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The objective of this work is the mining of existing 
experimental databases on metals and alloys to predict the 
corrosion resistance and behavior of metals and alloys 
over extended periods of time.  The data mining is aimed 
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at establishing the conditions under which certain 
parameter sets (i.e. pH, temperature, time of exposure, 
electrolyte composition, metal composition, 5.00E+02 
metallographic characteristics, etc) may impact the alloy’s 
localized resistance characteristics.  The data mining 
results will allow us to categorize and prioritize those 
parameters for which the alloy may be at risk of general 
and/or localized corrosion attacks.  It will also help us to 
understand, along with the information gained through 
theoretical models, the synergetic effects of those 
variables on electrochemical potentials and corrosion 
rates (i.e. pitting, crack, and crevice growth rates).  To 
accomplish the objective, corrosion-related data on 
corrosion allowable, as well as corrosion resistive, alloys 
was collected for both DC and AC corrosion experiments 
from studies of general and localized corrosion. 
Collected data was transformed according to the corrosion 
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Fig. 1. Prediction of maximum pit depth in the study of 
crevice corrosion damage function for grade-2 titanium. 
NN_predict1: predicted Dmax for 7.7 years, 
NN_predict2: predicted Dmax for 235x106 years. 

0.00000 

Expt -0.20000 
NN 

failure modes and variables.  The transformed data was 
x=4, HCl checked for consistency and missing values and cleansed, 

as per requirements.  Data from multiple experiments, 
figures and tables that represent the same corrosion 
variables were integrated into a single database for further 
analysis.  Neural Network (NN) Backpropagation method 
was used to fit a preliminary model to the collected 
(mostly experimental) data.  NN models were tested on 
available experimental data on corrosion allowable alloys 
to predict the life of the metals/alloys.  NN models were 
also used to predict future corrosion rates for user­
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Fig. 2. Polarization curve for Fe68Ni14-xMoxSi2B16 metallic 
glasses for x=4 in 1N HCl. The Neural Network (NN) is 
validated with a test data set. 

specified conditions and time frames. 
This work is part of a multi-university Corrosion 
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Fig. 4 Prediction of Corrosion Rate using NN for Carbon 
and Alloy Steel under a single environmental condition. 
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