion Products would further increase the ohmic drop

Schematic: Probable Anode Evolution with Solid Corrosion Products

Conductivity Adjustment to Account for Particles in Corroding Site

- The particles are uniformly distributed in the solution within the corroding pit
 - Solution conductivity within the pit is calculated using Bruggeman's Equation

A. S. Agarwal_ECS_210 Meeting_10/01/06.ppt

Effect of Increasing Corrosion Product Volume ($\downarrow \kappa_{eff}$)

Substantial decrease in κ_{eff} with increase in solid product volume causes:

- A <u>tear-shaped</u> corroded region
- Corrosion propagates preferentially towards the crevice mouth

A. S. Agarwal_ECS_210 Meeting_10/01/06.ppt

Comparison: With and Without Particulates

<u>Without</u> Particles: No Conductivity Variations $(\kappa = constant)$

A. S. Agarwal_ECS_210 Meeting_10/01/06.ppt

Effect of Corrosion Products on Crevice Damage Evolution

Applying lower values of κ_{eff} pertaining to longer time of corrosion:

 Substantial corrosion occurs towards the crevice mouth

Wagner No. Analysis of the Evolving Shape based on Conductivity Effects

" "

 R_a, η_a

80

1500

1250

1000

750

500

250

0

Wa [number]

- Wa > 1 → R_a dominant → symmetrical propagation
- Wa < 1 → R_Ω dominant → tear-shape, towards Crevice Mouth
 - As corrosion proceeds:
 - Wagner No. decreases with κ_{eff} due to more corrosion product formation
 - Shift from symmetrical to non- symmetrical propagation of corroding site towards crevice mouth

 $\Phi_{
m particles}$

95

%I

То

99

%

Crevice

Mouth

Evidence for Presence of Solid Oxides

Preliminary Analysis: EDS of C-22 corrosion product

SUMMARY

- OHMIC (IR) effects on current & potential distributions were modeled.
- 1. Roughness elements accounted for in equivalent system \rightarrow

Constriction Factor (τ) **Analysis**

Conductivity correction using Bruggeman's equation.

3. Solid corrosion products at corroding site decreases effective conductivity \rightarrow

Conductivity effects shown to propagate corroding site towards crevice mouth

