Workshop on Carbon Sequestration Science

Ocean Carbon Sequestration

Howard Herzog

MIT Energy Laboratory

May 24, 2001

Ocean Carbon Sequestration Options

- The direct injection of a relatively pure CO₂ stream that has been generated, for example, at a power plant or from an industrial process
- The enhancement of the net oceanic uptake from the atmosphere, for example, through iron fertilization

The DOE Center for Research on Ocean Carbon Sequestration (DOCS)

- Established July 1999
- Centered at LBNL and LLNL
- Participants
 - Eric Adams MIT
 - Jim Barry MBARI
 - Jim Bishop DOCS Scientific Co-director LBNL
 - Ken Caldeira DOCS Scientific Co-director LLNL
 - Sallie Chisholm MIT
 - Kenneth Coale Moss Landing Marine Laboratory
 - Russ Davis Scripps Institution of Oceanography
 - Paul Falkowski Rutgers
 - Howard Herzog MIT
 - Gerard Nihous Pacific International Center for High Technology Research
 - Terry Surles DOCS Executive Coordinator California Energy Commission
 - Bernhardt Trout MIT

Ocean Carbon Sequestration Options

Ocean Sequestration

- Largest Sink
 - Atmosphere = 750 GtC
 - Terrestrial = 2,200 GtC
 - Ocean = 40,000 GtC
- Atmosphere-Ocean Flux about 90 GtC
- Most carbon released in the atmosphere today will end up in the ocean

Global Carbon Cycle

Maximum Sequestration Rates

- Direct injection
 - Limited by availability of near-coastal CO2 point sources
 - 15 to 20 % of total fossil-fuel use
- Ocean fertilization
 - Limited by biological transport and ocean mixing rates
 - Perhaps ~1 GtC / yr increase in net ocean carbon uptake could be sustained for hundreds of years (very uncertain)

Comparison of Methods

Direct injection

- Pros
 - Effective at sequestering CO₂ for hundreds of years
 - Based on proven technologies
 - Strategies can be developed (e.g., carbonate dissolution) to enhance effectiveness and diminish adverse environmental consequences

Cons

- Consumes energy, expensive
- Suitable only for point sources with access to ocean waters
- Possible environmental consequences (e.g., pH effects)

Ocean fertilization

- Pros
 - Relative inexpensive
 - Simple technologically
 - May improve fishery yields

Cons

- > Effectiveness not proven
- > Possible environmental consequences (e.g., ecosystem disturbance)
- Sequestration rate limited to ~1 PgC / yr

Direct CO₂ Injection Basic rationale

- About 80% of CO₂ emissions will eventually reside as dissolved inorganic carbon in the deep ocean
- Natural transit of this fossil-fuel carbon to the deep ocean-atmosphere is limited by ocean transport processes
 - Ocean mixing time-scale is ~300 yr
- Bypass slow natural ocean mixing by directly injecting fossil-fuel CO₂ into the deep ocean
 - CO₂ would be separated, for example, from power plant flue gases

Rationale

Inorganic sinks for CO₂ emissions to the atmosphere

- CO₂ absorption by surface ocean
 - ~1 yr > $CO_2 + H_2O = H^+ + HCO_3^-$
- Mixing to deep ocean
 - ~300 yr
- Carbonate dissolution
 - \sim 6000 yr \sim CO₂ + CaCO₃ + H₂O = Ca²⁺ + 2HCO₃⁻
- Silicate-rock weathering
 - ~300,000 yr
 CO₂ + CaSiO₃ = CaCO₃ + SiO₂

Direct Injection Topics

- Capacity
- Effectiveness
- Injection Methods
- Local Environmental Impacts
- Research activities
 - Modeling
 - Hawaii Experiment
 - Hydrates

Capacity

- Based solely on physical view, larger than fossil reserve of 5,000 - 10,000 GtC.
- Based on environmental view, uncertain. For example, sequestering 1300 GtC would change pH by 0.3 units.
- Ocean currently sequestering 2-3 GtC annually.

Capacity

Direct CO₂ injection

Injection Methods

- Ocean Layers
 - Mixed layer (top 100 m)
 - Thermocline (down to 1000 m)
 - Deep ocean
- 10 m depth = 1 bar pressure
- CO₂ Properties
 - Gas, 0-500 m
 - Buoyant liquid, 500-3000 m
 - Denser than seawater, >3000 m
 - Denser than saturated seawater, >3700 m
 - Hydrates, >500 m

Injection Methods

Other Injection Concepts

- Dissolve CO₂ and carbonate minerals in water for sequestration
- Burial of organic carbon in the ocean

Effects of pH on Marine Organisms

Technology Status

- Most research to date has been theoretical (i.e., modeling) or laboratory-scale experiments
 - Plume modeling
 - Carbon cycle modeling
 - Hydrate studies
 - Environmental impact studies
- Starting in April, 1977, Japan has a national program for CO₂ Ocean Sequestration
- Field experiments starting
 - MBARI
 - International field experiment

Simulating Direct Injection

Numerical simulations of ocean carbon sequestration

- Large-scale numerical models of ocean physics and chemistry are being used to simulation ocean carbon sequestration
- Injection off New York at 3000 m depth shown after 100 years of injection of 0.1 PgC / yr

Numerical simulations with an Ocean General Circulation Model

At 800 m depth, \sim 25 % of injected CO $_2$ remains in the ocean at least 500 years.

At 1500 m depth, ~50 % of injected CO₂ remains in the ocean at least 500 years.

At 3000 m depth, ~80 % of injected CO₂ remains in the ocean at least 500 years.

About 80 % of the CO_2 that leaks out of the ocean will eventually be reabsorbed by the ocean.

International Experiment of CO₂ Ocean Sequestration

- Investigate direct injection of CO₂ into the ocean at mid-depth (500-3000 m)
 - Plume physics (rise height, peeling process)
 - CO₂-seawater chemistry (hydrate formation, CO₂ dissolution rates)
 - Perturbations (pH changes)
 - Biological and ecological impacts

Timeline

- December 1997 Agreement signed
- August 1999 First survey cruise
- October 2000 Second survey cruise
- November 2001 Field experiment

Sponsoring Countries

- Original signatories
 - Japan
 - Norway
 - United States
- Added members
 - Australia
 - Canada
 - Switzerland (ABB)

San Antonio Tank Experiment

5 mm nozzle fast discharge

5 mm nozzle slow discharge

2 mm nozzle fast discharge

2 mm nozzle slow discharge

Field Experiment Design

- Diffuser tethered to supply ship
- Release depth at 800 m
- Two flow rates (0.1 kg/s and 1 kg/s)
- Two diffusers (droplet sizes <0.1 to 1 cm)
- Measurements
 - Moored instruments (pH, ADCP, hydrophone)
 - ROVs (video, salinity, T, pH, ADV, water samples)
 - CTD/bottle casts
 - Benthic samples

Experimental Setup

Challenges

- Infrastructure
 - CO₂ flow control
 - Hydrate blockage
 - Depressurizing pipe
- Measurements
 - Choice of a suitable tracer
 - Performing a full 3D survey in rapidly changing current

Permitting and Public Outreach

- Federal Environmental Assessment (EA) approved
- Water Quality Permit from EPA still required
- Public Outreach program in place
- Significant opposition for a variety of reasons

Hydrate Discussion

Direct CO₂ injection

- Science and technology gaps
 - Optimizing injection strategy
 - Engineering issues
 - Predicting effectiveness
 - Environmental impacts
- Address gaps through
 - Experiments
 - Observations
 - Modeling
 - Monitoring and verification technology development

Relative concentration at injection depth = 1700 m

Research Needs

- Better information on biological impacts
- Larger scale CO₂ release experiments with an emphasis on evaluation of biotic impacts
- Modeling on the scale of 100's of meters to 100's of kilometers.
- Educate stakeholders and the public so they can make informed decisions

Web Sites

- CO₂ Experiment:
 - http://www.co2experiment.org/
- DOCS
 - http://esd.lbl.gov/DOCS/

Ocean fertilization

Idea

- Increase the net CO₂ flux from the atmosphere to the ocean
- by increasing the biogenic carbon flux from the near-surface ocean to the ocean interior.
- Research questions (selection)
 - To what extent do various nutrients limit export production?
 - How can we monitor the effects of ocean fertilization?
 - What unintended impacts would occur as a result of fertilization?
 - To what extent would fertilization increase export production?
 - To what extent would increased export production increase CO₂ uptake by the ocean?
 - How deeply will the exported carbon remineralize in the ocean?
 - How long will the remineralized CO₂ remain in the ocean?

Ocean fertilization: Basic rationale

- About 80% of CO₂ emissions will eventually reside as dissolved inorganic carbon in the deep ocean
- Marine organic matter falls from the surface ocean to the deep ocean, transporting carbon away from the atmosphere
- In much of the ocean, this biological transport may be limited by the availability of micronutrients such as iron
- Bypass slow natural ocean mixing by fertilizing the surface ocean, thus enhancing the biological flux of carbon to the deep ocean

Ocean fertilization

Enhancement of Natural Carbon Sequestration

Simulating ocean fertilization

Science and technology gaps: Fertilization

Gaps

- Understanding long-term effects on marine ecosystems, e.g., food-chain effects
- Understand impacts on natural biogeochemical cycles, e.g., ocean anoxia
- Understand factors affecting long-term effectiveness, e.g., remineralization length
- Understanding the natural carbon cycle, e.g., factors controlling export production
- Address these gaps through
 - Experiments
 - Observations
 - Modeling
 - Monitoring and verification technology development

Southern Ocean fertilization simulations

Summary

- Ocean is large potential sink for CO₂
- Much research to be done
 - Engineering analysis
 - Environmental assessment
 - Ocean circulation modeling
 - Public outreach
- Several significant efforts underway
- The journey is just beginning