# **CO<sub>2</sub> Sequestration in Deep "Unmineable" Coal Seams**

Bill Gunter Alberta Research Council Edmonton, Alberta T6N 1E4 Canada



## CO<sub>2</sub>-Enhanced Coalbed Methane (CO<sub>2</sub>-ECBM) Recovery

- Amoco Corp. studies on U.S. coalbeds (patents issued)
- Burlington Resources field operation in San Juan Basin in New Mexico, U.S.A.
- Alberta Research Council single well field test in Fenn-Big Valley, Alberta, Canada



Chaback et al., "Method for Treating A Mixtures of Gaseous Fluids Within A Solid Carbonaceous Subterranean Formation", U.S. Patent No. 5,439,054 (1995)



### **ECBM Field Pilots in United States**



San Juan Basin

- Amoco N<sub>2</sub>-ECBM pilots
- Burlington CO<sub>2</sub>-ECBM pilot





- To enhance, by injection of carbon dioxide, CBM recovery factors and production rates to an economic rate in Alberta, Canada.
- To reduce greenhouse gas emissions by subsurface injection (storage) of carbon dioxide into coalbeds with production of coalbed methane (CBM).



## **Questions to be Answered**

- How effective is coal in soaking up  $CO_2$ ?
- Can you enhance CH<sub>4</sub> production from coalbeds at the same time as the CO<sub>2</sub> is being sequestered?
- Is there an advantage gained by coupling power plants to coalbed methane production?



### **Linear Process**

- Generation of power by burning surface mined coal.
- Injection of flue gases from coal-burning into deep unmineab coal beds where the gases are adsorbed to the coal.
- Displacement of the adsorbed methane off the coal by the flu gasses and recovery of the methane at the surface.
- This produced Coalbed Methane (CBM) is used as feedstock production of  $H_2$  or petrochemicals.



### **Green Power Plants**





### A Life-Cycle Approach to Production of Fossil Energy



- Enhanced coalbed methane (ECBM) recovery
- Sequestration of CO<sub>2</sub>



### **Cyclic Process**

- Extraction of methane through production wells
- Burning of this methane as fuel in the power plant
- Disposal of the generated waste stack gases into the coal seam through injection wells
- Displacement of the adsorbed methane off the coal



### **Green Power Plants**







### **Green Power Plants**





## Gas Capacity of San Juan Basin -Fruitland Coal





# Flue Gas Injection is Less Expensive than Obtaining a Pure CO<sub>2</sub> Injection Stream???







Figure 3.2.1-1 Major coal-bearing regions of Canada (after Smith, 1989).



#### **CO<sub>2</sub>-ECBM Potential of Western Canada**





### **CBM Resources of Western Canada**



RESEA

COUNCIL

### **CO<sub>2</sub>-ECBM Potential of Western Canad**

- CBM Recoverable Resources: 5 trillion m<sup>3</sup> (based on Canadian Gas Potential Committee, 1997)
- CO<sub>2</sub> Sequestration Potential: 18 giga tonnes (based on a CO<sub>2</sub>/CH<sub>4</sub> adsorption ratio of 2/1)
- CO<sub>2</sub> Sequestration Capacity: > 100 years for all of CO<sub>2</sub> emissions in Alberta



#### **ARC** CO<sub>2</sub>-Enhanced Coalbed Methane Project

- Measure Resource Properties of Alberta CBM Reservoirs
- Measure Flue Gas Composition versus Reservoir Response Improve Predictive Capability of ECBM Reservoir Simulators
- Model to Calculate Costs of Flue Gas/CO<sub>2</sub> Source

#### ↓ Economic Evaluation of CO<sub>2</sub>-ECBM Reservoirs in Alberta



### Attractiveness

#### **nternational Participants**

- Issued shares in licensing revenue from new technology developed in project
- May acquire licenses at 50% of value for internal use
- Potential of GHG credits from licensing

#### **Domestic Participants**

- Dollars contributed qualify for Canadian R&D tax credits
- Access to a better geological data base for selecting CBM targets in Alberta



#### ember Companies - Phase III Participants

Liquide Canada Inc rta Geological Survey rta Innovation and Science, (ASRA) ervices Company Canada Amoco Corporation ington Resources (US) idian Climate Change Action Fund RO Petroleum (Australia) ronment Canada (PERD) OR Utilities Inc. Technology Institute (US) logical Survey of Canada echnical Engineering, iversity of Alberta Canada Resources Limited

Husky Energy Inc. IEA Greenhouse Gas R&D Program MGV Energy Inc. Exxonmobil Canada Netherlands Institute of Applied Geoscience TNO PanCanadian Petroleum Limited Saskatchewan Energy & Mines Sproule International Suncor Energy Inc. Tesseract Corporation (US) **TransAlta Utilities** TransCanada Pipelines Ltd. United Kingdom Department of Trade and Industry United States Department of Energy



# Alberta Research Council Coalbed Methane – CO<sub>2</sub> Project

- Resource Properties: Formation Evaluations
  - Ardley Coals
  - Edmonton Coals
  - Mannville Coals
- Predictive Capability:

Numerical Model Comparison and Improvements





#### Ardley coal zones at 200 meters depth

permeability

#### Edmonton coal zones at 500 meters depth

#### Mannville coal zones at 1300 meters depth



# Alberta Research Council Coalbed Methane – CO<sub>2</sub> Project

- Flue Gas Composition versus Reservoir Response: Four Micro-pilot tests: Fenn-Big Valley Site
  - $-100\% N_2$
  - 53% N<sub>2</sub>, 47% CO<sub>2</sub>
  - 87% N<sub>2</sub>, 13% CO<sub>2</sub>
  - 100% CO<sub>2</sub>
- Flue Gas Composition versus Cost: Surface Facility Model



# **Fenn-Big Valley Site**

- Known Reservoir Properties
- Pilot Operation Possible
- Productivity Similar to Amoco N<sub>2</sub> Pilot
- Permeability Level Common in Alberta
- Huge Resource if Enhanced Recovery is Significant



### **ARC Single-Well CO<sub>2</sub> Injection Micro-Pilot** Fenn Big Valley, Central Alberta



Fenn Big Valley



### Pilot Well Locations





### **Mannville Coals**

Medicine River coal thickness: 10.25 m (34.1 ft)

- Gas-in-place volume (CH<sub>4</sub>): 106.3  $Mm^3/km^2$  (9.73 Bscf/mi<sup>2</sup>)
- CO<sub>2</sub> Storage Capacity
  - Approx. 400,000 kg tons/km<sup>2</sup> (1,100,000 tons/mi<sup>2</sup>)



### **ARC Micro-Pilot Goals**

- Accurate measurement of injection and production behavior for single well
- Estimate reservoir properties and sorption behavior
- Calibrate numerical models based on history matching of filed data
- Forecast expanded pilot or full-field development production



# Options for Coalbed Methane Recovery







### **Relative Permeability Curves for CBM**



Water Saturation, fraction

"Measurement of Rock Properties in Coal for Coalbed Methane Production", Gash, SPE 22909 (1991)



# **Process of Gas Transport in Coalbed Methane Reservoirs**



**O** Fluid Production from Natural Fractures

**O** Gas Desorption from Cleat surfaces



• Molecular Diffusion through the coal matrix



# Gas Capacity of San Juan Basin -Fruitland Coal





## **CBM Recovery Methods**

- Primary CBM recovery
  - Pressure depletion
- Enhanced CBM (ECBM) recovery
  - Inert gas stripping using N<sub>2</sub>
  - Displacement desorption using CO<sub>2</sub>
  - Thermal desorption



## Primary Coalbed Methane Recovery Mechanism

- Reduce Cleat Pressure by Producing Water
- Methane Desorbs from Matrix and Diffuses to Cleats
- Methane and Water Flow to Wellbore





### **Coalbed Methane Recovery Rate**





#### **Relative Adsorption Strength**

| Component           | Symbol           | Atmospheric Pressure |
|---------------------|------------------|----------------------|
|                     |                  | Boiling Point        |
|                     |                  | Deg Celsius          |
| Helium              | He               | -268.9               |
| Hydrogen            | H <sub>2</sub>   | -252.8               |
| Nitrogen            | N <sub>2</sub>   | -195.8               |
| Carbon Monoxide     | CO               | -191.7               |
| Argon               | Ar               | -186.1               |
| Oxygen              | O <sub>2</sub>   | -182.8               |
| Methane             | CH <sub>4</sub>  | -161.7               |
| Nitric Oxide        | NO               | -151.0               |
| Xenon               | Xe               | -108.1               |
| Ethane              | $C_2H_6$         | -88.3                |
| Carbon Dioxide      | CO <sub>2</sub>  | -78.3                |
| Sulfur Hexafluoride | $SF_6$           | -63.9                |
| Hydrogen Sulfide    | H <sub>2</sub> S | -59.6                |
| Propane             | $C_3H_8$         | -42.2                |
| Sulfur Dioxide      | SO <sub>2</sub>  | -10                  |
| Nitrogen Dioxide    | NO <sub>2</sub>  | 21.1                 |
| Sulfur Trioxide     | SO3              | 44.4                 |



### Gas Capacity of San Juan Basin -Fruitland Coal



COUNCIL

#### **CO<sub>2</sub>-ECBM Recovery Process**

- Carbon dioxide preferentially sorbed and displaces hydrocarbons.
- Displaced hydrocarbons pressurize natural fracture system, increasing well deliverability
- Carbon dioxide breakthrough minimal
- "Sweeps" hydrocarbons from the coal



### CO<sub>2</sub> - Enhanced Coalbed Methane Recovery Mechanism

- Inject Carbon Dioxide in Cleats
- Keep Total Cleat Pressure High
- Reduce Partial Pressure of Methane
- Carbon Dioxide Diffuses into Matrix and Adsorbs onto Coal
- Methane Desorbs from Matrix and Diffuses to Cleats
- Methane & Water Flow to Wellbore





### Coalbed Methane Recovery Rate





### **Expected Problems**

- Limited CO<sub>2</sub> injectivity due to swelling
  - Reduced effective permeability to gas
  - Increasing with continued injection
- Inability to produce after injection



**Coal Swelling** 





#### **Absolute Permeability Change**





#### **RC Single Well CO<sub>2</sub> Injection Micro-Pilot**







#### Sorption Data for Different Pure Gases





#### 5-Spot Pattern Simulation CH<sub>4</sub> Production Rate





#### 5-Spot Pattern Simulation CH<sub>4</sub> Recovery





5-Spot Pattern Simulation Production Gas Composition





### **Numerical Modelling CBM Recovery Processes in 5-Spot Pattern**

#### CO<sub>2</sub> Injection











#### N<sub>2</sub> Injection



#### After 1 year



After 3 years







After 7 years

1/4 of 5-Spot Pattern

**Constant Injection Rate** 



#### N<sub>2</sub>-ECBM Recovery Process

- Increases diffusion rate of hydrocarbon gases from coal matrix into natural fractures
- Pressurizes fracture system, increasing well deliverability
- Nitrogen breaks through at production wells
- "Rakes" hydrocarbons from the coal



### N<sub>2</sub> - Enhanced Coalbed Methane Recovery Mechanism

- Inject Nitrogen in Cleats
- Keep Total Cleat Pressure High
- Reduce Partial Pressure of Methane
- Methane Desorbs from Matrix and Diffuses to Cleats
- Methane and Nitrogen & Water Flow to Wellbore





#### **Amoco N<sub>2</sub> Field Pilot Performance**





#### ALBERTA RESEARCH COUNCIL Coalbed Methane - CO<sub>2</sub> Project

| <b>PHASES</b> | YEAR |                                                                     |
|---------------|------|---------------------------------------------------------------------|
| I             | 1997 | Proof of Concept<br>for Alberta                                     |
| Ш             | 1998 | Single Well<br>CO <sub>2</sub> Micropilot                           |
| III-A         | 1999 | Single Well<br>Flue Gas Micropilot                                  |
| III-A         | 2000 | Drill Shallow Coals<br><500 meters                                  |
| III-B         | 2001 | 5-Spot Enhanced<br>CBM Production                                   |
| III-B         | 2002 | Experimental O <sub>2</sub> /CO <sub>2</sub><br>Recycle Power Plant |
| 1998 -        | 2003 | Targeting of Best<br>CBM Reservoirs                                 |



Figure 6.

Pilot Project Surface Facility Layout.





#### Figure 5.

#### Flue Gas Source

#### **Conceptual Flue Gas Collection System**





#### Northland Flue Gas Drilling Unit General Schematic









# **Summary**

- US produces 1 TCF of CBM annually
- Alberta has an abundant CBM resource
- No commercial production of CBM in Canada to date due to low permeabilities encountered
- Compared to EOR, ECBM does not require pure CO<sub>2</sub>
- Injections of CO<sub>2</sub>-rich gases into CBM reservoirs could significantly enhance recovery while stripping out CO<sub>2</sub>, a GHG
- ECBM technology is at an embryonic stage of development but shows commercial potential



## **Future Goals**

- Describe Alberta's CBM and unconventional gas resources
- Improve reservoir simulator for ECBM
- Measure CBM reservoir response to  $CO_2$ -enriched flue gas injection
- Quantify costs of  $CO_2$ -enrichment of industrial  $CO_2$  waste streams
- Demonstration consisting of a 5 spot  $\text{CO}_2$ -ECBM pilot in Alberta



### **Benefits**

- A synergy between an increased supply of fossil fuel and decreased greenhouse gas emission is established using the EGR process
- Recovering CBM will lead to increased total gas reserves
- Recovered methane can be used as fuel for power plants. Alternatively, the gas can be sold for profit, leaving coal again as the fuel of choice for power plants
- The use of CBM and disposal of the waste  $CO_2$  in deep geologic sinks leads to reduction in  $CO_2$ , the major culprit of global warming and long term climate instability

