Current State of Literature on CO₂ Clathrate Hydrates Transport Related Issues #### CO₂ Transport Mechanisms in the literature: - Wrong or no physical basis - Not proven correct - Correct and/or consistent Objective: To develop a quantitative and predictive model for the dispersion of ${\rm CO_2}$ in the ocean, under varying C_o: Conc. of pure liq CO₂ C_{h1}: Conc. of CO2 at full occupancy C_{h2}: Conc.of CO₂ in hydrate at interface that in equil with water saturated with CO₂. C_i: Conc. of CO₂ in liq. water adjoining hydrate C_{infty}: Conc of CO₂ in water k_L: mass transfer coeff. in the water rich phase D_{hydrate:} D CO₂ in hydrate $$CO_2$$ Flux = $k_L(C_i-C_{infty})$ = $(D_{hydrate}/d)(C_{h1}-C_{h2})$ - C_i, C_{infty} determined by solubility data - C_{h1}, C_{h2} determined by hydrate occupancy and hydrate stability data. - k_L -mass transfer coeff. - --correlations of the form Sh=Sh(Re,Sc) - --expt data for dR/Dt for CO2 without hydrate film. - D_{hydrate} conceptual models - lacksquare From mass balance (not independent of $D_{hydrate}$) # Hydrate in Suspension Models δ =film thickness ρ =mass density of H₂0 M=mol. wt. of H₂O n_h=hydration number Cg=conc. of CO₂ Ch=conc. of hydrate Molar flux of $$CO_2 = dC_g/dz \mid_{z=\delta} = f(D_{wg}/k_f)$$ $$\delta = (D_{wg}/k_f)^{1/2}$$ Flux and δ can be compared to experiment. This model has been parameterized by the reaction rate constant k_f , that has to be determined independently. The tensile strength measurements by Aya et al. invalidate the physical basis of the model. ## Perforated Plate Models [Hirai 1996, Mori 1998, Mori 2000] δ =film thickness v=viscosity of H₂0 θ =contact angle at CO₂/H₂0 interface ρ =mass density of H₂0 M=mol. wt. of H₂0 n_h=hydration number k_L=mass transfer coeff. d_p: Perforation diameter Molar flux of $CO_2 = \phi d_p \sigma \cos\theta / 8M\delta \tau^2 v n_h$ ### $= k_L \rho (Ci-Cinfty)/M$ Flux and δ can be compared to experiment. This model has the ability to predict the flux. As far as the prediction for δ goes, there is one equation and four unknowns, with no sound physical basis. #### [Teng 1996, Warzinski 1996] ## Solid Plate Models δ =film thickness ρ =mass density of H₂O M=mol. wt. of H_2O k_L=mass transfer coeff. D_{hydrate}=D CO₂ in hydrate Molar flux of $$CO_2$$ = $(D_{hydrate}/d)(C_{h1}-C_{h2})$ = $k_L\rho(C_i-C_{infty})/M$ Flux and δ can be compared to experiment. This model has the ability to predict the flux. As far as the prediction for δ goes, independent measurement/prediction of D_{hydrate} is required. Teng et al.: $D_{hydrate}=10^{-12} \text{ m}^2/\text{s}$, because this is typical of they predict δ in the range 10^{-5} - 10^{-6} m. diffusion of CO₂ in zeolites. *Their prediction of δ was accurate because of fortuitous cancellation of errors Warzinski et al.: $D_{hydrate} = 10^{-15} \text{ m}^2/\text{s}$, because this is typical of diffusion they predict δ in the range 10^{-4} m. of molecules in polymers. There is a need for the accurate prediction of the diffusivity of CO_2 through the hydrate phase # Diffusion in Clathrates - Diffusion of CO₂ molecules in a defect free single crystalline clathrate is almost zero. - Hopping of CO₂ molecule between adjacent cages is observed when H₂O vacancy is present. Time scale for a hopping event is of the order of 0.1ns. ## Diffusion in Clathrates Estimation of free energy barrier heights for hopping events using Monte Carlo methods Cage occupancy at equilibrium conditions | Large cage | 0.95* | |------------|-------| | Small cage | 0.7* | ^{*} Experimental values Free energy of creation of a water vacancy 0.49 eV * at 200K ^{*}using thermodynamic integration ## Free Energy barrier for hopping | | Free energy
Barrier / k _B T | Hopping rate / s ⁻¹ | |--|---|--------------------------------| | Large-large no vacancy | 21 | 3.7e+3 | | Large-Large(hex): 1 H ₂ O vacancy* | 7.5 | 2.5e+9 | | Large-Large(Pent): 1 H ₂ O vacancy* | 6.5 | 8.5e+9 | | Small-Large:
1 H ₂ O vacancy* | 4.5 | 6.6e+10 | | Large-Small:
1 H ₂ O vacancy* | 12 | 3.0e+7 | ^{*}concentration of water vacancies in clathrate is O(10⁻⁴), based on free energy of defect formation. Based on the barrier hopping mechanism D_{CO_2} is $O(10^{-13} \text{m}^2/\text{s})$ ## **D**iffusivity $$D_{H}= (1/6) \quad \frac{d < r(0) \ r(t) > }{dt}$$ D_H=0.166*(dcage-cage)^{2*}(hopping rate)* *connectivity of large cages*(1-occ. of large cages) *(# water molecules in pentagonal plane) *(conc. of water defects) $$D_{H}=0.166*(36*10^{-20})*(8.5*10^{-9})*(10)*(1-0.9)*(4)*(0.5*10^{-4})$$ $$D_{H}=1.5*10^{-13} \text{ m}^{2}/\text{s}$$ # CO_2 flux- #### comparison with experiment: | Flow conditions | CO ₂ flux, d | CO ₂ flux,d | |--------------------|-----------------------------|-----------------------------| | | Simulation | Experiment | | Re=0 | 7.0e-6 mol/m ² s | 5.0e-4 mol/m ² s | | Sh=2 | 10 µm | 32 µm | | Re=250 (u=2.5cm/s) | 5.0e-3 mol/m ² s | 4.0e-3 mol/m ² s | | Sh=75 | 0.3 µm | 0.43 μm | For a CO₂ droplet (1 cm in diameter) submerged in a pure water phase that is stationary at 275 K and 18 Mpa. ## Conclusion: We have a self-consistent model for the prediction of the dissolution rate of CO_2 . that works in the T, P, X_{CO_2} range of interest and under flow conditions Re<1000 The results predicted by the model are consistent with the experimental results in the literature with regard to CO₂ flux and morphology of CO₂ hydrate films