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Aims of the researchAims of the research

-to acquire localized corrosion kinetic maps for a series 
of NiCrMo alloys that display current density versus 
potential and local chemistry (dissolved cation
concentration and associated chloride concentration)

-to understand the form of these maps and the 
underlying processes involved, including any 
similarities to or differences from stainless steels

(in further work) 

-to measure and understand the effect of adding nitrate 
ions.



4

The main tool: The artificial pit techniqueThe main tool: The artificial pit technique

(shows room-temperature version of the mounting resin –
high-temperature resin used for 90oC experiments)

Working electrode is dissolved anodically
to create an artificial pit [crevice] cavity
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Merits of the artificial pit techniqueMerits of the artificial pit technique
Simple coulometry gives the cavity depth (diffusion length).

The cavity grows under anodic diffusion control at oxidizing 
potentials and in the active (film-free) state at lower potentials.

The diffusion-controlled region gives the product D.csat directly for 
the dissolving cations, where csat is the solubility of the salt, such as 
NiCl2 , that limits the current, and D the diffusivity of the dissolving 
cations.

Unsteady-state experiments and associated modeling can give D 
separately, and thence i vs. c (c < csat) at various E: thus producing 
a complete kinetic map for a particular alloy system, including the 
range of currents and potentials that are relevant to crevice 
corrosion in practice.
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Materials used in this studyMaterials used in this study

Ni-22Cr-xMo, swaged and drawn to 125 μm (typically) 
wire [DOE Ames Lab]

x  =  0, 3, 6, 9 and 13

Other alloys with W addition to be studied later

Electrolytes this talk – 1M NaCl only

other ongoing work – NaCl + NaNO3

bulk and thin-layer

90oC
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Diffusion controlled growth shows 
little or no effect of alloyed Mo

Diffusion controlled growth shows 
little or no effect of alloyed Mo
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Diffusion-controlled growth (continued)Diffusion-controlled growth (continued)
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Fast potentiodynamic backscans give the 
dissolution kinetics in a nearly saturated pit solution

Fast potentiodynamic backscans give the 
dissolution kinetics in a nearly saturated pit solution
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Slow backscans show repassivation at i  ~ 0.3-0.6 ilim
- allows pit surface chemistry to follow current

Slow backscans show repassivation at i  ~ 0.3-0.6 ilim
- allows pit surface chemistry to follow current
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Impedance measurement allows IR correction of 
the fast backscans, showing Tafel behavior

Impedance measurement allows IR correction of 
the fast backscans, showing Tafel behavior
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Comparison of Ni-22Cr-3Mo and 316SS
in fast backscan experiments

Comparison of Ni-22Cr-3Mo and 316SS
in fast backscan experiments
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Limited data for the 13Mo alloy indicate 
that its behavior may be subtly different
Limited data for the 13Mo alloy indicate 
that its behavior may be subtly different
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Conclusions from the basic 
electrochemical kinetic study
Conclusions from the basic 

electrochemical kinetic study
Mo ennobles anodic dissolution of Ni-22Cr similarly to 
its effect in stainless steels.

There are detailed differences in dissolution kinetics.

Creating an active cavity is much more difficult at 13Mo 
than at 9Mo – there are indications that the 13Mo alloy 
forms a resistive porous corrosion product - but more 
work is required on this topic.
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Kinetics in diluted cavity solutionsKinetics in diluted cavity solutions
The use of thin wires and shallow cavities formerly precluded 
measurements on artificial pit electrodes at corrosion rates relevant 
to crevice corrosion.

Now modern low-noise potentiostats enable kinetics to be 
determined over 5 orders of magnitude in anodic current density 
and in very short experiments.

These measurements are conducted in an unsteady state: (1) obtain 
the diffusion-controlled condition at high potential; (2) drop the 
potential to the crevice corrosion range; (3) measure current density 
versus time as the electrode first dissolves actively, then 
passivates.

A finite difference diffusion model is used to obtain anodic current 
density (i) as a function of concentration of dissolving cations (c) -
the separate determination of cation diffusivity D will not be 
discussed here.
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Current transients for pits of different depths
after stepping the potential down from the limiting current region

Current transients for pits of different depths
after stepping the potential down from the limiting current region
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Differences in peak height reflect mildly time-dependent dissolution kinetics.
Not clear whether the apparent easier passivation of 316SS is a real effect.
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Time to peak current versus (depth)2Time to peak current versus (depth)2
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Approach to the determination of i vs c using the finite 
difference model (separate determination of D not discussed)

Approach to the determination of i vs c using the finite 
difference model (separate determination of D not discussed)
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The program accommodates the actual variation of i with t.
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ConclusionsConclusions
The effect of alloyed Mo on localized dissolution kinetics is broadly 
similar for NiCrMo alloys and stainless steels, but with differences 
in electrochemical quantities such as corrosion potential, corrosion 
current density and ease of repassivation.
Between 9 and 13% Mo an unusual ohmic behavior appears that 
may be due to solids in the cavity, but this requires further work.
A transient technique has been developed that enables rapid 
determination of a complete ‘localized dissolution kinetics’ map.
Time-dependent dissolution kinetics require more research, but are 
also well revealed by the artificial pit technique. At present these 
effects appear to be mild (less than a factor of 3). The 13Mo alloy 
may have a more important degree of time-dependent behavior than 
the other NiCrMo alloys.
The artificial pit technique has been extended to the range of 
crevice corrosion conditions that pertain for NiCrMo alloys in high 
temperature chloride solutions.
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