Current State of Literature on CO₂ Clathrate Hydrates

Transport Related Issues

CO₂ Transport Mechanisms in the literature:

- Wrong or no physical basis
- Not proven correct
- Correct and/or consistent

Objective: To develop a quantitative and predictive model for the dispersion of ${\rm CO_2}$ in the ocean, under varying

C_o: Conc. of pure liq CO₂

C_{h1}: Conc. of CO2 at full occupancy

C_{h2}: Conc.of CO₂ in hydrate at interface that in equil with water saturated with CO₂.

C_i: Conc. of CO₂ in liq. water adjoining hydrate

C_{infty}: Conc of CO₂ in water

k_L: mass transfer coeff. in the water rich phase

D_{hydrate:} D CO₂ in hydrate

$$CO_2$$
 Flux = $k_L(C_i-C_{infty})$
= $(D_{hydrate}/d)(C_{h1}-C_{h2})$

- C_i, C_{infty} determined by solubility data
- C_{h1}, C_{h2} determined by hydrate occupancy and hydrate stability data.
- k_L -mass transfer coeff.
 - --correlations of the form Sh=Sh(Re,Sc)
 - --expt data for dR/Dt for CO2 without hydrate film.
- D_{hydrate} conceptual models
- lacksquare From mass balance (not independent of $D_{hydrate}$)

Hydrate in Suspension Models

 δ =film thickness ρ =mass density of H₂0 M=mol. wt. of H₂O n_h=hydration number Cg=conc. of CO₂ Ch=conc. of hydrate

Molar flux of
$$CO_2 = dC_g/dz \mid_{z=\delta} = f(D_{wg}/k_f)$$

$$\delta = (D_{wg}/k_f)^{1/2}$$

Flux and δ can be compared to experiment. This model has been parameterized by the reaction rate constant k_f , that has to be determined independently. The tensile strength measurements by Aya et al. invalidate the physical basis of the model.

Perforated Plate Models

[Hirai 1996, Mori 1998, Mori 2000]

 δ =film thickness v=viscosity of H₂0 θ =contact angle at CO₂/H₂0 interface ρ =mass density of H₂0 M=mol. wt. of H₂0 n_h=hydration number k_L=mass transfer coeff.

d_p: Perforation diameter

Molar flux of $CO_2 = \phi d_p \sigma \cos\theta / 8M\delta \tau^2 v n_h$

$= k_L \rho (Ci-Cinfty)/M$

Flux and δ can be compared to experiment. This model has the ability to predict the flux. As far as the prediction for δ goes, there is one equation and four unknowns, with no sound physical basis.

[Teng 1996, Warzinski 1996]

Solid Plate Models

 δ =film thickness ρ =mass density of H₂O M=mol. wt. of H_2O k_L=mass transfer coeff. D_{hydrate}=D CO₂ in hydrate

Molar flux of
$$CO_2$$

= $(D_{hydrate}/d)(C_{h1}-C_{h2})$
= $k_L\rho(C_i-C_{infty})/M$

Flux and δ can be compared to experiment. This model has the ability to predict the flux. As far as the prediction for δ goes, independent measurement/prediction of D_{hydrate} is required.

Teng et al.: $D_{hydrate}=10^{-12} \text{ m}^2/\text{s}$, because this is typical of they predict δ in the range 10^{-5} - 10^{-6} m. diffusion of CO₂ in zeolites. *Their prediction of δ was accurate because of fortuitous cancellation of errors

Warzinski et al.: $D_{hydrate} = 10^{-15} \text{ m}^2/\text{s}$, because this is typical of diffusion they predict δ in the range 10^{-4} m. of molecules in polymers.

There is a need for the accurate prediction of the diffusivity of CO_2 through the hydrate phase

Diffusion in Clathrates

- Diffusion of CO₂ molecules in a defect free single crystalline clathrate is almost zero.
- Hopping of CO₂ molecule between adjacent cages is observed when H₂O vacancy is present. Time scale for a hopping event is of the order of 0.1ns.

Diffusion in Clathrates

Estimation of free energy barrier heights for hopping events using Monte Carlo methods

Cage occupancy at equilibrium conditions

Large cage	0.95*
Small cage	0.7*

^{*} Experimental values

Free energy of creation of a water vacancy
0.49 eV * at 200K

^{*}using thermodynamic integration

Free Energy barrier for hopping

	Free energy Barrier / k _B T	Hopping rate / s ⁻¹
Large-large no vacancy	21	3.7e+3
Large-Large(hex): 1 H ₂ O vacancy*	7.5	2.5e+9
Large-Large(Pent): 1 H ₂ O vacancy*	6.5	8.5e+9
Small-Large: 1 H ₂ O vacancy*	4.5	6.6e+10
Large-Small: 1 H ₂ O vacancy*	12	3.0e+7

^{*}concentration of water vacancies in clathrate is O(10⁻⁴), based on free energy of defect formation.

Based on the barrier hopping mechanism D_{CO_2} is $O(10^{-13} \text{m}^2/\text{s})$

Diffusivity

$$D_{H}= (1/6) \quad \frac{d < r(0) \ r(t) > }{dt}$$

D_H=0.166*(dcage-cage)^{2*}(hopping rate)*

connectivity of large cages(1-occ. of large cages)

*(# water molecules in pentagonal plane)

*(conc. of water defects)

$$D_{H}=0.166*(36*10^{-20})*(8.5*10^{-9})*(10)*(1-0.9)*(4)*(0.5*10^{-4})$$

$$D_{H}=1.5*10^{-13} \text{ m}^{2}/\text{s}$$

CO_2 flux-

comparison with experiment:

Flow conditions	CO ₂ flux, d	CO ₂ flux,d
	Simulation	Experiment
Re=0	7.0e-6 mol/m ² s	5.0e-4 mol/m ² s
Sh=2	10 µm	32 µm
Re=250 (u=2.5cm/s)	5.0e-3 mol/m ² s	4.0e-3 mol/m ² s
Sh=75	0.3 µm	0.43 μm

For a CO₂ droplet (1 cm in diameter) submerged in a pure water phase that is stationary at 275 K and 18 Mpa.

Conclusion:

We have a self-consistent model for the prediction of the dissolution rate of CO_2 . that works in the T, P, X_{CO_2} range of interest and under flow conditions Re<1000

The results predicted by the model are consistent with the experimental results in the literature with regard to CO₂ flux and morphology of CO₂ hydrate films