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@ Crevice corrosion modeling has often focused on
estimation of initiation time and critical chemistry

> e.g., Oldfield and Sutton, Postlethwaite et. al., Watson,
Sharland, Gartland, Alkire et al.

@ Propagation models have been developed for pitting
> e.g. Laycock and White

@ Propagation models for crevice corrosion are less
common

> Walton, et. al., Garland, Sridhar
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@ |nvestigate conditions under which an initiated crevice
can remain stable

@ Quantify the total anodic current that a crevice
requires under a given set of conditions

> Total current provices insights into the stability of
localized corrosion when coupled to an external
cathode

> Current distribution allows calculation of spatial
distribution of damage
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Agoroach

@ Potential and current
distributions were

computationally modeled

o Effects of
> relevant kinetic parameters I — I
. ) net LC
> physiochemical parameters
> Gap LN
Electrolyte thin film
>> Emouth " T

>>lonic strength effects on
pH and conductivity

Crevice Mouth

>> Internal Cathodic 56 (held at E,,) e

Reaction ,
Wetted surfacethe cathode . within crevice—the anodel

ol

@ Material: 316L Stainless
Steel(SS)

@ Post initiation, focuses on
maintaining aggressive
conditions
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Sikere)iliinymen:
@ Crevice Geometry

> Gap, Length Stable

@ Potential at mouth
> E

@ Dependence of anodic
Kinetics on pH and
lonic strength

mouth — Erp or Emouth>Erp

Unstable

Current from crevice

Time

@ Presence of cathodic
reactions inside
crevice
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@ Consideration of important species
@ First-order evaluation of physiochemical properties

> Effect of ionic strength on conductivity (x) and pH
from literature

@ Hydrolysis of Cr3*t assumed to control [H*]
@ Analyze SS316L based on published data
> Anode kinetic parameters as f(pH)

@ Transport modes: diffusion and migration
Complex reaction system:

Cr 2 Cr3*+3e anodic reaction
Fe - Fe2*+2e anodic reaction
Ni = Ni¢t+2e anodic reaction

Hydrogen Evolution Reaction cathodic reaction
Cr3* +yH,0 =Cr(OH),*Y +yH* Cr hydrolysis

{@i OST:l y=12.3.4)




Base Case

@ Neutral pH bulk solution maintained at the mouth

@ SS 316L, 25 C, initially filled with Critical Crevice
Solution (CCYS)

> CCS: pHO0.75, [CI]=5 M, [Cr*3]=1 M
@ Anode kinetics controlled by pH

@ pH evolution controlled by Cr3* hydrolysis

@ lonic strength affects hydrogen activity (y,,) and
therefore pH

> Effects on anode kinetics and conductivity

@ Cathodic reaction with Bc = 100 mV/dec, if present
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Anocle Kinetics as i(or))

-0.25 —pH0.01

-0.35 - /

0.4 - —pH 3

——pH 0.75

-0.45 . T T T
0.00001 0.001 0.1 10 1000 100000

(oﬁ OST:l

SOEWA CHfics of Saence and Technolooy aond Internotions]

log i (A/m?)




le)glieSitrainiclin) Affecis orl ancl CopjelifeiiAny

Abstractions Used Were Fits to Experimental Data
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If 1> 12, correction = A(I=12)/A(1) 200F  x AIy - (Edworas) (Ref. 20)
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lonic strength |
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Fit line to subset of data used by Gartland
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STANIANGNETEVICES

E=-0.19 V(SCE)
L=3cm
g = 1.2 micron

0.0007

0.0002

Current
(Normalized to 1 cm wide) A

No ApH 0.25
No K(I)
—i— — - —m

0 100 200 300 400 500 600 700 800 900
Time (sec)




0.0009

[REesiliiss

Iy e ()2 10e
A = E

0.0008 4

0.0007 4

0.0006 4

0.0005 4

0.0004 4

0.0003

Current
(Normalized to 1 cm wide) A

0.0002 4

0.0001 4

0 T

E=-0.19 V(SCE)
L=3cm

g = 1.2 micron
pH 7 outside
ApH 0.25

k(D)

0 100

200 300 400 500 600 700 800
Time (sec)

1.E+02
1.E+01
<~
£
< LE+00 f
> time
D
% 1.E-01 ] —04s
e time —4s
C S
® 1E02 10s
= —200s
O —500s
1.E-03 —600s
1.E'04 T T <5 T r r v rrr v r T r T
900 0 0.005 0.01 0.015 0.02 0.025 0.03

Distance (m)

Near crevice mouth passivates, deeper parts corrode faster with time

2 OST:l

SOEWA CHfics of Saence and Technolooy aond Internotions]




=ffect of Gac

0.0009 0.0009
< | <
~ 0.0008 1.2 um - 0.0008
O E=-0.19 V(SCE) 2
> 0.0007 A L=3cm > 0.0007 -
o g = 1.2 micron S 10 pm
o 0.0006 pH 7 outside o 0.0006 -
Tg ApH 0.25 'g 7 um
S £ 0.0005 k(D) S = 0.0005 -
X X 3
— 0.0004 ~ 0.0004 -
@) o O =
J 0.0003 S 0.0003 4 1.2pm
= N
'S 0.0002 A ‘T 0.0002 -
£ £
2 0.0001 4 g 0.0001 A
0 L L O L] L] L L]
0 1000 2000 3000 0.1 1 10 100 1000 10000
Time (sec) Time (sec)

» Crevice passivates with larger gaps
* Minimum crevice gap required for stable crevice growth

foi OST:l

B e ———



REPESSIVANGRNSESOINENINES

AENEEIRE EIEN TN EHNIIENSEVICE

10
] E=-0.19 V(SCE)
i L=3cm Time (sec)
- g =7 micron 04
8 - pH 7 outside '
S ApH 0.25 —10
= .
< - K(I -
< ] D 40
> 6 4 —80
% : — 800
ST | — 850
= 4- \\
3 . 1000
=R 1100
@) .
2 - — 2500
O T v T v T =
0 0.002 0.004 0.006 0.008 0.01

Distance (m)




=ijzer of lritarnal Cainocijic Hazieijen

0.0008

0.0007 -

0.0006 -

0.0005 -

0.0004 -
L=3cm
. , g = 1.2 micron
0.0003 Rxns In Crevice) oH 7 outside
ApH 0.25
0.0002 k(D)

0.0001 A

Current (Normalized to 1 cm width) A

Base + Cathodic Rxns In Crevice

0 T - - —M
0 100 200 300 400 500 600 700
Time (sec)

Production of OH- inside crevice prevents stabilization




=fiact of CoghWwar =

[AoOLEs

_owerrinralMmpurstitstannizesrarE

0.0009
0.0008 - L=3cm
g = 1.2 micron
i pH 7 outside
0.0007 ApH 0.25
0.0006{ KD

0.0005 -

0.0004 - E=-0.35 V(SCE)
mouth

Current
(Normalized to 1 cm wide) A

0.0003
E=-0.19 V(SCE)
mouth
0.0002 -
0.0001 -
O L) I I I I
0 100 200 300 400 500 600

Time (sec)

OST | E,,=-0.35 V(SCE) For this case
f@i &

5 Fa e [ r— Jowe rsotionol




Craizy AUrIts ir) ife Basargap

@ Not dealing with precipitation

@ Engineering abstraction for effects of ionic
strength

> Simple effects on kinetics
@ Simplified anodic kinetics — active/limiting |
@ No evolution of geometry

@ Numerical stability iIssues arise occasionally
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@ SS 316L, room temperature, initially CCS
> CCS:pHOA4,[CI]=5M,[Cr]=1M
@ Anode kinetics controlled by pH (Model 2)

Q ﬁc = 40 mV/dec instead of 100 mV/dec
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Conclusions

@ Approach to stability calculation demostrated to be useful.
> Post initiation, focuses on maintaining aggressive conditons

@ Using abstractions of key parameters from experimental data,
reasonable predictions can be made regarding effects of:

> lonic strength (pH dependence of kinetics)
> Crevice Gap
> Cathodic reaction within crevice
@ Effect of ionic strength on pH is critical to stabilization

> Need lower pH due to high ionic strength to keep dissolution
high
@ Internal cathodic reaction inhibits stabilization under most
conditions

@ Crevice stabilization could occur with reduced cathodic reactions or
when cathodic reaction is suppressed inside the crevice
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