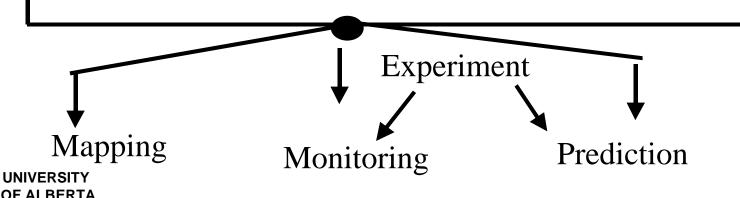
Monitoring of Aquifer Disposal of CO<sub>2</sub>: Experience from Underground Gas Storage and Enhanced Oil Recovery

W.D. Gunter, Alberta Research CouncilR.J. Chalaturnyk, University of AlbertaJ.D. Scott, University of Alberta








#### **Expertise Required**

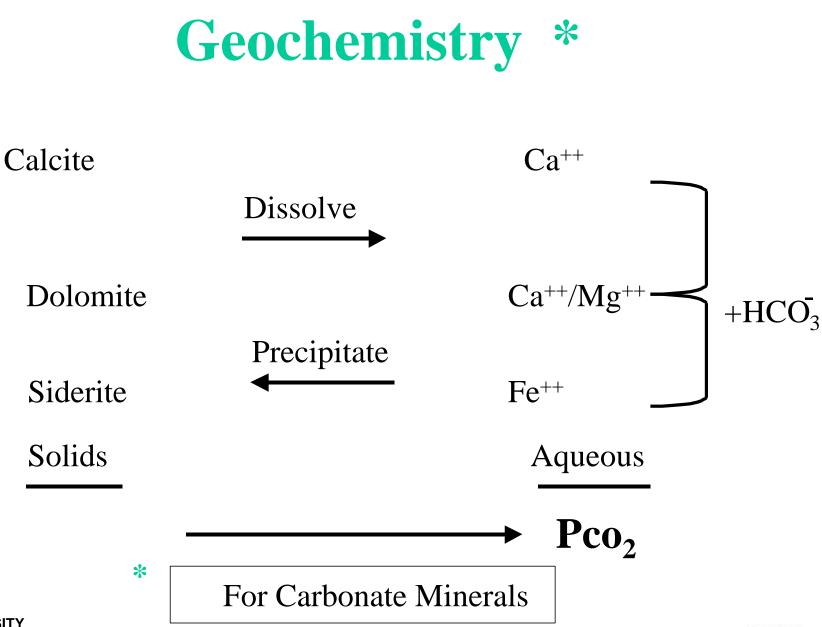
- Geology: Location of Storage Reservoir
- Hydrogeology: Movement of Fluids
- Geotechnical: Movement of Solids
- Geochemical: Mass Transfer of Fluid-Rock Interaction



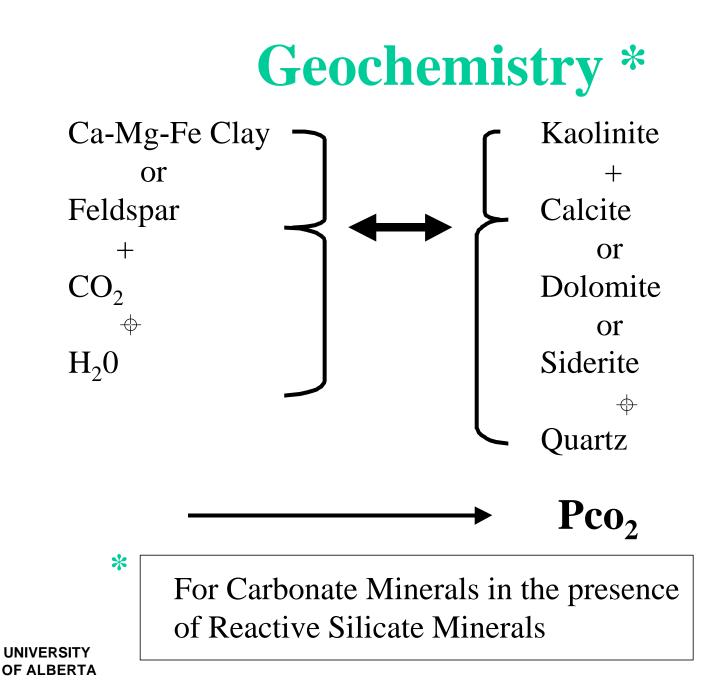


#### Geomechanics

Formation movements controlled by effective stress ( $\bullet$ <sup>1</sup>)


UNIVERSIT

**OF ALBERTA** 


|                                                               | $\bullet$ 1 total.                                | Р                                             |
|---------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|
| Eff. Stress                                                   | Insitu Stress                                     | Reservoir (Pore) Pressure                     |
| Controls<br>•Sand production                                  | Created by<br>•over burden                        | Affected by Injection-<br>Recovery components |
| •Shear induced<br>permeability changes                        | •tectonic stresses                                | of UGS/EOR process                            |
| <ul><li>Compressibility</li><li>Hydraulic fractures</li></ul> | Affected by Thermal components of UGS/EOR process |                                               |











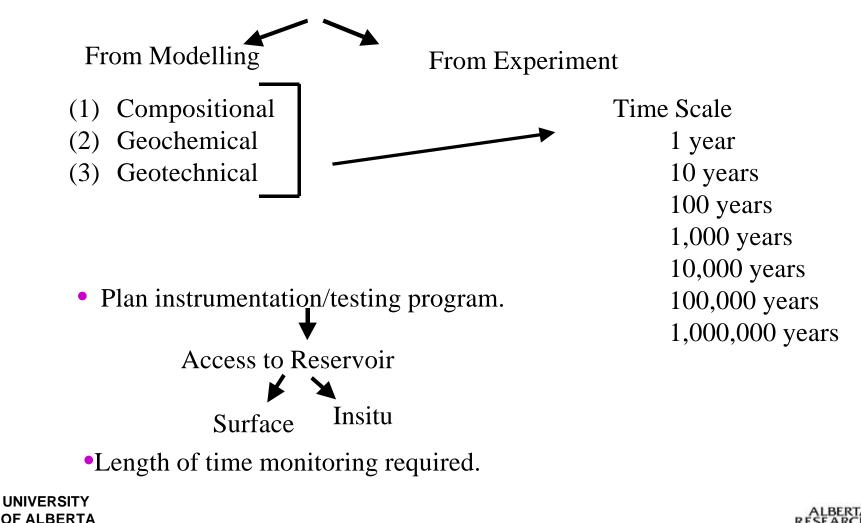


#### **Time Scales**

- Enhanced Oil Recovery EOR = Short term ③ 10 years
- <u>Underground Gas Storage</u>
   UGS = Medium term © 100 years
- Aquifer Storage of CO<sub>2</sub>

Long term (1000 + years

• Natural Analogues


1000,000 + years





## **Planning of Monitoring**

- What are the changes that need monitoring?
- Predict mechanisms that control changes.



- definition of project conditions
- prediction of mechanisms that control behavior
- technical questions to be answered
- purpose of monitoring
- parameters to be monitored
- magnitude of change expected in parameters
- select instrumentation / monitoring systems
- instrument / monitoring locations





- definition of project conditions
- prediction of mechanisms that control behavior
- technical questions to be answered
- purpose of monitoring
- parameters to be monitored
- magnitude of change expected in parameters
- select instrumentation / monitoring systems
- instrument / monitoring locations



### Define Project Conditions

- location, depth and extent of potential disposal zones
- thickness and extent of caprock and any stratigraphic traps or fractures
- location and extent of other bottom or lateral bounding formations
- natural fluid flow rates and flow directions
- folding or faulting in the area
- previous injection/production/geology if depleted oil or gas reservoir



- definition of project conditions
- prediction of mechanisms that control behavior
- technical questions to be answered
- purpose of monitoring
- parameters to be monitored
- magnitude of change expected in parameters
- select instrumentation / monitoring systems
- instrument / monitoring locations



## Predict Mechanisms that Control Behavior

- Conduct reservoir simulations
- Monitoring provides feedback to simulation
  - integrate injection data (both surface and downhole) and monitoring data with simulations of reservoir behavior



- definition of project conditions
- prediction of mechanisms that control behavior
- technical questions to be answered
- purpose of monitoring
- parameters to be monitored
- magnitude of change expected in parameters
- select instrumentation / monitoring systems
- instrument / monitoring locations



## Technical Questions to be Answered

- temporal and spatial development of acid gas "bubble"
- geochemical reactions
  - mineralization/demineralization
  - long term  $\Delta \phi$  and  $\Delta k$
- car rock, wellbore integrity
- impact of thermal/compositional gradients within reservoir





#### **Aquifer Storage of CO<sub>2</sub>**

| Changes                          | (Long Term " $1000 + years$ )<br><u>Effect</u> | Importance                          |
|----------------------------------|------------------------------------------------|-------------------------------------|
| CO <sub>2</sub> bubble migration | – leakage/sweep                                | $\boxtimes$ $\boxtimes$ $\boxtimes$ |
| CO <sub>2</sub> bubble solution  | – pressure drop                                | $\boxtimes$ $\boxtimes$             |
| Gas hydrate formation            | – permeability                                 | $\boxtimes$                         |
| Wettability                      | – permeability                                 | $\boxtimes$                         |
| Pore Pressure                    | – cap rock integrity                           | $\times \times \times$              |
| or                               | – formation integrity                          | $\langle X X \rangle$               |
| Insitu temperature               | – permeability                                 | $\boxtimes$                         |
| Water-Rock reactions             | - release of fines/perm.                       | $\boxtimes$                         |
|                                  | $-CO_2$ capture                                | $X \times X$                        |
|                                  | – pressure drop                                | $\boxtimes$                         |
|                                  | <ul> <li>– cap rock solution</li> </ul>        | $\mathbf{X}$                        |
| Water-Metal reactions            | – well corrosion                               |                                     |



- definition of project conditions
- prediction of mechanisms that control behavior
- technical questions to be answered
- purpose of monitoring
- parameters to be monitored
- magnitude of change expected in parameters
- select instrumentation / monitoring systems
- instrument / monitoring locations



# Purpose of Monitoring

- Interaction with simulations
- Validate physics of disposal process
- Mitigate uncertainty associated with reservoir parameters
- Identify and validate aquifer disposal mechanisms
- Correlate operations issues with aquifer and caprock response
- Satisfy regulatory requirements



- definition of project conditions
- prediction of mechanisms that control behavior
- technical questions to be answered
- purpose of monitoring
- parameters to be monitored
- magnitude of change expected in parameters
- select instrumentation / monitoring systems
- instrument / monitoring locations



#### Parameters to be Monitored

- Injection volumes, daily rates and cumulative volumes
- PVT conditions of the injected gas
- Injection pressures and temperatures
- CO<sub>2</sub> distribution in situ
- acid gas / water interface with time





- definition of project conditions
- prediction of mechanisms that control behavior
- technical questions to be answered
- purpose of monitoring
- parameters to be monitored
- magnitude of change expected in parameters
- select instrumentation / monitoring systems
- instrument / monitoring locations



#### Magnitude of Change in Parameters

- pressure change in reservoir
- temperature change
- rate of movement of "bubble"
- thickness of solubility front



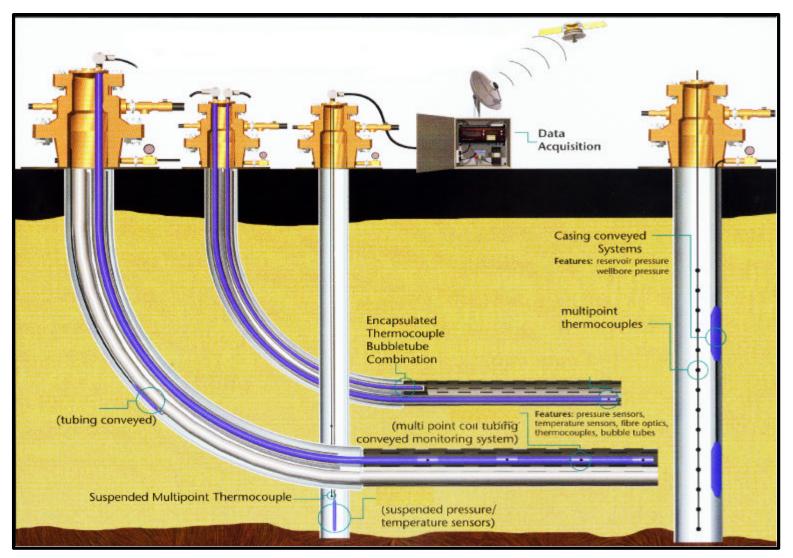
- definition of project conditions
- prediction of mechanisms that control behavior
- technical questions to be answered
- purpose of monitoring
- parameters to be monitored
- magnitude of change expected in parameters
- select instruments / monitoring systems
- instrument / monitoring locations



# Select Instruments/Monitoring Systems

- Surface Monitoring
  - pressure, temperature, rate, composition,
- Downhole Monitoring
  - pressure, temperature, rate, composition, deformation,
- Tracers
  - radioisotopes, gas, water soluble salts, fluorescent dyes, water soluble alcohol's, isotopes,




#### **Monitoring Techniques**

| Technique          | Insitu                  | Surface      |
|--------------------|-------------------------|--------------|
| • Wellhead data *  | No                      | $\mathbf{X}$ |
| • Temperature      | $\boxtimes$             | $\boxtimes$  |
| • Pressure         | $\boxtimes$             | $\boxtimes$  |
| • Tracers          | $\overline{\mathbf{X}}$ | No           |
| Sidewall core      | $\overline{\mathbf{X}}$ | No           |
| • Logs             | $\overline{\mathbf{X}}$ | No           |
| • Seismic          | $\overline{\mathbf{X}}$ | $\boxtimes$  |
| Electromagnetic    | $\overline{\mathbf{X}}$ | $\boxtimes$  |
| Gravimetric        | No                      | $\boxtimes$  |
| • Tilt             | No                      | $\boxtimes$  |
| • Drill stem (DST) | $\overline{\mathbf{X}}$ | No           |

\*i.e. test separator, water/gas/oil chemistry P,T etc



#### Monitoring Systems





#### **Monitoring Techniques**

#### Pressure

• Falloff

OF ALBERTA

- Buildup
- Step rate injection (Fractures)
- Production/Injection
- Interference
- Multiwell Surveys of BHP

#### Issues

- Surface versus downhole
- Singlewell versus multiple well
- One point versus multipoint (horizontal well)
- Technology (quartz, fibre optics, ...)



| <b>Monitoring Techniques</b>                           |                                                                                                                                                                  |                                                  |  |  |  |  |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|
|                                                        | Tracers                                                                                                                                                          | ~ ~                                              |  |  |  |  |
| Type Wat                                               | Water SolubleGas Soluble                                                                                                                                         |                                                  |  |  |  |  |
| Radioisotopes:                                         | Tritiated Water<br>Co <sup>57</sup> ,Co <sup>58</sup> ,Co <sup>60</sup>                                                                                          | Kryton <sup>85</sup><br>Tritium<br>Tritiated HCs |  |  |  |  |
| Salts/Gases:                                           | NH <sub>4</sub> <sup>+</sup> ,Na <sup>+,</sup> K <sup>+</sup><br>I <sup>-</sup> Br <sup>-</sup> , NO <sup>-</sup> <sub>3</sub> , C1 <sup>-</sup> ,<br>Thiocynate | SF <sub>6</sub> , Freon                          |  |  |  |  |
| Fluorescent Dyes:                                      | Uramine,Fluorescein<br>Rhodamine - b                                                                                                                             |                                                  |  |  |  |  |
| Water Soluble Alcohols:                                | Methyl, ethyl<br>isopropyl                                                                                                                                       |                                                  |  |  |  |  |
| Natural: anions:<br>cations:<br>stable isotope ratios: | C1 <sup>-</sup> , Br <sup>-</sup> , TIC<br>Na <sup>+</sup> / K <sup>+</sup> , SiO <sub>2</sub> ,<br>C,O,H                                                        | C,O,H                                            |  |  |  |  |
| UNIVERSITY<br>OF ALBERTA                               |                                                                                                                                                                  | ALBERTA                                          |  |  |  |  |

# Geophysical Techniques

- Borehole
  - open hole and cased hole logs
  - passive seismic
- Surface
  - surface reflection
  - $-2^{D}$ ,  $3^{D}$  surveys
  - VSP
  - gravity



#### **Monitoring Techniques**

#### -Geophysical Logs-

Visualization

Formation Evaluation

**Rock Mechanics** 

- Dip meter
- VSP
- Borehole imaging
- Resistivity
- Density
- Neutron
- Spectral gamma ray
- Magnetic resonance
- Temperature

Sonic (Vp)Full waveform sonic (Vp,Vs)



Monitoring use requires time lapse.





#### **Monitoring Techniques**

Seismic

EOR/Storage process results in change to acoustic impedance.

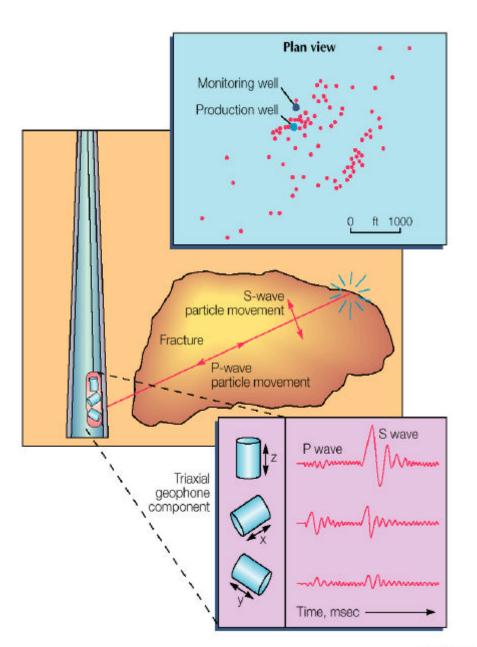


- 2D
- 3D
- 4D (3C)
- 4D (4C)

- Insitu
- CHT
- Microseismic (passive)

• VSP,HSP

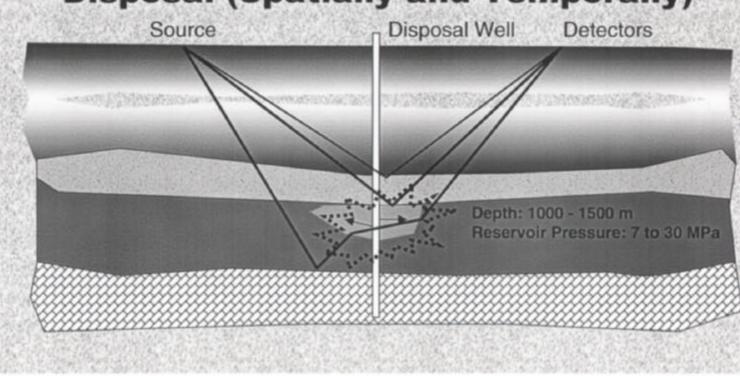



Monitoring use requires time lapse measurements.



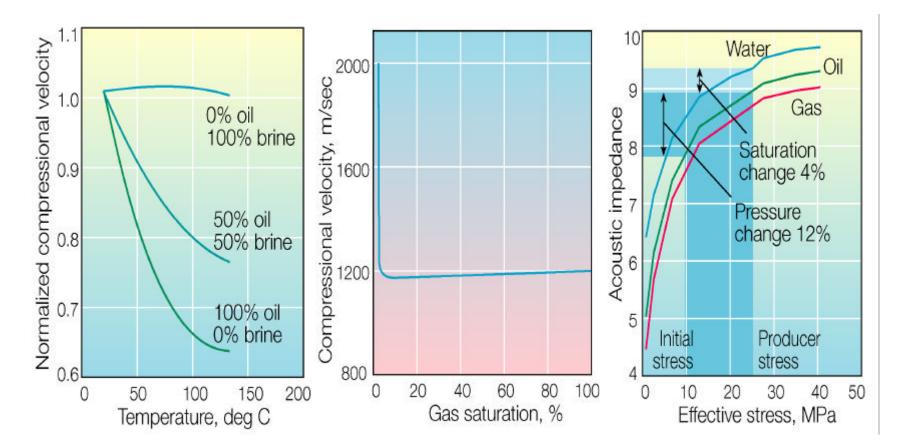
#### UNIVERSITY OF ALBERTA

#### Borehole Logging


- Open Hole
- Cased Hole
- Time Lapse

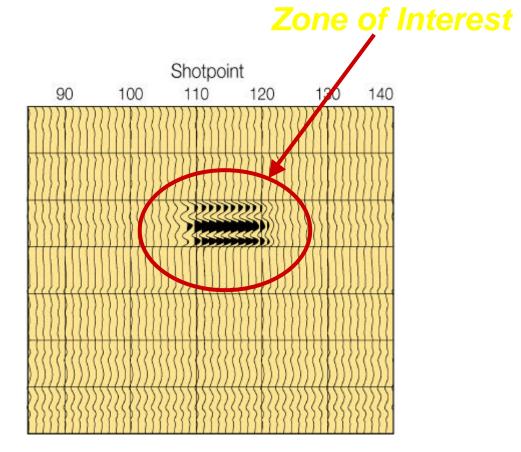





#### Seismic Monitoring for Acid Gas Disposal Processes

#### Detection of "Bubble" or Zone of Disposal (Spatially and Temporally)






#### Fundamentals





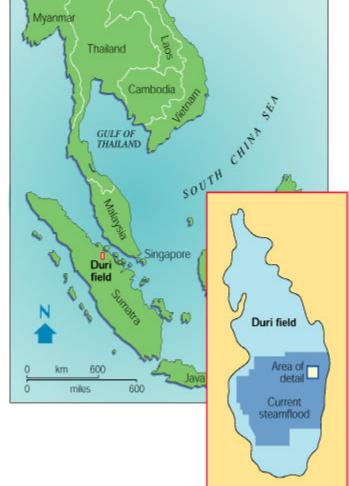
#### Surface Seismic Monitoring

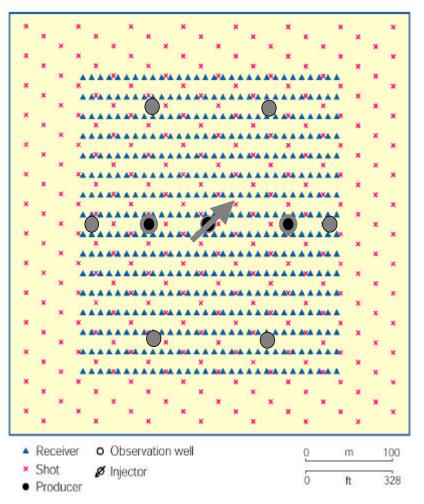


#### DIFFERENCE

| 90                                      | 100                                     | 5notpoi<br>110                          | 120       | 130     | 140  |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------|---------|------|
| mmmm                                    | mmm                                     | mmm                                     | mmm       | mm      | m    |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | mmm       | mm      | nn   |
| ******                                  | *****                                   | RRRRR                                   |           | 222222  | RR   |
|                                         |                                         |                                         | ******    | *****   | 222  |
| mann                                    | m m                                     | mm                                      | шхш       | unnu.   | 222  |
| uuuu                                    | uuuu                                    | uuuu                                    | uuuu      | uuuu    | uuu  |
|                                         |                                         |                                         |           |         |      |
|                                         |                                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           | mm      | »»»  |
| *****                                   | 3338333                                 | *****                                   | 33388333  | 333833  | 333  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | nnnn      | nnnn    | ım   |
| uuuu                                    | nnn                                     | uuuu                                    | mm        | uuuu    | nn   |
| \$\$\$\$\$\$\$\$\$                      | 33535555                                | \$\$\$\$\$\$\$                          | 555555555 | 5555555 | 3355 |
| ttttttttt                               | ttttttt                                 | tttttttt                                | tttttttt  | ttttttt | tttt |
|                                         |                                         |                                         |           |         |      |
| 5555555                                 | 555555                                  | 5555555                                 |           |         | 555  |

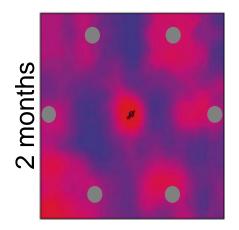
Obstaclet


#### BASE SURVEY

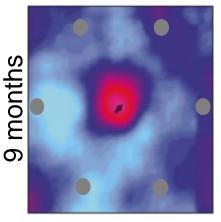

|                                         |                                         | Shotpoi                                 | nt                                      |                                         |                |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------|
| 90                                      | 100                                     | 110                                     | 120                                     | 130                                     | 140            |
| annan an                                | 11111111                                | annan a                                 | mmm                                     | 1111111                                 | 1111           |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                         |                                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | mmm                                     | nn             |
| mm                                      | mm                                      | mm                                      | mm                                      | mm                                      | $\overline{m}$ |
| mm                                      | uuuu                                    | uuuu                                    | uuuu                                    | mm                                      | nn             |
| mmm                                     | ))))))))                                | ))))))))                                | )))))))))                               | mm                                      | )))))          |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                         |                                         | 111/000                                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | m              |
|                                         |                                         |                                         |                                         |                                         |                |
|                                         |                                         |                                         | 1)) (2)200                              |                                         |                |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | )))))          |
| ******                                  | *******                                 | ??????????????????????????????????????? | ******                                  | *****                                   | 3333           |
| mmn                                     | mmn                                     | mmm                                     | nnnn                                    | mm                                      | ШĤ             |
| ******                                  | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS  | ssssss                                  | SSSSSS                                  | SSSS                                    | 11111          |
| *****                                   | 111111111111                            | 111111111111                            | 1555355555                              | 1111111111                              | 3555           |
| 22222222                                | mm                                      | 2222222                                 | 2222222                                 | 2222222                                 | 2222           |
| (ttititit)                              | ittititti                               | tttttttt                                | tttttttt                                | ttttttt                                 | 11111          |
|                                         |                                         |                                         |                                         |                                         |                |
| ****                                    | ****                                    | 5555555                                 | 555555                                  | 555555                                  | 5555           |
| mmm                                     | 11112011                                | 111111111                               | 11110111                                | nnnn                                    | nnn            |

#### MONITOR SURVEY

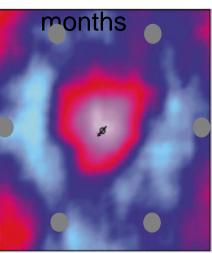



#### 4D (3D with time) Seismic

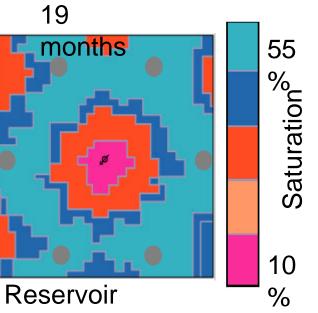








### Seismic Monitoring Results

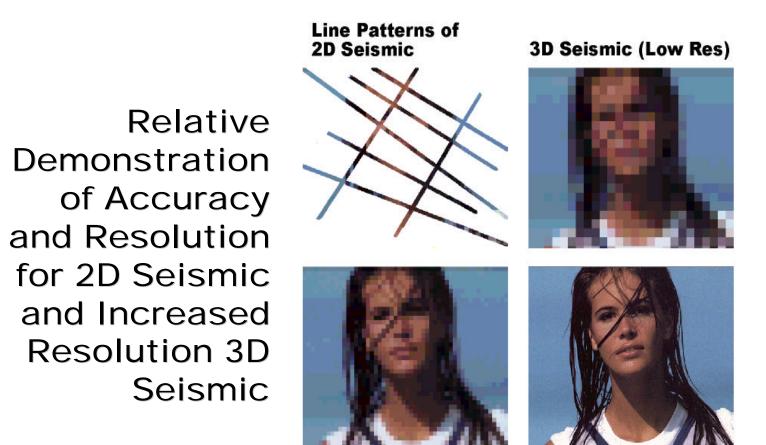



5 months



19



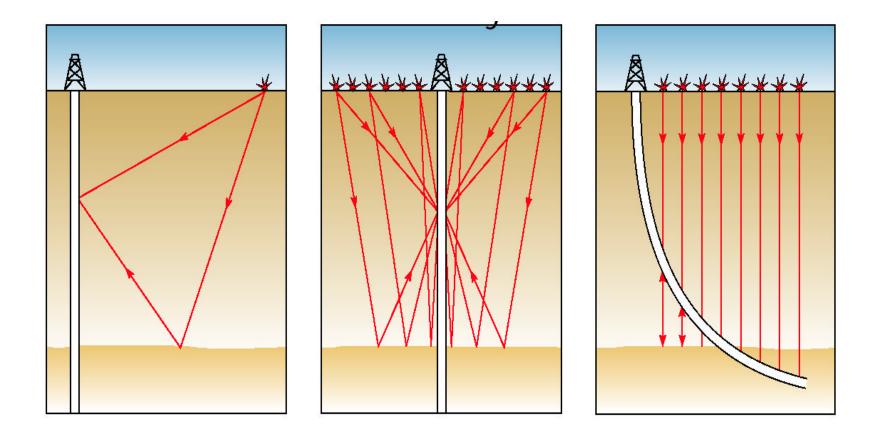





Cimulation

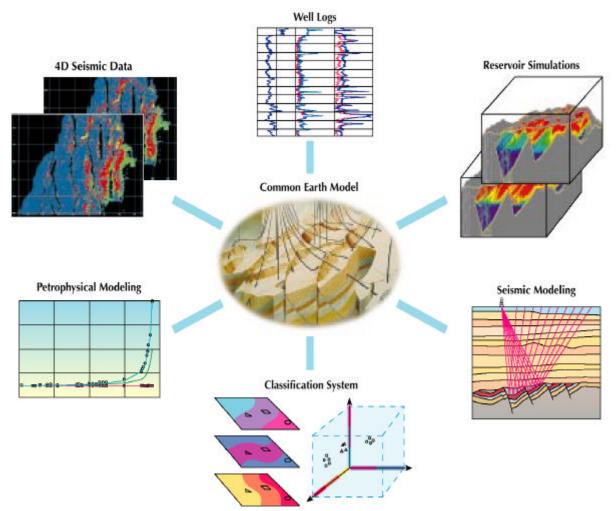


## Geophysical Monitoring




**3D Seismic (Med Res)** 

**3D Seismic (High Res)** 




#### Vertical Seismic Profiling





#### Integrated Monitoring

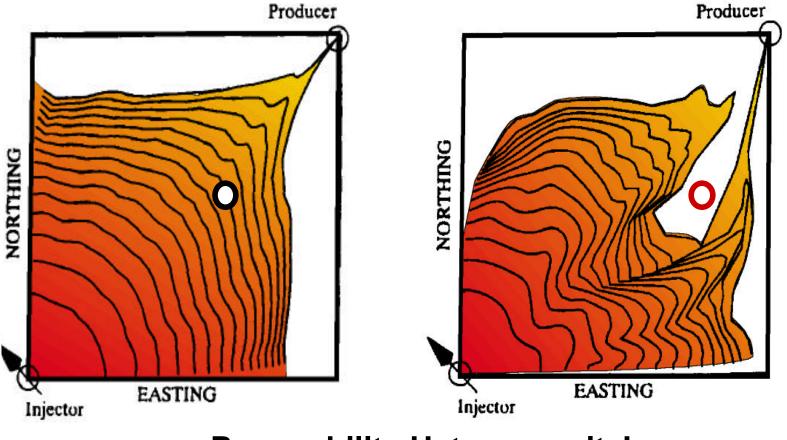




# Planning Monitoring Program

- definition of project conditions
- prediction of mechanisms that control behavior
- technical questions to be answered
- purpose of monitoring
- parameters to be monitored
- magnitude of change expected in parameters
- select instrumentation / monitoring systems
- instrument / monitoring locations

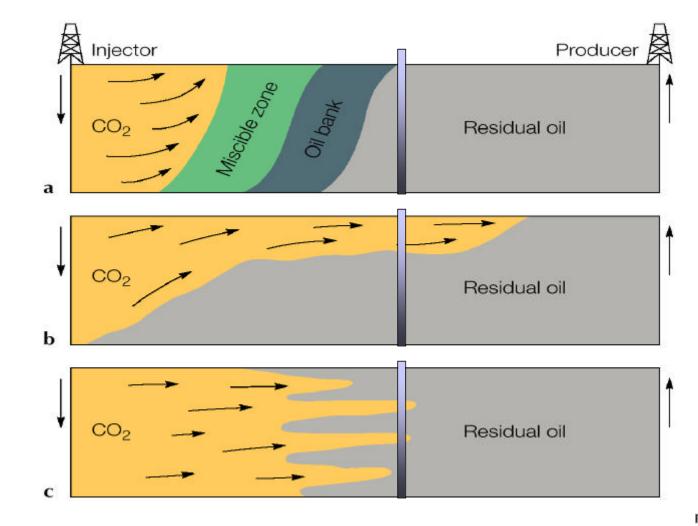



#### Select Locations for Instruments

- Injection Well ?
- Observation Well
  - if one well, where do you place the well?
  - if two wells, where are they placed?
  - Monitoring program should be designed to accommodate this
  - recoverable

OF ALBERTA




# Where would you put a Monitoring Well?



**Permeability Heterogeneity's** 



# At what Depth would you place the Instrumentation?



UNIVERS

**OF ALBERTA** 

ALBERTA RESEARCH

# EOR, UGS and CO<sub>2</sub> Disposal

- EOR: Short term of 10 years
- UGS: Medium term of 100 years
- CO<sub>2</sub> Disposal: Long term of ... years
- EOR: Injection/Production wells, Flooding
- UGS: Injection/Production well
  - stratigraphic trap for gas, porosity, permeability and adequate seal (caprock).
- CO<sub>2</sub> Disposal similar to UGS



## **EOR - CO<sub>2</sub> Flooding**

(Short Term "10 years)

Strategies

- CO<sub>2</sub> injection only
- WAG injection = Water alternating gas  $(CO_2)$
- Co-injection of water and CO<sub>2</sub>
- SAG injection = Surfactant in water alternating gas  $(CO_2)$  = Foam injection
- Horizontal injector, vertical producers



#### **EOR - CO<sub>2</sub> Flooding**

#### (Short Term "10 years)

Problems

- Asphaltene Ppt.
- Dissolving of carbonate uncommon minerals releases fines
- Wettability change
- Exceed fracture pressure uncommon
- Conformance

- uncommon

Frequency

- uncommon
- very common



OF ALBERTA

### **EOR - CO<sub>2</sub> Flooding**

#### (Short Term "10 years)

Monitoring Techniques Used

- Water chemistry: pH-7  $\longrightarrow$  4, Ca ++, Mg ++, HCO<sub>3</sub>
- Well logs: saturations (CO<sub>2</sub>, water, oil)
- Pressure: Fall off, Step injection, permeabilities parting pressure Multiwell surveys areal conformance
- Tracers:both water and gas
- Phase distribution: in production fluid
- Observational wells: P,T, phase distribution \*
- 4D seismic: gas front\*

\*from EOR – steam flooding



### **Under Ground Storage (UGS)**

(Medium term – 100 years)



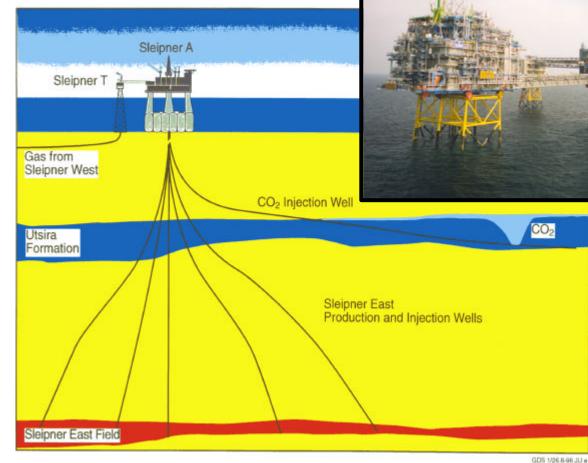
OF ALBERTA

- Caverns (e.g. salt)
- Depleted Gas Reservoirs
- Depleted Oil Reservoirs
- Aquifers (trapped)
- Natural CO<sub>2</sub> gas reservoirs



# **Under Ground Storage (UGS)**

#### (Medium term ~ 100 years)


#### Monitoring Techniques Used

- Tracers: Identify storage gas
- Micro-seismic: Identify shear-induced deformation
- Logs: Identify water movement
- Logs: Identify casing problems, leaks and gas movement behind pipe and cement, cement bond logs, cavern volume
- Injection/Production Pressures:

For inventory control, cavern integrity, fracture control, hydrate formation



# Sleipner CO<sub>2</sub> Facility





# Monitoring Sleipner

- Pressure Distribution
- Temperature Distribution
- CO<sub>2</sub> saturation data
- Storage Mechanisms ?
  - Stored as free CO<sub>2</sub>
  - chemically bonded in the rock
  - solubility in water
  - residual CO<sub>2</sub>
  - gravity instability containment



# Monitoring Sleipner

- Offshore monitoring program is expensive, especially when the focus may be on the confirmation or validation of the sequestration mechanics
- May not provide the level of resolution required in order to confirm / invalidate hypotheses (physics)



# Acid Gas Disposal in Alberta as Analogue to Sleipner

- Monitoring project following the same monitoring protocol developed for Sleipner.
- A monitoring project on an existing small scale acid gas disposal site in Alberta will allow the full scale application of proposed technology applications for Sleipner.
- By following the same workplan protocol, the Alberta results will serve as a significant technology evaluator prior to the costly offshore application of the technology.



# Summary

- Significant historical practice in the area of EOR and specifically, UGS is directly amenable to the design and implementation of CO<sub>2</sub> disposal projects
- Monitoring programs must be carefully planned.
- Systematic integration of operational, monitoring and simulation results will provide the most sound assessment of CO<sub>2</sub> disposal processes in aquifers.

