

DOE NETL Workshop on Carbon Sequestration Science May 22-24, 2001, Pittsburgh, PA, USA

World CO₂ Emissions from the Consumption of Fossil Fuels during 1980-1997 (in Million Metric Tons of Carbon)

World Regions	1980	1985	1990	1995	1997.0
North America	1484.2	1439.0	1561.4	1643.9	1725.8
Central and South America	173.0	167.8	187.4	226.1	242.5
Western Europe	1022.1	979.3	1011.2	957.8	990.2
Eastern Europe & F ormer	r 1111.4	1233.4	1297.9	878.1	851.8
U.S.S.R.					
Middle East	137.2	162.8	200.8	248.1	264.0
Africa	145.7	173.1	198.4	226.0	236.4
Far East and Oceania	977.2	1157.4	1429.9	1813.4	1921.1
World Total	5050.8	5312.8	5886.9	5993.4	6231.7

Sources: DOE, EIA, 1998, 1999

U.S. CO₂ Emissions from Different Sectors (Million Metric Tons of Carbon)

CO2 Emissions Sources	1980	1985	1990	1995	1997
CO2 from Residential Sector	248.4	245.8	253.1	270.3	286.5
CO2 from Commercial Sector	178.3	189.7	206.8	217.9	237.2
CO2 from Industrial Sector	484.6	424.7	454.1	465	482.9
CO2 from Transportation Sector	378.1	384.4	432.1	458.5	473.1
CO2 from End-Use Total	1289.4	1244.6	1346.1	1411.7	1479.6
CO2 from Electric Utilities*	418.4	439	476.9	495.3	523.4

*Electric Utility emissions are distributed across end-use sectors.

Sources: DOE, EIA, 1998, 1999

U.S. CO₂ Emission from Electricity-Generating Units (Million Metric Tons of Carbon)

CO2 Emissions Sources	1990	1995	1997
Coal-Fired Units at Electric Utilities	409.9	434.3	471.3
Petroleum-Fired Units at Electric Utilities	25.3	13.0	15.0
Gas-Fired Units at Electric Utilities	39.2	44.5	36.0
Other Units at Electric Utilities	1.2	0.8	1.0
Emissions at Electric Utilities, Total	475.5	492.7	523.4
Cool Fine dilloite of Nonestilities	17.0	24.6	05.2
Coal-Fired Units at Nonutilities	17.8	24.6	25.3
Petroleum-Fired Units at Nonutilities	4.3	7.3	7.4
Gas-Fired Units at Nonutilities	39.2	57.6	53.2
Other Units at Nonutilities	37.4	45.9	48.4
Emissions at Nonutilities, Total	98.7	135.5	134.4
CO2 from Coal Fired Units Total	1977	158 0	196.6
CO2 from Dataloum Fined Units, Total	427.7	400.9	490.0
CO2 from Petroleum-Fired Units, Total	29.0	20.5	22.4
CO2 from Gas-Fired Units, Total	78.4	102.1	89.3
CO2 from Other Units, Total	38.5	46.8	49.4
Total CO2 Emissions from Generators	574.2	628.1	657.7

Sources: DOE, EIA, 1998, 1999

1990-1999 U.S. GHG Emissions

(Million Metric Tons Carbon Equivalent)

Gas	1990	1995	1997	1999-P
Carbon Dioxide	1,351	1,435	1,505	1,527
Methane	182	179	172	165
Nitrous Oxide	99	106	104	103
HFCs, PFCs, and SF6	24	29	35	38
Total	1,655	1,748	1,816	1,833

Source: AER, EIA, U.S. DOE, October 31, 2000. Note: Carbon Equivalent based on global warming potential.

GHG Control & Related Areas

Objectives of CO₂ Conversion & Utilization

Use CO_2 for environmentally-benign physical and chemical processing

Use CO₂ to produce industrially useful chemicals and materials

Use CO_2 to recover energy and reduce its emission to the atmosphere

Use CO₂ recycling to conserve carbon resources for sustainable development

CS/PSU/NETL 5/01

Critical R&D Issues of CO₂ Conversion & Utilization

To make use of CO_2 based on the unique physical or chemical properties of CO_2

To produce useful chemicals and materials using CO₂ as a reactant or feedstock

To replace a hazardous or less-effective substance in existing processes with CO_2 as an alternate medium or solvent or co-reactant or a combination of them

To use CO₂ for energy recovery while reducing its emissions to the atmosphere by sequestration

To recycle CO₂ as C-source for chemicals and fuels

To convert CO₂ under geologic-formation conditions into "new fossil" energies

Source: C. Song. Am. CS/PSU/NETL 5/01 Chem. Soc. Symp. Ser., 2001

Barriers & Challenges for Promoting CO₂ Conv & Uilization

Costs of CO₂ capture, separation, purification, and transportation to user site.

Energy requirements of CO_2 chemical conversion (plus source & cost of H_2 if involved).

Market size limitations, and lack of investment-incentives for CO_2 -based chemicals.

Socio-economical driving forces do not facilitate enhanced CO_2 utilization.

CS/PSU/NETL 5/01

Chemical Processes for CO₂ Conv

Source: C. Song. Am. Chem. Soc. Symp. Ser., 2001

Strategies for CO₂ Conversion & Utilization

Select concentrated CO₂ sources for CO₂ capture; aim for on-site/nearby uses if possible.

Convert CO₂ along with other co-reactants into industrially useful chemical products.

Take value-added approaches for CO₂ sequestration coupled with utilization.

Fix CO₂ into environmentally-benign organic polymer materials or inorganic materials.

Use CO₂ to replace a hazardous or less-effective substance in existing chemical processes for making products with significant volumes.

Source: C. Song. Am. Chem. Soc. Symp. Ser., 2001

Chemical Synthesis Using CO₂ Synthesis of Dimethyl Carbonate (Phosgene Substitution)

Conventional Route (SNPE, 1970s): $COCl_2 + 2 CH_3OH = CH_3OCOOCH_3 + 2 HCl$ $CO + Cl_2 = COCl_2$ (Phosgene)

New DMC Process by EniChem – 12000 tons/Yr CO + 1/2 O₂ + 2 CH₃OH = CH₃OCOOCH₃ + H₂O

New Ube Chemical Process -3000 tons/Yr CO + 2 RONO = ROC(O)OR + 2 NO

New CO₂-Based Route

 $CO_2 + 2 CH_3OH = CH_3OCOOCH_3 + H_2O$

3: DMC from methanol and CO2.

Source: Aresta, M.; Dibenedetto, A.; Tommasi, I. Energy & Fuels, 2001, 15, 269.

CO₂ Reforming of CH₄ $CH_4 + CO_2 = 2 CO + 2 H_2$ Endothermic, $\Delta H = 247$ KJ/mole Being Widely Studied Worldwide Requires 20% more energy than SMR $[CH_4 + H_2O = 2CO + 2H_2]$ **Problems with CO₂ Reforming of CH₄** Severe carbon formation, especially at HP by TEOM, prevents its commercial development. Low H₂/CO ratios limit its large-scale application for F-T & MeOH synthesis.

Some Reviews on Chemical Conversion

Aresta, M.; Dibenedetto, A.; Tommasi, I. <u>Developing Innovative</u> <u>Synthetic Technologies of Industrial Relevance Based on Carbon</u> <u>Dioxide as Raw Material</u>. Energy & Fuels, 15: 269-273, 2001.

Halmann, M. M.; Steinberg, M. <u>Greenhouse Gas Carbon Dioxide</u> <u>Mitigation: Science and Technology</u>. Lewis Publishers, Boca Raton, Fl, 1999, 568 pp.

Aresta M. <u>Perspectives of Carbon Dioxide Utilisation in the Synthesis of</u> <u>Chemicals. Coupling Chemistry with Biotechnology.</u> STUD SURF SCI CATAL 114: 65-76, 1998

Arakawa H. <u>Research and Development on New Synthetic Routes for</u> <u>Basic Chemicals by Catalytic Hydrogenation of CO2</u>. STUD SURF SCI CATAL 114: 19-30, 1998

Audus H; Oonk H. <u>An Assessment Procedure for Chemical Utilisation</u> <u>Schemes Intended to Reduce CO2 Emissions to Atmosphere</u>. ENERG CONV MANAGE 38: S409-S414 Suppl. S 1997

Chemical Conversion and Utilization of CO₂ [Some Recent ACS Symps on Chemical Aspects]

Am. Chem. Soc. Symp. on "<u>Greenhouse Gas Control and Utilization</u>" (Cocahirs: C. Song, M. Aresta, and K. Y. Lee), ACS Spring 2001 National Meeting in San Diego, Published in Am. Chem. Soc. Div. Fuel. Chem. Prepr., 2001, Vol. 46, No. 1.

Am. Chem. Soc. Symp. on "<u>CO₂ Conversion and Utilization</u>" (Co-chairs:
C. Song, A. M. Gaffney, and K. Fujimoto), ACS Spring 2000 National
Meeting in San Francisco, Published in Am. Chem. Soc. Div. Petrol. Chem.
Prepr., 2000, Vol. 45, No. 1.

Energy & Fuels April 2001 "<u>CO₂ Capture, Utilization and Sequestration</u>" (Co-chairs: R. M. Enick and R. P. warzinski) 2001, Vol. 15, No. 2.

Proceedings of International Conference on Carbon Dioxide Utilization (1991- Nagoya, Japan; 1993-Bari, Italy; 1995-Oklahoma, US; 1997-Kyoto, Japan;

US Market for CO₂-Based Chemicals & Materials & Hypothetical Upper Limit of Future Demand

Chemicals & Materials	1999 U.S. Production ^a	Metric Tons (Tonnes)
Synthetic Plastics:	80,727 millions of lb	36,650,058
Synthetic Fibers	10,219 millions lb	4,639,426
Synthetic Rubbers	2,414 thousands of metric tons	2,414,000
	1. Polymers Subtotal (1999) =	37,584,996 as C
		43,703,484 as Comp
Ammonia (reference for urea)	14,972 thousands of tons	13,579,604
Urea for fertilizer	5,453 thousands of tons	4,945,871
Urea for chemicals (1999) ^{a,b}	18,660 millions of lb ^b	8,471,640
Urea for chemicals (1994) ^c	15.90 billions of lb (7,952 thousands of tons)	7,218,600
	2. Urea-equivalent $CO_2(1999) =$	2,686,185 as C
		9,839,508 as CO ₂
Methanol for chemicals	12.18 billions of lb	5,529,720
(1994) ^C		
	3. MeOH-Equivalent CO ₂ (1999) ^f	2,428,590 as C
		8,895,937 as CO ₂
$CO_2 - Liquid + Solid (1994)^{c,d}$	11.80 billions of lb (5,899 thousands	5,357,200
	of tons)	
	4. Lig+Sol CO ₂ (1999) ^e	1,711,143 as C
		6,267,924 as CO ₂
Ultimate U.S. CO ₂ demand for	Total US Potential (1+2+3+4) =	44.4 MMT as C
chemicals & materials		162.8 MMT as CO ₂
Ultimate world CO ₂ demand	Estimated for World Potential	177.6 MMT as C
for chemicals & materials		651.3 MMT as CO ₂

Source: C. Song. Am. Chem. Soc. Symp. Ser., 2001

Role of CO₂ in Chemical Conversion

Source of Carbon for Industrial Chemicals Fixation CO₂ as Monomer in Polymer Materials Source of Active "Oxygen" Co-reactant for Reforming of Hydrocarbons Gasifying Agent for Coal and Coke Mild Oxidant for Chemical Reactions Reaction Medium & Ratant in SC-CO₂ **Replace** Acids for Neutralizing Alkaline Wastes **Replace** Acids for Neutralizing Alkaline Wastes For Mineral Carbonation & Carbonates CO₂ for New "Fossil" in Geologic Formations [Besides beverage, and biomass]

U.S. Transportation Fuels Market & Hypothetical Upper Limit of US Demand for CO₂-Based Fuels

U.S. Fuels	1999 Daily	1999 Annual	Total Annual	C-Equivalent of
	Production ^a	Production	Production ^b	Annual Prod ^C
	Million barrels	Million	Million Metric	Million Metric
	per day	barrels per	Tons (Tonnes)	Tons (Tonnes)
		Year		
Gasoline	8.38	3058.7	354.8	301.6
Distillate	3.55	1295.8	171.0	145.4
Fuels (Diesel,				
etc)				
Jet Fuel	1.67	609.6	77.4	65.8
	Total = 13.60		Subtotal =	512.8
	[12.75 in			
	transportation]			
			1997 US Electric	523.4 as C
			Utilities Annual	
			CO ₂ Emissions	

Source: C. Song. Am. Chem. Soc. Symp. Ser., 2001

*Source: C. Song, <u>Chemical Innovation</u>, 2001, 31, 212-26.

Challenges of Using CO₂ in Flue Gases from Power Plants

Flue gases from power plants contain O $_2$, H $_2$ O, in addition to CO $_2$ and inert N $_2$ and other components.

Separation of CO $_2$ from flue gases is an expensive operation.

CO₂ separation accounts for 2/3 of the cost for carbon sequestration according to DOE. Other issues concerning CO₂ separation

The carbon price required to reduce U.S. energy-related carbon emissions ranges from \$67 to \$348 per metric ton in 2010 (1996 dollars)

Source: Impacts of the Kyoto Protocol on U.S. Energy Markets and Economic Activity, EIA, US DOE, Oct 1998.

Idea for CO₂-Based Tri-generation of Chemicals, Fuels, and Electricity

Can we design a chemical system where the expensive CO $_2$ pre-separation from flue gases is not necessary?

Can we use the CO₂ in flue gas along with H₂O and O2 directly for producing industrial useful products?

Is it possible to use waste heat in power plants for CO₂ conversion?

[Endothermic]	(1)
[Endothermic]	(2)
[Exothermic]	(3)
[Exothermic]	(4)
	[Endothermic] [Endothermic] [Exothermic] [Exothermic]

Energetics of CO₂ Conv into Syngas

 $CO_2 + CH_4 = 2 CO + 2 H_2$

 $\mathrm{CO}_2 + \mathrm{H}_2 = \mathrm{CO} + \mathrm{H}_2\mathrm{O}$

 $CH_4 + H_2O = CO + 3 H_2$

 $CH_4 = C + 2 H_2$

 $2 \text{ CO} = \text{C} + \text{CO}_2$

 $CH_4 + 0.5 O_2 = CO + 2 H_2$

 $C + H_2O = CO + H_2$

 $CH_4 + 2 O_2 = CO_2 + 2 H_2O$

 $\Delta H^0 = -35.5 \text{ kJ/mol}$ (6)

 $\Delta H^0 = 247 \text{ kJ/mol}$

 $\Delta H^0 = -41 \text{ kJ/mol}$

 $\Delta H^0 = 206 \text{ kJ/mol}$

 $\Delta H^0 = 75 \text{ kJ/mol}$

 $\Delta H^0 = -172 \text{ kJ/mol}$

(1)

(2)

(3)

(4)

(5)

 $\Delta H^0 = 131 \text{ kJ/mol} \qquad (7)$

 $\Delta H^0 = -802.3 \text{ kJ/mol} (8)$

W. Pan, C. Song. Calculations on energetics under various conditions, to be published in 2001

Conceptual Flow of Proposed Tri-Reforming Process Using CO₂ in Flue Gas

Tri-reforming Reactor System at PSU

Tri-reforming: Experimental Work

(Tri-reforming of CH₄ at 850 °C and 1 atm over Haldor-Topsoe R67 catalyst)

*Source: C. Song, Chemical Innovation, 2001, 31, 212-26.

Comparison of Catalysts Used after Tri-reforming and CO₂ Reforming

Photo of used Haldor-Topsoe R67 catalyst after CO₂ reforming, steam methane reforming and tri-reforming at 1 atm and 850 °C

Advantages of Proposed Tri-reforming

- **E** Direct use of CO_2 in waste flue gases of power plants without CO_2 separation and purification.
- **L** Taking advantage of H_2O and O_2 impurities in flue gases, for more energy efficient reforming.
- Produces synthesis gas with desired H₂/CO ratios (1 ~ 2) that are difficult to achieve by conventional SMR. ["Imported CO₂" is needed in industry].
- **E** Eliminate or largely reduce coke formation, common in dry reforming, by using O₂ and H₂O.
- **Ł** Proactive/advantageous use of greenhouse gas.
- **Ł** New process concept for large-scale syngas prod.
- L Challenges: catalyst, process, E, feed+prod, etc. CS/PSU/NETL 5/01

Advantages of Proposed Tri-Generation

- u Start with synthesis gas from tri-reforming of natural gas using flue gas of power plants.
- u Synthesis of chemicals such as alcohol, acetic acid, ether, olefins, and hydrogen, etc.
- u Production of ultra-clean hydrocarbon fuels by
 Fischer-Tropsch method; production of
 oxygenated fuels such as alcohols and ethers.
- u Additional generatin of electricity, by using syngas, hydrogen, and waste heat, by gas turbine generator, fuel cells, and others.
- u Challenges: paradigm shift; ind. boundaries; E aspects; processing aspects

CS/PSU/NETL 5/01

Critical Research Issues on Tri-reforming

Feasibility as a new process concept for syngas production

Catalyst formulation for enhanced CO₂ conversion in the presence of oxygen

Energy and low-temp heat management, and inert gas (N_2) management

System integration incorporating gas processing and utilization

CS/PSU/NETL 5/01

Acknowledgments

AER, IEO, MER, EIA-WWW, Energy Information Administration, U.S. Department of Energy (DOE)

CDIAC World Data Center, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, DOE

Coworkers at Applied Catalysis in Energy Laboratory, The Energy Institute, Pennsylvania State University Alan Scaroni and Harold Schobert, Pennsylvania State University Howard Herzog, Massachusetts Institute of Technology Michelle Aresta, University of Bari, Italy Robert Warzinski, National Energy Technology Lab, DOE