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Local Electrochemical Processes
• Local electrochemical processes differ 

significantly from global process averaged 
over entire surfaces.

• Many methods exist to probe local processes:
– Scanning or localized EIS
– Scanning vibrating probe
– Multi-Electrode Arrays
– Scanning electrochemical microscopy



Motivation for Using Coupled 
Electrode Arrays

• High throughput
• Enhanced understanding of corrosion mechanisms

– Triggering of corrosion modes by others
– Cooperative spreading of corrosion
– Spatial resolution and distribution (local anodes and 

cathodes)
– Conditions for persistent anode development
– Interrogation of electrochemical properties at specific 

locations

• Monitoring in field 



Coupled Multi-Electrode Arrays
• Constructed from nominally identical electrodes or a 

combination of different materials to simulate 
compositional and structural heterogeneous surfaces.  
(i.e., Al-Cu)

• Allow temporal and spatial measurements of 
electrochemical processes simultaneously

• Far Spaced MEAs – Allow high throughput 
experiments
– Eliminates variations in test environment

• Close spaced MEAs - Simulates a planar electrode
– Electrodes close enough to allow chemical and 

electrochemical coupling of electrodes
• Embedded Sensor MEAs – monitor behavior of 

corrosion on a planar electrode surface.

1 cm

Cooper et. al. CORROSION/2006 (2006)



Far Spaced Electrodes: High Throughput Testing
• Materials have a statistical distribution 

of flaws that control electrochemical 
properties (i.e., pitting potential).  
Causes distribution in Epit.  

• High throughput testing elucidates 
information about different portions of 
the underlying microstructure. 
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Potential Coupling
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Φ=Ohmic potential (V)
Φo=Maximum ohmic potential (V)
ξ=Distance from center of disk, in 
elliptical coordinates (cm)
η=Second elliptical coordinate (in this case 
= 0)
r = Normalized distance from center of 
disk (cm)
I=Total current from disk (A)
K=Solution conductivity (Ω-1-cm-1)
ro=Radius of electrode (cm)

Potential Coupling through 
electrolyte phase through ohmic
potential fields

EApplied/Measured = EInterface+VOhmic

The Ohmic Potential can be predicted using 
Newman’s solution:

J. Newman JECS. (1966)



Chemical Coupling 
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Regions in the vicinity of electrochemically 
active sites where hydrolysis occurs.
Chemical gradients predicted by Carslaw and 
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Where: 
Cr = concentration at a distance r from the pit mouth 
(Moles/l)
Cpit = concentration inside the pit (Moles/l)
a = radius of the pit (cm)
r = radial distance away from the pit mouth (cm)
erfc = complementary error function
D = diffusion coefficient of the diffusion ion (cm2/s)
t = time (seconds) 

H. S. Carslaw and J. C. Jaeger (1978) 



∑∑ = CathodicAnodic II

atPotentiostCE
Cathodic

Applied
Cathodic

Applied
Anodic III _+= ∑∑

atcPotentiostCE
Cathodic

CathodeNet
Cathodic

AnodeNet
Cathodic

CathodeNet
Anodic

AnodeNet
Anodic IIIII _____ ++=+ ∑∑∑∑

∑∑∑ =+ Applied
Anodic

CathodeNet
Anodic

AnodeNet
Anodic III __

∑∑∑ =+ Applied
Cathodic

CathodeNet
Cathodic

AnodeNet
Cathodic III __

atPotentiostCE
Cathodic

CathodeNet
Anodic

CathodeNet
Cathodic

AnodeNet
Cathodic

AnodeNet
Anodic IIIII _____ )()( +−=− ∑ ∑∑∑

Current Distributions on Coupled Electrode 
Array Surfaces

For any electrochemical system

For an anodically
polarized system

On each electrode element the measuring ZRA either measures a net anode 
or net cathode.  However, local anodes and cathodes are possible.

A portion of the anodic and 
cathodic current come from both 
the net anode and net cathode.

Where:

The net current for each wire, either net anodic or net cathodic, is what is 
measure by the ZRA.  



Interplay between Water Chemistry and 
Electrochemical Properties if Copper

Study the fundamental mechanism of copper pitting, elucidate  electrochemical 
properties as a function of: chlorine, aluminum, pH, sulfate, chloride, susceptible v.s. 
unsusceptible waters etc.
Circumstantial evidence of susceptible water chemistries emerging but not firmly linked 
to key electrochemical properties associated with pitting;
High PH: from pH = 8 to somewhere below PH = 10;
High Chlorine (5 ppm) and High Aluminum (2 ppm Al-Al(OH)3)   accelerate copper 
pitting by synergistic reactions that cause  potential rise and accelerated chlorine 
reduction.

Marshall, 2004Marshall, 2004

Need: Investigate the spatial development of persistent or switching local 
anodes as a function of water chemistry. 



Development of Local Anodes

Close packed array was set up in flat 
cell to simulate the vertical inside of 
copper pipe. 2 ppm Al-Al(OH)3 was 
added in synthetic water, and pH was 
adjusted to 9.2. Starting from 0 ppm, 
Cl2 was increased by 1 ppm per day to 
5 ppm by adding NaClO solution into 
test water.

Uniform passive dissolutionUniform passive dissolution



pH = 9 Synthetic Water, 2 ppm Al-Al(OH)3 added

pH = 9 Synthetic Water, No Aluminum added
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Critical line: Potential: 100 mV (vs. SCE) (solid line); Current density: 40 μA/cm2 > 20 mpy (i.e. 200 mpy) (dash line)



Chlorinated Synthetic Water (3 ppm Cl2), 2 ppm Al-Al(OH)3

Chlorinated Synthetic Water (3 ppm Cl2), No Aluminum added
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Critical line: Potential: 100 mV (vs. SCE) (solid line); Current density: 40 μA/cm2 > 20 mpy (i.e. 200 mpy) (dash line)
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No Aluminum in synthetic water

[Cl2] 
(ppm)

pH = 6 pH = 7 pH = 8 pH = 9

5 0 2 2 4

4 9 1 4 4

3 0 0 19 4

2 4 2 21 7

1 0 0 0 0

0 0 0 0 0

2 ppm Aluminum in synthetic water

[Cl2] 
(ppm)

pH = 6 pH = 7 pH = 8 pH = 9

5 0 4 9 11

4 3 2 7 26

3 5 13 24 83

2 0 10 19 0

1 0 2 0 0

0 0 0 0 0

Criterion: 
The current density measured on a single wire exceeded 40 μA/cm2 (20 mpy) at least once during the test;
If 1/10th of area pitted, then >200 mpy

Number of Wires with Pitting Events Greater than 40 μA/cm2

A rapid lab screening method?A rapid lab screening method?

Conditions for Pit Initiation IdentifiedConditions for Pit Initiation Identified



Multi-Crevice Assembly vs. MEA
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• The array is flush-mounted in a metallic rod 
of the same material, resulting in a metallic 
surface-volume ratio similar to that of MCA 

• Array provides detailed spatial-temporal 
resolution, important as crevice corrosion 
behavior is very dependant on position

• Easier study of effects on initiation and 
propagation of some factors such as: 
proximate cathode, limited cathode and semi-
permeable crevice former

Crevice former

Sample

Solution

a.

Crevice former
Solution

Metalb.

Ni-Cr-Mo or Fe-Cr-Mo Electrodes

MCA

MEA

10-100 μm

< 100 μm 



Bold 
area

Crevice 
region

Without proximate 
cathode

With proximate cathode
-400 mVSCE on external wires

-25 mVSCE

0 mVSCE

25 mVSCE

125 mVSCE

150 mVSCE

2.10-4 A.cm-2-2.10-4 A.cm-2 0

← Crevice ← Crevice

Crevice mouth

Crevice Corrosion & Proximate Cathode

• Setup (316 SS Array) 0.6 M 
NaCl; aerated; 50oC; 25 in-lbs 
torque

• 2 days at OCP; 25 mV/day 
increments up to 150 mVSCE; 
Initiation at 125 mVSCE.

• Outside wires at -400 mVSCE

Proximate limited cathode inhibits crevice corrosion initiation, in 
the case of a thin film solution.



Distance From Crevice Mouth (mm)
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Crevice Corrosion Analysis

• From Faraday’s Law:

With EW316SS = 25.4
and ρ316SS = 7.87
• The charge is derived from 

the net current. Close to the 
crevice mouth, the cathodic 
current part will be minimal

• The derived depth of attack 
profile evolution is in 
agreement with the IR drop 
model
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Proximate Cathode: Zone of Attack

Time

Initiation 125 mVSCE

Propagation 150 mVSCE
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The proximate cathode, 
located outside the crevice 
mouth inhibits crevice 
corrosion from forming close 
to the mouth opening.  Deep 
within the crevice mouth 
crevice corrosion initiates 
and propagates towards the 
mouth.   

Crevice Mouth



Rebar Corrosion in Concrete: Background

*After: K. Tuutti, Corrosion of Steel in Concrete. Swedish Cement and 
Concrete Research Institute: Stockholm. p. 18,51, 1982.

ti = concrete quality, 
alloy composition

tp = alloy quality, corrosivity 
environment, electrochemical
conditions
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Xcrit:   The critical depth of corrosion attack required 
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rebar interface to crack the surrounding concrete
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Time



Corrosion Propagation: Impact on Concrete Structures

xcrit = Corrosion Depth Required to Damage Concrete
• Degree of localization impacts 

concrete cracking
– For carbon steel an empirical 

relationship has been found*
• Effect of new rebar alloys

– Higher aspect ratio corrosion 
morphology

– Unique metal-to-oxide 
conversion rate

– MEA’s utilized to study 
anode length of new rebar 
alloys developed during 
lateral growth of corrosion 
damage

*A.A. Torres-Acosta and A.A. Sagues. Concrete Cover 
Cracking with Localized Corrosion of Reinforcing Steel. In 5th

CANMET/ACI. 2000. Barcelona: ACI Intl.
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Corrosion Propagation: Lateral Spreading
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Corrosion Propagation: Simulated Clad Rebar

•An MEA was constructed 
to simulate a “defective”
Stainless Steel clad over 
carbon steel rebar

•Can corrosion at the 
breech propagate to the 
clad layer?
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Spreading of Intergranular Corrosion by 
Cooperative Interactions

Sensitized Grain Boundaries

Oxide

Sensitized Grain Boundaries

Oxide

Aggressive Species Enhancement (Enhance)

Persistent Surface Damage (Enhance)

Ohmic Potential Shielding (Enhance)

• The triggering of intergranular
corrosion on sensitized 
stainless steels from pitting 
sites.

• Self propagating growth of 
accumulated IGC damage 
across electrode surfaces.



Initiation of IGC From Localized Pitting

• EFlade increases with decreasing [Cr].
• EFlade increases with decreasing pH.
• G.B. with lowest [Cr] most susceptible to 

initiation and continued growth. 
Ohmic potential can be generated in solution originating from pits or from 
grain boundaries that are undergoing IGC.
Ohmic potential can cause the applied potential on surrounding surface to 
drop from a passive potential into an active range   

(Basiouny ,1976)

(Basiouny ,1976)
(Osozawa,1966)



Pits trigger IGC on sensitized stainless steel
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• Sensitized 304 (1030oC 1 hour and 621oC 48 Hrs) in
0.06 M HCl 60oC

• Induced interaction experiments: Rows 1 and 2 (1 
VSCE) and remaining electrodes (-0.29 VSCE)



Measured Accumulated IGC Damage
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• Visually observed accumulated 

damage matches current and charge 
measured with MEA.

• Damage spreads with time beyond 
predicted region of accumulated 
damage by ohmic potential drop-
solution enhancement 
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Separation of Cooperative Interaction Mechanisms

• From previous experiments involving pitting 
corrosion it was found that concentration fields 
had significant affects within 3-4 wire diameters.  
In the unstirred case these wires are farther away 
then 3-4 rows thus concentration fields are 
supplied by wires that are undergoing IGC.  This 
implies that IGC can be autocatalytic under certain 
conditions.  
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• Ohmic Potential Drop
• Solution Enhancement

With Stirring
• Ohmic Potential Drop



Predicted Regions of IGC From Ohmic Potential
• Using Newman’s solution for a disk in an insulator we can 

predict the ohmic potential drop produced by active pitting.  
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• Assume that an array is a radial slice of this 
model.

• Using these equations, some experimental 
values, and potentiodynamic curves the region 
of IGC damage can be predicted.

Predicted Region of IGC

I = 1.25 A/cm2

K=0.027 ohm-1cm-1

Vohmic
EInterface=Eapplied-Vohmic



Conclusions
• MEAs enable the study of water chemistry conditions for initiation of local persistent anodes 

compared to those that favor uniform dissolution.
– Synthetic water containing 2 ppm aluminum shows a specific set of conditions where pit 

initiation occurs 
– Interrogation of local anodes and cathodes possible

• MEAs enables study of crevice corrosion initiation and propagation with unprecedented 
fidelity

– Sites of initiation
– Propagation rates
– Damage morphology
– Role of proximate cathodes, unconventional crevices

• MEAs enable the determination of anode lengths for different high performance rebar 
materials caused by the propagation and growth characteristics of the material.  The lateral 
growth behavior of these materials is crucial to material performance in concrete and 
monitored in real-time using MEAs.

• Pitting corrosion can trigger IGC on stainless steels through ohmic potential shielding and 
localized solution enhancement.  Lateral growth of IGC can self propagate across electrode 
surfaces.

– Material parameters controlling the spreading of IGC can be investigated
– Physical and environmental parameters can also be investigated
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