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IntroductionIntroduction
Corrosion is a primary determinant of waste package performance 
at the proposed Yucca Mountain Repository 

The most likely degradation process 
Controls the delay time for radionuclide transport from the waste 
package 
Determines when packages will be penetrated and the shape size and 
distribution of those penetrations

In this presentation a framework for the analysis of localized 
corrosion is presented and demonstrated for a scenario

Water chemistry of mixed salt solutions (sodium chloride-potassium 
nitrate)
Time-temperature-relative humidity profiles for a hot, mid and cool 
temperature waste package 
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Methodology for Determination 
of Materials Performance

Methodology for Determination 
of Materials Performance

Materials performance at the proposed Yucca Mountain Repository 
is amenable to a familiar and effective analytical methodology

Widely accepted in the energy, transportation and other industries 

Three components comprise the analysis
Definition of the performance requirements
Determination of the operating conditions to which materials will be 
exposed
Selection of materials of construction that perform well in those 
conditions 

A special feature of the proposed Repository is the extremely long 
time frame of interest, i.e. 10,000’s of years and longer 

Time evolution of the environment in contact with waste package 
surfaces
Time evolution of corrosion damage that may result
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The Proposed Yucca Mountain RepositoryThe Proposed Yucca Mountain Repository
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The Proposed Yucca Mountain RepositoryThe Proposed Yucca Mountain Repository

Proposed Repository is 
about 300 m below the 
surface and 300 m above 
the water table 
Unsaturated zone, i.e. 
fractures and pores in rock 
are partially filled with water
Desert area with about 18 
cm of rain per year 
Atmospheric pressure
Ambient waters are dilute 
and near neutral pH
Concentrated waters can 
form by condensation, 
deliquescence and 
evaporation
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Proposed Emplacement DriftProposed Emplacement Drift
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Background on Ni-Cr-Mo AlloysBackground on Ni-Cr-Mo Alloys
Alloy 22 belongs to a family of Ni-Cr-Mo alloys

Earlier alloys include C-276 and C-4 and later alloys include 
Inconel 686, Alloy 59, Hastelloy C-2000 and MAT-21
Alloy 22 (N06022) is a solid solution of Ni, Cr, Mo and W as the
main alloying elements
Cr-Mo-W in Alloy 22 act synergistically to provide resistance to 
localized corrosion such as crevice corrosion

Large industrial equipment in service for many years in 
harsh environments without corrosion

Alloy 22 has great toughness and over 50% elongation before 
failure
Can be hot or cold formed and is weldable by many methods 
Can be fabricated into large structures and components



J. Payer-ANS IHLRWM Conference, Las Vegas, NV, April 30-May 4, 2006                                                     
9

Corrosion Resistance is Crucial to 
Waste Package Performance

Corrosion Resistance is Crucial to 
Waste Package Performance

16,000 to 160,000 years to 
penetrate the thickness of one 
U.S. quarter for a corrosion rate 
of 0.1 to 0.01 μm/yr

Radionuclides are fully isolated if 
there are no penetrations

Even penetrated package can limit 
radionuclide movement

Corrosion rates of passive metals 
are extremely low 

Realistic rates are less than 1 μm/yr 
(a millionth of a meter per year) and 
much less
Alloy 22 layer is 2-cm thick (a stack 
of 12 U.S. quarters)

Corrosion rates of approximately 
0.01 μm/year are measured in 
exposures of over 5-years at the 
Long Term Test Facility at Lawrence 
Livermore National Laboratory
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Attributes of the Proposed Yucca Mountain 
Repository

Attributes of the Proposed Yucca Mountain 
Repository

Seepage 
(Post-thermal Barrier)

Deliquescence

One long, slow heating/cooling 
cycle  

Packages cool to ambient over 
several thousands of years

Waste packages on support 
pallets

No immersion in waters

No moving parts
Low heat fluxes, slow heating 
and cooling, and modest thermal 
gradients
Radiation effects at waste 
package surface negligible after 
a few hundred years
Limited amount of water moving 
through the rock
Limited salts and minerals 
carried into drifts by incoming 
water and dust
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Relevant Time Periods for CorrosionRelevant Time Periods for Corrosion
I - Emplacement of waste 
packages and preclosure

Start to Year 50

II - Heat Up after closure
Year 50 to ~65

III - Cool down/Thermal 
Barrier (drift wall above 
boiling temperature)

Year ~65 to 750

IV - Cool Down/Dripping and 
Seepage Possible

Year 750 to 1375

V - Waste Packages below Critical Temp 
for Corrosion

Year 1375 and beyond

Periods are determined by 
Temperature-RH conditions
Time when drift wall reaches 96°C  
Critical  Corrosion Temp for Alloy 22

This scenario is for Temp-RH shown 
above 

Waste Package at 101°C when Drift 
Wall cooled to 96°C
Critical Corrosion Temp 90°C



J. Payer-ANS IHLRWM Conference, Las Vegas, NV, April 30-May 4, 2006                                                     
12

Period IV-Dripping and Seepage PossiblePeriod IV-Dripping and Seepage Possible

When drift wall is below boiling 
temperature (96°C), dripping/seepage 
can occur 
Dripping/seepage can contact waste 
package surface 

Where both capillary barrier and 
drip shield are inoperative
And dripping location is in aligned 
with drip shield penetration

When these conditions are met
If waste package temperature 
above critical corrosion 
temperature 
Then follow decision-tree analysis 
for local corrosion damage 
evolution

Drift wall is below boiling at year 750
Waste Package at 101°C
Relative humidity 65%

Waste Package is at 90°C at year 1375
Relative Humidity 84%
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Period IV Conditions for Mid, Hot and Cool 
Waste Packages

Period IV Conditions for Mid, Hot and Cool 
Waste Packages
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High Temperature Waste Package
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Low Temperature Waste Package
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Chemical Divide Processes Determine the 
Categories of Waters

Chemical Divide Processes Determine the 
Categories of Waters

Ambient Waters:
Dilute solutions
Na-Ca-Mg-HCO3-CO3-Cl-NO3-SO4

Near neutral pH

Waters can be concentrated 
Modified during movement 
Thermal-chemical processes

Modifications on waste package 
surface
Chemical and electrochemical 
processes
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Solution Chemistry PrinciplesSolution Chemistry Principles
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Constraints on Water Compositions for 
Sodium and Potassium Salts

Constraints on Water Compositions for 
Sodium and Potassium Salts
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Water Chemistry Scenarios for Waste PackageWater Chemistry Scenarios for Waste Package

T-RH Profiles Related to Brine Solution Compositions for 
Sodium and Potassium Base Salts
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Period IV Analysis of T-RH-Solution CompositionPeriod IV Analysis of T-RH-Solution Composition

The Temp-RH at any time fixes the 
possible waters. Can follow the 
trajectory with timeDrift wall 96°C at 750 years; 

Waste Package at 101°C;
Relative Humidity 65% 

Critical Corrosion Temp 90°C
at year 1375; Relative Humidity 85%

Number of non-corrosive solutions; 
Sodium chloride with low nitrate 
solutions can be corrosive
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Decision-Tree AnalysisDecision-Tree Analysis
A decision-tree for localized corrosion 

Are environments and crevices present to induce 
localized corrosion?

Consider conditions in moist layers of particulate and 
deposits 

If localized corrosion initiates, will it persist?
Consider stifling and arrest processes as the 
corrosion proceeds

What amount of metal penetration occurs?
What is the size and distribution of corrosion sites?
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Decision-Tree AnalysisDecision-Tree Analysis

A decision-tree for localized corrosion 
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SummarySummary
Presented a framework for the analysis of localized corrosion
Demonstrated the analysis for a scenario

Water chemistry of mixed salt solutions
Time-temperature-relative humidity profiles for waste packages

Localized corrosion on waste packages is restricted to finite time 
periods

Corrosion conditions at key time periods in proposed Repository
Corrosion analysis during period IV-cool down/dripping and seepage 

Decision-tree analysis for corrosion damage evolution
For those time periods when localized corrosion can be supported
Based upon the temperature and possible water chemistries
Apply decision-tree analysis to determine the evolution of corrosion 
damage


