# **APPENDIX D**

**GROUND WATER MODEL** 

PERMIT 15000 FEASIBILITY STUDY

# **APPENDIX D: TABLE OF CONTENTS**

| LIST OF TABLES                               | , II                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIST OF FIGURES                              | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LIST OF ATTACHMENTS                          | IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| GROUND-WATER MODEL                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Introduction                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Previous Studies                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ground-Water Model Construction              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D.3.1 Model Area and Grid Layout             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D.3.2 Modeled Time Periods                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D.3.3 Initial and Boundary Conditions        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D.3.4 Ground-Water Flow Model Properties     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Calibration Process                          | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D.4.1 Water Level Data                       | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D.4.2 Ysidora Stream Gage                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Model Output                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Water Budget                                 | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Model Scenarios of Anticipated Basin Changes | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                              | LIST OF TABLES<br>LIST OF FIGURES<br>LIST OF ATTACHMENTS<br>GROUND-WATER MODEL<br>Introduction<br>Previous Studies<br>Ground-Water Model Construction<br>D.3.1 Model Area and Grid Layout<br>D.3.2 Modeled Time Periods<br>D.3.3 Initial and Boundary Conditions<br>D.3.4 Ground-Water Flow Model Properties<br>Calibration Process<br>D.4.1 Water Level Data<br>D.4.2 Ysidora Stream Gage<br>Model Output<br>Water Budget<br>Model Scenarios of Anticipated Basin Changes |

# **APPENDIX D:** LIST OF TABLES

| TABLE        | PA                                                            | GE  |
|--------------|---------------------------------------------------------------|-----|
| Table D - 1  | Active Model Cells                                            | 5   |
| Table D - 2  | October 1979 Measured and Simulated Water Levels (feet, msl)  | 5   |
| Table D - 3  | General Head Boundary Parameters                              | 6   |
| Table D - 4  | Model Input: Average Annual Streamflow (af/wy)                | 7   |
| Table D - 5  | Model Input: Average Monthly Streamflow (af/wy)               | 8   |
| Table D - 6  | WY 1980 - 1999 Minor Tributary and Alluvium Simulated Runoff  | .11 |
| Table D - 7  | Average Monthly Minor Tributary and Alluvium Runoff           | .11 |
| Table D - 8  | Production Well Inventory                                     | .13 |
| Table D - 9  | Modeled Hydraulic Parameters                                  | .15 |
| Table D - 10 | Model Input: ET Densities and Aerial Coverage by Sub-Basin    | .16 |
| Table D - 11 | Monitoring Well Water Level Data                              | .17 |
| Table D - 12 | Model Calibration Average Annual Water Budget for 1980-1999   | .19 |
| Table D - 13 | Summary of Model Scenarios for Anticipated Basin Changes      | .20 |
| Table D - 14 | Summary of Ground-Water Production Schedules                  | .21 |
| Table D - 15 | Anticipated Basin Changes Average Annual Water Budget (af/wy) | .22 |

| FIGURE      | FOLLOWING PAGE                                                             |
|-------------|----------------------------------------------------------------------------|
| D-1         | Modeled Santa Margarita River WatershedD-3                                 |
| D-2         | Cross-Section of Three Sub-Basins in Lower Santa Margarita River D-4       |
| D-3         | Ground-Water Model Boundary Conditions and Active Cells D-4                |
| D-4         | Initial Ground-Water Level ContoursD-5                                     |
| D-5         | Modeled Stream Construction D-7                                            |
| D-6         | Monthly Streamflow at Model Boundaries and Ysidora Gage D-9                |
| D-7         | Well Loc ations within the Model Area D-13                                 |
| D-8         | Simulated Hydraulic Conductivities D-14                                    |
| D-9         | Simulated Recharge Zones D-15                                              |
| D-10        | Simulated Evapotranspiration Zones and DensityD-16                         |
| <b>D-11</b> | Measured vs Simulated Water LevelsD-18                                     |
| D-12        | Measured vs Simulated Flows at the Ysidora Gage D-18                       |
| D-13        | Gaining and Loosing Stream Segments during Dry and Wet Stress Periods D-18 |
| D-14        | F1 and F2 Annual Pumping SchedulesD-20                                     |
| D-15        | Proposed Well Locations within the Model AreaD-20                          |
| D-16        | F3 Annual Pumping Schedules for Different Hydrologic Conditions            |

# **APPENDIX D: LIST OF ATTACHMENTS**

| Attachment 1: | Stream Package | e Input for Stress Period 1                                                                                      |
|---------------|----------------|------------------------------------------------------------------------------------------------------------------|
| Attachment 2: | Model Input:   | Simulated Diversions from the Santa Margarita River<br>Waste Water Oxidation Ponds<br>Simulated Recharge Package |
| Attachment 3: | Production Wel | 1 Summary                                                                                                        |

Stetson Engineers Inc. / North State Resources D-iv March 23, 2001

# **D.1 INTRODUCTION**

A ground-water flow model (Model) was developed to simulate the impacts to the ground-water basin due to historical hydrology and water management practices that affects the hydrologic condition of the Upper Ysidora, Chappo, and Lower Ysidora sub-basins. The Model also provides the necessary tool to measure the changes in ground-water conditions and the potential affect to riparian vegetation and streamflow in the study area, as various stresses are applied in relationship with development of Permit 15000. Changes in ground-water pumping, streamflow, diversions, and wastewater production are simulated so that each of these stresses can be reviewed to estimate their potential impact to the condition and health of the Santa Margarita River and the sub-basins. The impacts of these stresses were measured as changes in the overall water budget, changes in ground-water levels, and changes in evapotranspiration (ET) demands.

The Model described in this appendix is used to estimate the impact of each of four different project alternatives that could be constructed to perfect Permit 15000 and expand the Base's diversion of water from the Santa Margarita River. Equally important, the Model described in this report may also be used in the future as a management tool to determine the best location for ground-water pumping, effects of adding or removing sources of water from the basin, and use in negotiations with local, state and federal regulators. A particle tracking or contaminant transport package may also be added to the Model to estimate the impacts of pumping and hydrologic conditions on the transport and movement of organic and inorganic compounds in each of the three sub-basins. The Model is the compilation of all environmental, wastewater, and water supply data on the Base and should be managed and maintained into the future in order to maximize water supply and minimize impact to the environment.

# **D.2 PREVIOUS STUDIES**

Two previous modeling studies were considered for compilation of the Model used to address concerns for Permit 15000's impact to ground water. The original base data for the Chappo and Upper Ysidora ground-water model was constructed from LAW/Crandall's work for the Department of the Navy, Southwest Division (1995). A ground-water model was later developed by IT Corporation to simulate the movement of volatile organic compounds (VOC) in the Chappo sub-basin (IT Corporation, 1996). In September 2000, Stetson Engineers extended the boundary of the original LAW/Crandall ground-water model to include the Lower Ysidora sub-basin and all contributions made by wastewater discharge to the Lower Santa Margarita River Basin (The Environmental Company, 2000).

Both LAW/Crandall and IT Corporation conducted aquifer pumping tests to obtain hydraulic properties of the sub-basins, which were summarized in their reports and used to develop their respective models. IT Corporation's contaminant modeling work was used to verify hydrogeologic conditions within the Chappo sub-basin and placement of proposed production wells.

The ground-water model constructed for Camp Pendleton by Law/Crandall, Inc. (1995) was used to evaluate the potential effect of production wells on contaminant migration within the Chappo sub-basin. A MODFLOW<sup>™</sup> flow model was coupled with MODPATH<sup>™</sup>, a particle tracking model, to simulate flow within the drinking water supply basins. The MODFLOW<sup>™</sup> river package was used to simulate recharge from the river to the ground-water aquifer. The river was simulated as a loosing stream throughout the model domain. The model was based on annual time-steps and assumed a continuous, steady source of water in the river. Hydraulic properties obtained from aquifer pumping tests were used in the model and summarized in their report. Their study was based upon average monthly pumping at the Upper Ysidora and Chappo production wells, and considered the effects of four proposed production wells. LAW/Crandall's study concluded that construction of a new well in the Lower Chappo might increase the potential for contaminants to be drawn into existing wells, and proposed three new production wells to be located in the Upper Ysidora.

A ground-water flow and contaminant transport model was used to study migration of VOC (volatile organic compounds) impacted ground water in the Chappo sub-basin as part of the draft Remedial Investigation and Feasibility Study for Operable Unit 2 (IT Corporation, 1996). The model was constructed to evaluate different remedial alternatives with respect to the VOCs located in the 22/23 Area of Camp Pendleton. The options included no action, pump and treat, and pumping/injecting scenarios. Given the highly porous media of the Chappo and the effects of dilution and dispersion, it was estimated that the impacted ground water would return to background conditions by natural attenuation within 10 years, and therefore no further action was recommended.

The two models described in this section represent the numerical ground-water modeling efforts previously performed on the Lower Santa Margarita Basin. In addition to these numerical models, development of analytical and spreadsheet models that account for the interaction between surface and ground water have been conducted by The Environmental Company (September 2000), Fallbrook Public Utility District (Fallbrook PUD, 1994) and Camp Pendleton (Leedshill, 1989).

The selected numerical model, MODFLOW<sup>™</sup> (McDonald and Harbaugh, 1988) is a three-dimensional ground-water flow model developed by the USGS. MODFLOW<sup>™</sup> uses mathematical expressions to represent the ground-water flow system, including initial conditions,

boundary conditions, hydrogeologic attributes of the aquifer, and simplifying assumptions that capture the heterogeneities of the subsurface.

# D.3 GROUND-WATER MODEL CONSTRUCTION

The selected numerical model, MODFLOW<sup>™</sup> (McDonald and Harbaugh, 1988) is a three-dimensional finite-difference ground-water flow model code developed by the USGS. This computer code was chosen because of its flexibility in the type and number of hydrogeologic components that can be used to properly simulate the ground-water basin. The Santa Margarita River Basin model was developed using the streamflow, evapotranspiration, recharge, pumping, and general head boundary modules (or packages) of MODFLOW<sup>™</sup>. The data development for these different model input parameters are described in this section of the appendix.

The Model consists of 2 layers, 202 rows, 90 columns, and 7,390 active cells. A 20-year calibration period from water year (WY) 1980 through 1999 was established to simulate extended wet and dry periods. Monthly stress periods were simulated to capture the seasonal variations observed in existing water level and stream gage data. The Santa Margarita River was simulated to have the flexibility to be a gaining, loosing, or dry stream at different stream reaches or with different seasonal variations.

# D.3.1 MODEL AREA AND GRID LAYOUT

The model area extends from the bedrock narrows just north of the Naval hospital to the narrows just south of the Lower Ysidora. The areal extent is comprised of the Upper Ysidora, Chappo, and Lower Ysidora alluvial sub-basins (Figure D-1). The northeast model boundary was located approximately 3,600 feet north of the existing diversion structure to minimize boundary effects at the diversion weir and channel. The southwest model boundary was established just north of the estuary and does not consider any tidal influence. The active modeled area of the three sub-basins is approximately 4,100 acres, and the surrounding watershed drainage area is approximately 11,800 acres.

The Model was constructed with two layers representing the Upper and Lower Alluvium of the Santa Margarita River Basin. The Lower Alluvium is generally more coarse-grained than the Upper Alluvium, except in the Upper Ysidora sub-basin where the entire section consists of coarse sand and gravel. These two units are the main ground-water bearing formations. The total thickness of the alluvium increases downstream from about 120 feet at the De Luz Creek confluence to about 200 feet near the coast. Each layer was discretized into 202 rows and 90 columns with 200-foot by 200-foot spacing.



Top elevations at active model cells were assigned from a 5-foot contour interval topographical survey provided by the Base (MCB-CP, 1999) as GIS coverage. The surrounding no-flow model cells were based on 20 foot contour intervals from USGS topographical maps (1968 Morro Hill; 1975 Oceanside, 1975 San Luis Rey, and 1968 Las Pulgas Canyon). Two layers were chosen to represent the alluvial aquifer in all three sub-basins. Well logs and cross sections of the Lower Santa Margarita River ground-water basin (Worts and Boss, 1954; Slemon, 1978) show a coarser (cobbles, gravel, and sand) lower alluvium beneath a finer (gravel, sand, silt, and clay) upper alluvium. Though the ground-water basin is considered to be one aquifer, the two layers allow for the simulation of variable materials. Well logs and geologic cross sections were used to determine the elevations of the interface of the upper and lower alluvium and the depth to bedrock (Figure D-2; Worts and Boss, 1954). There is a general downward slope of the interface between the two layers from the northeast edge (south of the De Luz confluence) of the model domain toward the southwest edge (Lower Ysidora Narrows). The finite-difference grid was constructed to account for the changes in elevations and downward slope of the surface and contacts from northeast to southwest.

### **D.3.2 MODELED TIME PERIODS**

Water years 1980 through 1999 were chosen for the calibration period. This interval of time was selected because it contained consecutive years with below normal and above normal hydrogeologic conditions (precipitation and streamflow) and continuous field data for model input. The data reviewed included USGS streamflow gage records, precipitation databases, production well records, and historical Water Master Reports for Lake O'Neill release/spill and river diversion information.

The steady-state Model was constructed with monthly stress periods. During each stress period, streamflow, recharge, evapotranspiration, pumping rates, etc. remained constant. Average values for each month were used as input into the Model for each of these parameters, such that the Model simulates average constant conditions throughout each month. The average monthly values accounted for variation in the seasonal natural system with the highest streamflows and precipitation occurring during the winter season and a dry climate occurring during the summer and autumn.

# **D.3.3 INITIAL AND BOUNDARY CONDITIONS**

# D.3.3.1 No-Flow and Active Cells

The bedrock units to the east and west of the river's alluvial sub-basins were simulated as no-flow boundaries and considered as inactive cells without contributing to ground-water flow. Although there is some subsurface flow though the bedrock, it is generally considered to be non-water-bearing due to very low permeability. Figure D-3 displays the active and no flow cells for



#### FIGURE D-3



the two Model layers. Layers 1 and 2 contain approximately 4,600 and 2,800 active model cells, respectively. Table D-1 summarizes the active cell area for the three sub-basins.

| Sub-Basin        | # Active Cells |         | Active Cel | ll Area (ac) | Average Active Cell<br>Thickness (ft) |         |
|------------------|----------------|---------|------------|--------------|---------------------------------------|---------|
|                  | Layer 1        | Layer 2 | Layer 1    | Layer 2      | Layer 1                               | Layer 2 |
| Upper<br>Ysidora | 916            | 618     | 840        | 570          | 56                                    | 81      |
| Chappo           | 2,353          | 1,290   | 2,160      | 1,180        | 60                                    | 90      |
| Lower<br>Ysidora | 1,310          | 903     | 1,200      | 830          | 89                                    | 133     |
| Total            | 4,579          | 2,811   | 4,200      | 2,580        | n/a                                   | n/a     |

 TABLE D - 1
 ACTIVE MODEL CELLS

#### D.3.3.2 Initial Water Levels (Ground-Water Head)

Through an interative process, beginning with WY 1980 average water levels and ending with simulated October 1979 water levels, initial water level conditions were established for the Model. Available measured water level data at 5 monitoring wells during this first simulated month were used to confirm these initial conditions. Table D-2 compares simulated initial ground-water levels with October 1979 measured and the WY 1980 average annual values. Figure D-4 shows the initial ground-water level contours.

| Monitoring Well | Sub-Basin     | WY 1980 Average<br>Annual Water Level | Oct 1979 Measured<br>Water Level | Simulated Initial<br>Water Level |
|-----------------|---------------|---------------------------------------|----------------------------------|----------------------------------|
| 10/4-7J1        | Upper Ysidora | 87                                    | 85                               | 85                               |
| 10/4-18L1       | Chappo        | 67                                    | 65                               | 64                               |
| 10/5-24N1       | Chappo        | 50                                    | 47                               | 48                               |
| 10/5-35K5       | Lower Ysidora | 22                                    | 21                               | 21                               |
| 11/5-2N4        | Lower Ysidora | 11                                    | 10                               | 11                               |

 TABLE D - 2
 OCTOBER 1979 MEASURED AND SIMULATED WATER LEVELS (FEET, MSL)



Lower Santa Margarita River



#### D.3.3.3 Modeled General Head Boundaries and Underflow

General head boundaries were established at the upgradient (northeast) and downgradient (southwest) active cells in both layers to simulate subsurface underflow. Underflow into and out of the Model domain is controlled by the general head boundary and the simulated ground-water head within the aquifer. A general head boundary has more flexibility than a constant head boundary by establishing a theoretical reservoir head at a certain distance from the Model boundary that the model can draw upon for underflow into the Model domain. This allows for some seasonal water level fluctuations at the boundaries. The following table summarizes the parameters were used in establishing the general head boundaries within the different layers at the upgradient and downgradient active cells. Conductance (C) across an active cell surface is calculated by the following equation:

| $C = K_b (A/B)$ | where: | K <sub>b</sub> | = hydraulic conductivity of the boundary material (L/T) |
|-----------------|--------|----------------|---------------------------------------------------------|
|                 |        | А              | = area of the boundary $(L^2)$ ; and                    |
|                 |        | В              | = thickness or width of boundary (L).                   |

| Parameter                              | Northeast Upg                     | gradient GHB                      | Southwest Downgradient GHB        |                                   |  |
|----------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--|
| Taraneter                              | Layer 1                           | Layer 2                           | Layer 1                           | Layer 2                           |  |
| Head @ Boundary                        | 132.18 ft, msl                    | 132.18 ft, msl                    | 9.82 ft, msl                      | 9.82 ft, msl                      |  |
| Avg Saturated Thickness of Cell        | 35 feet                           | 65 ft                             | 74 ft                             | 84 ft                             |  |
| Width of Cell                          | 200 ft                            | 200 ft                            | 200 ft                            | 200 ft                            |  |
| Gradient from Model Domain to Boundary | .00218 ft/ft<br>(11.5 ft / mile)* |  |
| Distance to Boundary                   | 1000 ft                           | 1000 ft                           | 1000 ft                           | 1000 ft                           |  |
| Hydraulic Conductivity                 | 338 ft/day                        | 451 ft/day                        | 37 ft/day                         | 338 ft/day                        |  |
| Avg Calculated Conductance             | 2400 ft <sup>2</sup> /day         | $5700 \text{ ft}^2/\text{day}$    | 550 ft <sup>2</sup> /day          | 5700 ft <sup>2</sup> /day         |  |
| Estimated Underflow                    | 18 af/m                           | 18 af/m                           | 5 af/m                            | 35 af/m                           |  |

#### TABLE D - 3 GENERAL HEAD BOUNDARY PARAMETERS

\* from Troxell and Hofmann, 1954

# D.3.3.4 Modeled Streamflow

The MODFLOW<sup>™</sup> streamflow package was used to simulate the flow of the Santa Margarita River, including minor tributary drainages, historical oxidation pond discharges, diversions, Lake O'Neill spills and releases, and the river system's interaction with the alluvial aquifer. The streamflow package is able to account for flow in the river and whether a river reach is gaining water from or losing water to the aquifer. The USGS developed the Streamflow Package to account for intermittent rivers typical in the southwestern United States, like the

Santa Margarita River. It permits rivers to go dry and then re-wet if ground water becomes available further downstream. The major inflows to the river that were simulated are: surface flow into the top of the Model domain, ground-water discharge into the river, wastewater discharge from Oxidation Ponds 1, 2, 3, 8, and 13 (after evaporation and infiltration to ground-water), recoverable runoff from minor side tributary drainages (Figure D-5), and spills and releases from Lake O'Neill. The major outflows from the river that were simulated include surface flow leaving the southern end of the model domain, infiltration to ground water, and diversions to the recharge ponds and Lake O'Neill. Table D-4 summarizes the Model input streamflow data on an annual basis throughout the 20 year simulated time period. Table D-5 presents the same information summarized by average annual monthly volumes. The average monthly streamflow volumes demonstrates the seasonal nature of the hydrologic conceptual site model.

| AF/WY       | SMR       | Lake<br>O'Neill<br>Spill | Lake<br>O'Neill<br>Release | Ox<br>Ponds | Minor<br>Tribs | Active<br>Cell<br>Runoff | Subtotal  | Div    | Balance   |
|-------------|-----------|--------------------------|----------------------------|-------------|----------------|--------------------------|-----------|--------|-----------|
| 1980        | 175,417   | 3,961                    | 700                        | 2,307       | 5,755          | 1,790                    | 189,930   | 0      | 189,930   |
| 1981        | 21,149    | 0                        | 700                        | 2,142       | 732            | 0                        | 24,724    | 0      | 24,724    |
| 1982        | 57,715    | 330                      | 700                        | 1,956       | 3,125          | 418                      | 64,244    | 0      | 64,244    |
| 1983        | 82,811    | 1,658                    | 700                        | 2,195       | 3,153          | 535                      | 91,052    | 7,845  | 83,207    |
| 1984        | 22,888    | 1,009                    | 700                        | 2,122       | 1,131          | 180                      | 28,030    | 1,990  | 26,041    |
| 1985        | 20,450    | 473                      | 700                        | 2,360       | 897            | 314                      | 25,194    | 3,261  | 21,932    |
| 1986        | 46,545    | 1,727                    | 700                        | 1,961       | 3,509          | 411                      | 54,853    | 7,937  | 46,916    |
| 1987        | 12,246    | 1,296                    | 700                        | 2,695       | 603            | 0                        | 17,540    | 2,371  | 15,169    |
| 1988        | 32,493    | 1,251                    | 700                        | 3,153       | 2,353          | 113                      | 40,063    | 3,029  | 37,034    |
| 1989        | 16,267    | 1,150                    | 700                        | 2,486       | 1,131          | 260                      | 21,994    | 3,641  | 18,353    |
| 1990        | 9,256     | 186                      | 700                        | 2,365       | 579            | 0                        | 13,086    | 3,623  | 9,463     |
| 1991        | 53,443    | 1,840                    | 700                        | 1,972       | 1,837          | 286                      | 60,078    | 6,136  | 53,942    |
| 1992        | 32,780    | 840                      | 700                        | 2,061       | 2,593          | 296                      | 39,271    | 6,163  | 33,108    |
| 1993        | 224,666   | 5,680                    | 700                        | 2,422       | 3,822          | 1,233                    | 238,522   | 697    | 237,825   |
| 1994        | 16,866    | 0                        | 700                        | 970         | 529            | 0                        | 19,065    | 3,759  | 15,306    |
| 1995        | 99,762    | 2,742                    | 700                        | 933         | 3,157          | 1,080                    | 108,374   | 1,602  | 106,772   |
| 1996        | 11,910    | 0                        | 700                        | 856         | 244            | 0                        | 13,709    | 1,099  | 12,610    |
| 1997        | 21,060    | 0                        | 700                        | 949         | 2,059          | 486                      | 25,254    | 3,633  | 21,621    |
| 1998        | 100,677   | 2,363                    | 700                        | 917         | 1,275          | 745                      | 106,676   | 4,659  | 102,017   |
| 1999        | 9,365     | 0                        | 700                        | 902         | 453            | 0                        | 11,421    | 2,955  | 8,466     |
| Average     | 53,388    | 1,325                    | 700                        | 1,886       | 1,947          | 407                      | 59,654    | 3,220  | 56,434    |
| Median      | 27,690    | 1,079                    | 700                        | 2,092       | 1,556          | 291                      | 33,651    | 3,145  | 30,505    |
| 20 Yr Total | 1,067,765 | 26,505                   | 14,000                     | 37,726      | 38,938         | 8,146                    | 1,193,080 | 64,400 | 1,128,680 |

 TABLE D - 4
 MODEL INPUT: AVERAGE ANNUAL STREAMFLOW (AF/WY)



| Avg AF/M    | SMR    | Lake<br>O'Neill<br>Spill | Lake<br>O'Neill<br>Release | Ox<br>Ponds | Minor<br>Tribs | Active<br>Cell<br>Runoff | Subtotal | Div   | Balance |
|-------------|--------|--------------------------|----------------------------|-------------|----------------|--------------------------|----------|-------|---------|
| Oct         | 960    | 6                        | 0                          | 149         | 48             | 0                        | 1,163    | 17    | 1,147   |
| Nov         | 2,286  | 36                       | 700                        | 155         | 198            | 17                       | 3,392    | 38    | 3,353   |
| Dec         | 2,778  | 4                        | 0                          | 167         | 227            | 49                       | 3,225    | 144   | 3,081   |
| Jan         | 11,887 | 174                      | 0                          | 175         | 644            | 207                      | 13,089   | 409   | 12,680  |
| Feb         | 15,750 | 456                      | 0                          | 169         | 323            | 84                       | 16,782   | 784   | 15,999  |
| Mar         | 11,893 | 473                      | 0                          | 174         | 381            | 50                       | 12,972   | 823   | 12,149  |
| Apr         | 3,273  | 115                      | 0                          | 151         | 74             | 0                        | 3,614    | 561   | 3,053   |
| May         | 1,856  | 49                       | 0                          | 151         | 1              | 0                        | 2,057    | 337   | 1,720   |
| Jun         | 945    | 5                        | 0                          | 149         | 1              | 0                        | 1,099    | 79    | 1,020   |
| Jul         | 569    | 2                        | 0                          | 151         | 10             | 0                        | 733      | 15    | 718     |
| Aug         | 429    | 0                        | 0                          | 152         | 0              | 0                        | 580      | 7     | 573     |
| Sep         | 762    | 4                        | 0                          | 143         | 39             | 0                        | 949      | 6     | 942     |
| Avg Mo.     | 4,449  | 110                      | 58                         | 157         | 162            | 34                       | 4,971    | 268   | 4,703   |
| Med Mo.     | 2,071  | 21                       | 0                          | 151         | 61             | 0                        | 2,641    | 111   | 2,529   |
| Ttl Avg Anl | 53,388 | 1,325                    | 700                        | 1,886       | 1,947          | 407                      | 59,654   | 3,220 | 56,434  |

 TABLE D - 5
 MODEL INPUT: AVERAGE MONTHLY STREAMFLOW (AF/WY)

### Simulated Stream Geometry and Conductance

Stream geometry encompasses the location of the river within the basin, streambed width and length within a Model cell, and the streambed thickness. The following two reports were used to establish these parameters for the Model:

- Santa Margarita River Sedimentation Study; Phase I: Preliminary Hydraulic and Sediment Transport Analyses. Northwest Hydraulic Consultants (NCH); February 1997
- Draft Report: Santa Margarita River Hydrology, Hydraulics and Sedimentation Study. WEST Consultants Inc. (WEST); September 1999.

Changes in the river's low-flow channel location have been recorded since 1879 (NHC, 1997). The most recent change occurred during the flood event of January 1993, within the timeframe of the Model. Figure D-5 shows the location established in the Model for the stream and minor tributaries, diversion, and canals. Streambed conductance ( $C_{str}$ ) values for each stream cell representing the Santa Margarita River were calculated from WEST's stream geometry profiles, using the following equation:

The length of each stream cell was 200 feet and the width varied from 80 feet to 1,060 feet (WEST, 1999). Streambed thickness ranged from 6 to 12 feet. The streambed conductance for each Model stream cell was held constant throughout all stress periods of the model run. This simplifying assumption does not account for the seasonal change in the width of the streambed as the river widens and narrows with available water. For minor tributary drainages, the conductance was set to 500 ft/d, whereas conductance of the Santa Margarita River stream cells was estimated to range from 400 to 8800 ft/day. The conductance of the diversion channel was set to 5 ft/d to avoid any double counting of recharge volume at the ponds. Attachment 1 following this appendix shows the MODFLOW<sup>™</sup> Streamflow Package, including the stream elevation and streambed conductance for all stream segments and reaches. The stream segment order, side tributaries, diversions and canals, and oxidation pond discharges to the river are shown in Figure D-5.

# Santa Margarita River Streamflow from WY 1980 through 1999

The Santa Margarita River has a dominating influence on the hydrogeologic conditions within the Model domain. The Santa Margarita River is often dry for several months of the year in parts of the Chappo and Lower Ysidora sub-basins. In extremely dry years, there has been no flow at all reaching the ocean. In extremely wet years, the average daily flow has reached as high as 19,500 cfs and the peak daily flow has exceeded 44,000 cfs (January 1993). The hydrologic variability of the Santa Margarita River makes it both a powerful and vulnerable source of water for its many users (Figure D-6). As shown in Table D-5, the average monthly streamflow during the calibration period at the top of the Model boundary is 4,450 af of water, ranging from a 20 year average of 430 af/m in August to 15,750 af/m in February.

# Diversions from the Santa Margarita River from WY 1980 through 1999

River water was diverted for ground-water recharge in percolation basins and to fill Lake O'Neill. Attachment 2 contains the simulated monthly historical diversions from the Santa Margarita River from WY 1980 through 1999. The diversion structure and ponds were under maintenance an repair during the first part of the simulated time period. The river over-banked and by-passed the ground-water recharge basins during the 1993 flood event. Average annual diversions from WY 1980 through 1999 to Lake O'Neill was 490 af/wy, ranging from 0 to 1,340 af/wy.

# Lake O'Neill Spill and Release from WY 1980 through 1999

Historically, Lake O'Neill receives surface diversions from the Santa Margarita River, inflow from the surrounding watershed (including Fallbrook Creek), and direct precipitation. A spreadsheet analysis was performed to proportion the available water on a monthly basis to





Figure D - 6

evaporation off of the lake surface, spills at the spillway, and the annual November release. Spills and releases from Lake O'Neill were estimated from Annual Watermaster Reports, and Fallbrook Creek streamflow was used from the USGS stream gage on Fallbrook Creek. Table D-4 and 5 show the estimated annual summary for each of these inflows and outflows for the calibration period, WY 1980 through WY 1999. Appendix E describes the surface water analysis for full diversions to Lake O'Neill under the pre-1914 water right and proposed Permit 15000 diversions to Lake O'Neill.

#### Minor Tributary Drainage and Surface Runoff from WY 1980 through 1999

Precipitation runoff into the model domain is estimated to comprise approximately 3.6% of the Santa Margarita River surface flow in the three sub-basin. Local runoff generated by precipitation events is dependent on soil characteristics, land slopes, existing soil moisture, storm intensity, and storm duration. Due to these factors, the runoff varies greatly from year to year, month to month, and location to location. Within the alluvial floodplain on Camp Pendleton, runoff is generally minimal due to the flatness of topography, undeveloped characteristic of the area, and sandy soil. In the foothills and mountainous areas dominated by bedrock formations, runoff may be significant during large precipitation events. The minor tributary runoff was calculated as part of the stream analysis in Appendix E.

The watershed drainage area for the active model cells is shown in Figure D-1. Tables D-6 below shows each of the 20 minor tributary drainage areas and the alluvium surface area of the valley floor, along with the water runoff volume proportioned to each. Table D-7 shows the same information as average monthly volumes and demonstrates the seasonal distribution of runoff.

| Stream<br>Segment | Minor<br>Tributary<br>Drainage | Area<br>(acre) | Average<br>(af/wy) | Median<br>(af/wy) | Total<br>(af/ 20 wy) |
|-------------------|--------------------------------|----------------|--------------------|-------------------|----------------------|
| 2                 | E Trib 1                       | 330            | 60                 | 60                | 1,150                |
| 6                 | W Trib 1                       | 1,600          | 260                | 200               | 5,150                |
| 8                 | W Trib 2                       | 370            | 60                 | 50                | 1,190                |
| 15                | E Trib 2                       | 150            | 30                 | 20                | 510                  |
| 17                | E Trib 3                       | 150            | 190                | 120               | 3,890                |
| 20                | E Trib 4                       | 190            | 30                 | 30                | 640                  |
| 22                | W Trib 3                       | 1,720          | 220                | 150               | 4,430                |
| 25                | W Trib 4                       | 1,220          | 130                | 90                | 2,610                |
| 28                | E Trib 5                       | 540            | 90                 | 90                | 1,860                |
| 29                | E Trib 6                       | 620            | 110                | 100               | 2,122                |
| 34                | W Trib 5                       | 620            | 50                 | 30                | 990                  |
| 35                | W Trib 6                       | 160            | 50                 | 40                | 1,000                |
| 37                | W Trib 7                       | 380            | 70                 | 50                | 1,330                |
| 40                | W Trib 8                       | 430            | 80                 | 70                | 1,610                |
| 42                | E Trib 7                       | 790            | 140                | 130               | 2,700                |
| 46                | W Trib 9                       | 530            | 50                 | 30                | 920                  |
| 48                | E Trib 8                       | 440            | 70                 | 70                | 1,500                |
| 49                | E Trib 9                       | 780            | 130                | 130               | 2,690                |
| 51                | E Trib 10                      | 440            | 80                 | 70                | 1,510                |
| 54                | E Trib 11                      | 330            | 60                 | 50                | 1,130                |
|                   | Total Side Trib                | 11,790         | 1,950              | 1,580             | 38,940               |
|                   | Q alluvium                     | 4,140          | 410                | 290               | 8,150                |

 TABLE D - 6
 WY 1980 - 1999 MINOR TRIBUTARY AND ALLUVIUM SIMULATED RUNOFF

| TABLE D - 7         AVERAGE MONTHLY MINOR TRIBUTARY AND ALLUVIUM RUN |
|----------------------------------------------------------------------|
|----------------------------------------------------------------------|

|              | <b>Precipitation</b><br>(Oceanside)<br>(12.01 in/yr avg) | 11 East Side<br>Minor Tributary<br>Drainages | 9 West Side<br>Minor Tributary<br>Drainages | Q al<br>(Alluvium) | Total<br>Runoff      |
|--------------|----------------------------------------------------------|----------------------------------------------|---------------------------------------------|--------------------|----------------------|
| Month        | (avg in/m)                                               | (3  yg af/m)                                 | 4,280  acres                                | 4,140  acres       | 15,930<br>(avg af/m) |
| Ort          |                                                          |                                              |                                             |                    | (avg al/III)         |
| Oct          | 0.45                                                     | 20                                           | 20                                          | 0                  | 50                   |
| Nov          | 1.26                                                     | 100                                          | 100                                         | 20                 | 220                  |
| Dec          | 1.59                                                     | 120                                          | 110                                         | 50                 | 280                  |
| Jan          | 2.95                                                     | 340                                          | 310                                         | 210                | 850                  |
| Feb          | 2.35                                                     | 160                                          | 170                                         | 80                 | 410                  |
| Mar          | 2.01                                                     | 180                                          | 200                                         | 50                 | 430                  |
| Apr          | 0.75                                                     | 40                                           | 30                                          | 0                  | 70                   |
| May          | 0.11                                                     | 0                                            | 0                                           | 0                  | 0                    |
| Jun          | 0.11                                                     | 0                                            | 0                                           | 0                  | 0                    |
| Jul          | 0.10                                                     | 0                                            | 0                                           | 0                  | 0                    |
| Aug          | 0.05                                                     | 0                                            | 0                                           | 0                  | 0                    |
| Sep          | 0.31                                                     | 20                                           | 20                                          | 0                  | 40                   |
| Total (af/y) |                                                          | 980                                          | 960                                         | 410                | 2,350                |

#### Wastewater Discharge from WY 1980 - 1999

Wastewater from Sewage Treatment Plants (STP) 1, 2, 3, 8, and 13 was discharged into oxidation ponds and then released into the Santa Margarita River during the calibration period. This inflow was proportioned to streamflow and to ground-water recharge. The streamflow portion is discussed in this section. The following wastewater flow assumptions were made:

- The oxidation pond associated with STP 1 is located outside of the model domain and does not appear to contribute to the basin's ground-water recharge, therefore only the discharge to the stream, located near the Lake O'Neill release point, was modeled.
- The flow path for wastewater releases from STP 2 include: oxidation pond 2, to golf course irrigation or oxidation pond 3, then to a river discharge point near oxidation pond 13 in the Lower Ysidora. Only STP 2 water discharged to the river is considered in the model because oxidation ponds 2 and 3 are outside of the modeled active cells.
- Wastewater from STP 3 flows to an oxidation pond in the south end of Chappo, just north of the narrows. It is assumed that approximately 10% of the water in the oxidation pond recharges the ground water beneath the pond and the remaining 90% is released to the Santa Margarita River during the calibration period. Monthly precipitation and potential evaporation are accounted for prior to calculating available ground-water recharge and release to the stream.
- Oxidation pond 8 is located in the Chappo on the west side of the river, within the active model cells. It is assumed that approximately 10% of the water in the oxidation pond recharges the ground water beneath the pond and the remaining 90% is released to the Santa Margarita River. Monthly precipitation and potential evaporation are accounted for prior to calculating available ground-water recharge and release to the stream.
- The largest oxidation ponds, located in the Lower Ysidora, were associated with STP 13. The use of these ponds was discontinued after they were damaged during the 1993 flooding. During their operation, it is assumed that approximately 10% of the water in the oxidation ponds recharged the ground water beneath the pond and the remaining 90% is released to the Santa Margarita River. Monthly precipitation and potential evaporation are accounted for prior to calculating available ground-water recharge and release to the stream.

Attachment 2, Table D-A2-2, summarizes the average annual and average monthly STP releases to the oxidation ponds and the discharges to the Santa Margarita River that were incorporated into the modeled calibration period. The waste discharge has a small seasonal variation compared to other stream inflow parameters.

#### D.3.3.5 Modeled Production Wells

During the model calibration period of WY 1980 through WY 1999, Camp Pendleton operated five production wells in the Upper Ysidora, nine production wells in the Chappo, and three irrigation wells in the Ysidora Narrows and Lower Ysidora. Attachment 3 summarizes the ground-water production in the three sub-basins, showing the effects of the seasonal summer demand, increased demand of ground water following dryer than normal winters, and the 1995 base expansion. Table D-8 lists the production wells, screen intervals, period of operation during the model calibration period, and average annual pumping volumes during the pumping period. Figure D-7 shows the location of modeled production wells.

| Well ID            | Bldg No.      | Year<br>Drilled | Operation<br>(feet, bgs) | Average<br>AF/WY<br>(feet, msl) | Screen<br>Interval | Ground<br>Surface |
|--------------------|---------------|-----------------|--------------------------|---------------------------------|--------------------|-------------------|
| Upper Ysidora Sub- | -basin        |                 |                          |                                 |                    |                   |
| 10/4-5D1           | 27911         | 1943            | 1981-1987                | 384                             | 28-70              | 110               |
| 10/4-7R2           | 2603          | 1955            | 1980-1999                | 461                             | n/a                | (7R1) 90          |
| 10/4-7A2           | 2673          | 1956            | 1980-1999                | 622                             | n/a                | (7A1) 103         |
| 10/4-7A3           | n/a           | 1999            | 1999                     | 16                              | n/a                | (7A1) 103         |
| 10/4-7H2           | 2671          | 1956            | 1980-1999                | 293                             | n/a                | (7H1) 98          |
| Chappo Sub-basin   |               |                 |                          |                                 |                    |                   |
| 10/5-13R2          | 2363          | 1956            | 1980-1982                | 461                             | 68-132             | 66                |
|                    |               |                 | 1990-1999                | 506                             | n/a                | n/a               |
| 10/4-18E3          | 2393          | 1965            | 1981-1999                | 465                             | 89-109             | 78                |
| 10/4-18M4          | 4 2373        | 1960            | 1980-1999                | 442                             | 84-224             | 76                |
| 10/5-23J1          | 2301          | 1950            | 1980-1999                | 742                             | 107-137            | 52                |
| 10/5-23G3          | 33926         | 1976            | 7 years                  | 44                              | 17-118             | 54                |
| 10/5-23G4          | n/a           | n/a             | 1999                     | 326                             | n/a                | n/a               |
| 10/5-23K2          | 33924         | n/a             | 11 years                 | 238                             | n/a                | 50                |
| 10/5-23K3          | n/a           | n/a             | 1999                     | 336                             | n/a                | n/a               |
| 10/5-26C1          | 2201          | 1959            | 1980-1999                | 808                             | 96-162             | 44                |
| Veidora Narrowe    | nd I ower Vei | dora Sub-       | hacin (irrigati          | on wells)                       |                    |                   |
| 10/5_26F1          |               | n/a             | 1980-1990                | 941                             | 88-170             | 30                |
| 11/5_203           | 2200<br>n/a   | n/a             | 1986-1999                | 148                             | n/a                | n/a               |
| 11/5-2A3/          | 1 19122       | n/a             | 1980-1989                | 95                              | n/a                | n/a               |

#### TABLE D - 8 PRODUCTION WELL INVENTORY

Note: n/a indicates unknown or unavailable data; bgs is 'below ground surface'; msl is 'mean sea level'

#### **D.3.4 GROUND-WATER FLOW MODEL PROPERTIES**

The ground-water flow model parameters were developed based on the conceptual site model. A numerical model inherently requires simplifying assumptions when defining a problem domain. Each volume element (a block defined by a row, a column, and a layer in the grid) is assigned a unique set of hydraulic parameters influencing the calculations depicting flow of ground water at the center of that particular block. Hydraulic properties shaped by the





STETSON ENGINEERS INC.

Well Locations within the Model Area

geologic substrate that the ground water flows through include hydraulic conductivity (horizontal and vertical), effective porosity, specific yield, and storativity. Aquifer transmissivity was obtained by multiplying hydraulic conductivity by the thickness of the layer at that grid block. Other cell properties influenced by climatic conditions include recharge, and evapotranspiration.

Two layers were chosen to represent the alluvial aquifer in all three sub-basins. Well logs and cross sections of the Lower Santa Margarita River ground-water basin (Worts and Boss, 1954; Slemon, 1978) show a coarser (cobbles, gravel, and sand) lower alluvium beneath a finer (gravel, sand, silt, and clay) upper alluvium. Though the ground-water basin is considered to be one aquifer, the two layers allow for the simulation of variable materials. The Model was constructed with two layers representing the two Quaternary alluvial units of the Santa Margarita River Basin. The upper layer was assigned properties of an unconfined layer to capture the water table aquifer characteristics of the upper alluvium. The bottom layer of the Model was assigned an aquifer type of an unconfined unit with variable transmissivity, allowing for variability in the saturated thickness of the lower alluvium.

### **D.3.4.1 Modeled Hydraulic Properties**

Aquifer hydraulic characteristics were assigned based on aquifer pumping tests conducted by IT Corporation and previous model results (LAW/Crandall, 1995). Horizontal conductivities ranged from 0.8 and 37 ft/day in the silts and silty sands of the Chappo and Lower Ysidora sub-basins to approximately 300 to 450 ft/day in the gravels and sands of the lower alluvium in the Chappo and Upper Ysidora (LAW, 1995). Specific yield ranged from 0.05 in silts to 0.2 in sands and gravels (LAW, 1995). Storativity was estimated at 0.00002 to 0.00008 depending on soil type. Effective porosity was assigned values from 0.22 for sand and gravel units to 0.40 for silt/clay units. This model was constructed by combining layers 1, 2, and 3 of the Law/Crandall model as a new layer 1; and layers 4 and 5 of the LAW/Crandall model as a new layer 2. The following table summarizes the hydraulic properties used in this Model (adjusted from the LAW/Crandall model, 1995). Figure D-8 shows the extent of these property zones for layers 1 and 2.

#### FIGURE D-8



|                                      | $\frac{K_{xy}/K_z}{(ft/day)}$ | Storativity<br>(1/ft) | Specific Yield<br>(ft <sup>3</sup> /ft <sup>3</sup> ) | Porosity<br>(fraction) |
|--------------------------------------|-------------------------------|-----------------------|-------------------------------------------------------|------------------------|
| Upper Ysidora Sub-Basin              |                               |                       |                                                       |                        |
| Layer 1 sand/gravel                  | 338, 68                       | 0.00002               | 0.2                                                   | 0.22                   |
| Layer 2 sand/gravel                  | 494, 99                       | 0.000046              | 0.2                                                   | 0.22                   |
| Chappo Sub-Basin                     |                               |                       |                                                       |                        |
| Layer 1 near SMR                     | 338, 68                       | 0.00002               | 0.2                                                   | 0.22                   |
| Layer 1 silt/sand                    | 192, 38                       | 0.00002               | 0.2                                                   | 0.22                   |
| Layer 1 sand beneath<br>Supply Depot | 300, 68                       | 0.00002               | 0.2                                                   | 0.22                   |
| Layer 2 sand/gravel                  | 300, 68                       | 0.00002               | 0.2                                                   | 0.22                   |
| Lower Ysidora Sub-Basin              |                               |                       |                                                       |                        |
| Layer 1 near SMR                     | 338, 68                       | 0.00002               | 0.2                                                   | 0.22                   |
| Layer 1 silts w/ sand                | 192, 38                       | 0.00002               | 0.2                                                   | 0.22                   |
| Layer 2 sand/gravel                  | 300, 68                       | 0.00002               | 0.2                                                   | 0.22                   |

#### TABLE D - 9 MODELED HYDRAULIC PARAMETERS

#### D.3.4.2 Modeled Recharge

Recharge from direct precipitation, side tributary underflow, oxidation ponds, and the recharge basins was simulated in layer 1 of the active model cells (Figure D-9). Attachment 2, Table D-A2-3 contains average annual and average monthly recharge within the model domain.

Recoverable water by runoff and infiltration from rainfall was considered to be approximately 17% of measured precipitation (Crippen, 1965), typical of a Southern California coastal climate. This recoverable water was assigned to the upper model layer as recharge and side tributary runoff. The median annual precipitation from water years 1980 through 1999 was 12.0 in/yr, ranging from 3.6 in/yr in WY 1986-87 to 25.9 in/yr in WY 1979-80. Figure D-9 shows the different recharge zones assigned within layer 1 active model cells.

Using the historical diversion data (OWR, 2000), infiltration rates at the Upper Ysidora recharge basins were calibrated with the ground-water model. The ground-water recharge pond infiltration rates were modeled with a seasonal variation ranging from 0.2 ft/day to 1.8 feet/day to account for percolation of the water diverted from the Santa Margarita River.



# **Ground-Water Model Recharge Zones** Lower Santa Margarita River



It was estimated that 10% of water stored in Oxidation Ponds 3, 8, and 13 was recharged into the ground-water aquifer (minus evaporation, plus rainfall) and included in the Model for the appropriate years of operation (Carlson, 2000, personal communication). Table D-A2-2 shows the average annual and average monthly recharge from Oxidation Ponds within the model domain

#### **D.3.4.3** Modeled Evapotranspiration

Phreatophyte location and density of coverage was estimated from infrared and aerial photos taken in 1980, 1982, 1989, 1993 and 1997 and a riparian vegetation survey conducted in 1997 (MCB-CP, 2000) to determine ground water consumption by evapotranspiration. Dense cottonwood and willow riparian trees were assigned an ET rate of approximately 60 in/yr and an extinction depth of 20 feet. Dense wetland plants were assigned an ET rate of approximately 45 in/yr with an extinction depth of 8 feet. Different densities of phreatophytes were assigned values proportional to these values. Table D-10 shows the simulated ET zones and densities assigned to layer 1 of the model active cells, and Figure D-10 shows where these zones are located.

| ET Zone | Vegetative Cover     | ET Rate<br>(ft/day) | Extinction Depth<br>(ft) |
|---------|----------------------|---------------------|--------------------------|
| 1       | No ET                | 0.00                | 20                       |
| 2       | Dense Riparian Trees | 0.0118              | 20                       |
| 3       | 75% Riparian Trees   | 0.0089              | 20                       |
| 4       | 50% Riparian Trees   | 0.0059              | 20                       |
| 5       | 25% Riparian Trees   | 0.0030              | 20                       |
| 6       | Dense Wetlands       | 0.0089              | 8                        |
| 7       | 30% Wetlands         | 0.0030              | 8                        |
| 8       | UY open water        | 0.0110              | 3                        |
| 9       | CH open water        | 0.0104              | 3                        |
| 10      | LY open water        | 0.0102              | 3                        |

TABLE D - 10 MODEL INPUT: ET DENSITIES AND AERIAL COVERAGE BY SUB-BASIN





### D.4 CALIBRATION PROCESS

Data for streamflow, precipitation, and various diversions and releases were compiled from the Base's records for the 20-year period from water year 1980 through water year 1999. This calibration period included the wastewater contributions from Oxidation Ponds 1, 2, 3, 8, and 13. Average input parameters were first used to establish a steady state model, followed by an annual average 20-year transient model calibration period. The final calibration was completed on a 20-year period of monthly time steps. The Ysidora stream gage, which has been monitored by the USGS at its current location near Basilone Road since December 19, 1980, was used as a calibration point for the Santa Margarita River in the ground-water flow model. Ground-water levels from eight monitoring wells were used for calibration of water contour intervals. Adjustments were made to the model until the stream flow results from the model closely matched the measured stream flow from 1980 through 1999, showing the expected response between wet and dry years. Model calibration also included matching ground water levels in eight monitoring wells.

#### **D.4.1** WATER LEVEL DATA

Historical water levels from two monitoring wells in the Upper Ysidora, four monitoring wells in the Chappo, and two monitoring wells in the Lower Ysidora were used for model calibration because of the continuity of the recorded data at these wells. Figure D-7 shows the location of these wells (marked target wells) and Table D-11 shows the annual average water level at these wells.

| Well ID                 | Period of Record | Average Annual<br>Water Level (ft,msl) | Measuring Point<br>Elevation (ft,msl) |
|-------------------------|------------------|----------------------------------------|---------------------------------------|
| Upper Ysidora Sub-Basin |                  |                                        |                                       |
| 10/4-6R1                | 1983-1995        | 93                                     | 105                                   |
| 10/4-7J1                | 1980-1999        | 86                                     | 92                                    |
| Chappo Sub-Basin        |                  |                                        |                                       |
| 10/4-18L1               | 1980-1999        | 65                                     | 74                                    |
| 10/5-13G1               | 1996-1999        | 66                                     | 124                                   |
| 10/5-24N1               | 1989-1999        | 48                                     | 57                                    |
| 10/5-23L1               | 1985-1995        | 41                                     | 50                                    |
| Lower Ysidora Sub-Basin |                  |                                        |                                       |
| 10/5-35K5               | 1980-1993        | 22                                     | 25                                    |
| 11/5-2N4                | 1980-1993        | 12                                     | 16                                    |

 TABLE D - 11
 MONITORING WELL WATER LEVEL DATA

Three monitoring wells, 10/4-7J1, 10/5-23L1, and 10/5-35K5, located near the south central part of the Upper Ysidora, Chappo, and Lower Ysidora respectively, were used as indicator wells for water level changes in the aquifer. The historical calibration of the Model, as well as impacts from future model runs, use these three "target" wells to identify potential impacts to the streamflow and ground-water sub-basins.

The lowest water level during the calibration period occurred during July 1989, and the highest water level occurred during March 1992. Figure D-2 shows a cross section through the sub-basins and the range in water levels observed during the calibration period. The available data shows that water levels appear to mound North of the narrows near Basilone Road. Each of the three target monitoring wells for the three sub-basins are also shown on this cross section. Figure D-11 shows observed water level data compared to modeled simulated results for all three sub-basins.

### **D.4.2** YSIDORA STREAM GAGE

The Ysidora stream gage has been operating at its current location near Basilone Road since December 1989. Prior to time, during the first half of the calibration period, the Ysidora gage was operated at the southern end of the Lower Ysidora sub-basin. Figure D-12 shows a graph of the measured and simulated flows near the present location of the Ysidora gage.

# D.5 MODEL OUTPUT

The *MODFLOWä* stream package was chosen for this Model because of its ability to simulate loosing, dry, and gaining stream reaches during different stress periods. This matches the natural behavior of the Santa Margarita River. Figure D-13 shows the different gaining and loosing reaches during a dry monthly stress period (July 1989), and contrasts this with the simulated results during a wet period (March 1992).

Monthly flows observed at the Ysidora gage are shown in Figure D-12, along with simulated flows at the Ysidora gage and surface flow out of the Model boundary in the Lower Ysidora sub-basin. The Model simulates a wetter river during winter months of the dry period (WY 1987 - 1989), which could be an effect of averaging the river flow over the whole month instead of the daily peaks. The simulated river flow does go to 0 cfs during the observed summer months of these same dry years.

Each water level graph shows the ground surface elevation and the maximum estimated ET extinction depth for riparian vegetation (20 feet). Water levels near the ground surface are an indication of mounding, especially in the Upper Ysidora sub-basin near the recharge ponds. Water levels near the maximum ET extinction depth are considered critical during the summer months, but less critical during the winter months as long as there is no prolonged period of low



10-89

10/5-35K5

max ET Extc Depth @ 5 ft msl

10/5-35K5

GS Elev @ 25 ft msl

10-94

WY 80-99

calibration

10-84

1980-1999

Observed

5

0 ‡

10-79

Water Year

5

0











Figure D-13

water levels. Water levels below the maximum ET extinction depth are considered potentially harmful to riparian vegetation. The location of the monitoring wells are an indication of water levels in the sub-basin, but are not located near the river where stream bed recharge is expected to yield a higher water level.

# D.6 WATER BUDGET

The major influence on the ground-water budget is the Santa Margarita River, which provides approximately 60- 65% of the total recharge to the ground-water basins. Of the major outflows from the ground-water aquifer, pumping of ground-water production wells account for approximately 50% and ET removes an additional 30%. Other influences on the ground-water budget include recharge from precipitation, percolation/oxidation ponds, and side tributary runoff. The Model was developed to account for the inflows and outflows of the river, and the impacts they have on the three ground-water sub-basins.

The calibrated model run is summarized in the water budget presented in Table D-12. The Model boundary is the area for which the water budget is calculated. The ground-water model provides calculated numbers for underflow, streamflow out of the model area, and evapotranspiration. Measured and estimated model input data provides values for streamflow into the model domain, diversion to and release/spill from Lake O'Neill, ground-water pumping, and recoverable water from precipitation.

|             |                                 | Average Annual (af/y) | Median Annual (af/y) |
|-------------|---------------------------------|-----------------------|----------------------|
| Inflow:     | Subsurface Underflow            | 850                   | 820                  |
|             | Santa Margarita River Inflow    | 53,340                | 27,690               |
|             | Lake O'Neill Spill and Release  | 1,990                 | 1,780                |
|             | Minor Tributary Drainages       | 2,120                 | 1,720                |
|             | Waste Water Discharge           | 2,030                 | 2,260                |
|             | Direct Precipitation            | 690                   | 500                  |
|             | Total Inflow:                   | 61,020                | 34,770               |
| Outflow:    | Subsurface Underflow            | 240                   | 240                  |
|             | Santa Margarita River Outflow   | 52,380                | 25,460               |
|             | Ground-Water Pumping            | 5,560                 | 5,870                |
|             | Evapotranspiration              | 2,880                 | 2,830                |
|             | Diversions to Lake O'Neill      | 490                   | 430                  |
|             | Total Outflow:                  | 61,570                | 34,830               |
|             | Net change in Storage:          | 790                   | 160                  |
| Exchange of | of Water within Model Domain    |                       |                      |
|             | Diversions to Recharge Ponds    | 2,850                 | 2,480                |
|             | Stream Recharge to Ground Water | 4,280                 | 4,700                |

#### TABLE D - 12 MODEL CALIBRATION -- AVERAGE ANNUAL WATER BUDGET FOR 1980-1999

# D.7 MODEL SCENARIOS OF ANTICIPATED BASIN CHANGES

The calibrated Model was used as a predictive tool to ascertain the potential effect of various stresses and changes to the ground-water system that are expected to occur in the future. These anticipated changes include: removal of wastewater from the Santa Margarita River basin, augmentation to streamflow due to settlement with the RCWD, and increase in ground water pumping. Table D-13 below summarizes the model runs that were performed to estimate the impact of these future changes to the ground-water system on the Base.

| Run # | SMR<br>Flow | Ground-Water<br>Pumping | Wastewater<br>Release | Comment                                                          |
|-------|-------------|-------------------------|-----------------------|------------------------------------------------------------------|
| 1     | Н           | Н                       | Yes                   | Calibration Run                                                  |
| 2     | Н           | Н                       | No                    | Effect of no Wastewater Release                                  |
| 3     | А           | Н                       | Yes                   | Effect of Augmented Flows                                        |
| 5     | А           | F2                      | No                    | Effect of F2 Pumping                                             |
| 6     | А           | F3                      | No                    | Effect of F3 Pumping                                             |
| 7     | Н           | F3                      | No                    | Effect of F3 Pumping with no<br>Augmentation or Wastewater Flows |

 TABLE D - 13
 Summary of Model Scenarios for Anticipated Basin Changes

Notes: H indicates 1980 to 1999 historical value

A indicates Augmented streamflow due to the RCWD Settlement

F1 indicates 14,800 AFY ground-water pumping

F2 indicates 14,800 AFY conjunctive use ground-water pumping

F3 indicates 14,050 AFY conjunctive use ground-water pumping

Different pumping scenarios were analyzed to determine optimal ground-water pumping management practices during seasonal changes as well as extended dry periods. The existing average annual ground-water well production rate for WY 1980 through 1999 is 5,555 afy, ranging from 3,724 af in WY 1991 to 6,705 af in WY 1981. The F1 pumping schedule was developed from the average historical (WY 1980 - 1999) monthly distribution of production with historical maximum production occurring in July and August of each year and minimum production occurring during the winter months. This pumping schedule (Figure D-14) includes 6 new production wells and increases the average annual production to 14,800 afy in a direct proportion to the historical demand, independent of management for drought or wet years. Model locations for the 6 proposed wells (designated by "PW-") are shown in Figure D-15.





Stetson Engineers Inc. / North State Resources March 23, 2001





PW- Proposed Well Location

Existing and Proposed Well Locations within the Model Area The F2 (Figure D-14) pumping schedule also maximizes annual ground-water production of 14,800 afy, but shifts the maximum production rates to the winter months. Figure D-14 compares the average historical monthly pumping with average monthly pumping under the F1 and F2 ground-water production schedules. The F3 pumping schedule is similar to F2 with the maximum production in winter months, but includes management practices that reduce ground-water production by 3,000 afy starting during the summer months following the second below normal winter/spring streamflow. If the below normal streamflow continues through a third consecutive winter/spring, ground-water production will be curtailed by an additional 3,000 afy until normal or above normal streamflow conditions return. Figure D-16 compares the different monthly F3 pumping schedules during these different conditions. Reduced percentages of F3 pumping were also considered to minimize impacts to riparian habitat during dry years and increase diversions from the Santa Margarita River. The following table summarizes the average annual pumping volumes and number of wells for the pumping schedules studied.

| Pumping<br>Schedule | Average Annual<br>Ground-Water<br>Production (afy) | # of Proposed<br>Wells (pw) | Comment                                                                                                                                                                                                      |  |  |
|---------------------|----------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| F1                  | 14,800                                             | 6                           | Increase proportional to historical monthly<br>pumping; maximum production in summer<br>months.                                                                                                              |  |  |
| F2                  | 14,800                                             | 6                           | Increase proportional to historical annual<br>pumping; maximum production in winter<br>months.                                                                                                               |  |  |
| F3                  | 14,050                                             | б                           | Identical to F2 pumping with dry year<br>management reduction of 3,000 afy during<br>second dry summer; reduction of 6,000 afy<br>during third dry summer until next year<br>that normal stream flow occurs. |  |  |
| 80% F3              | 11,240                                             | 4                           | 80% of F3 production, installing 3 proposed<br>wells in the Upper Ysidora and 1 proposed<br>well in the Chappo.                                                                                              |  |  |
| 90% F3              | 12,640                                             | 5                           | 90% of F3 production, installing 3 proposed<br>wells in the Upper Ysidora and 2 proposed<br>well in the Chappo.                                                                                              |  |  |
| 95 % F3             | 13,348                                             | 6                           | 95% of F3 production, installing 4 proposed<br>wells in the Upper Ysidora and 2 proposed<br>well in the Chappo.                                                                                              |  |  |

 TABLE D - 14
 Summary of Ground-Water Production Schedules

Elimination of wastewater discharge to the river and oxidation pond infiltration shows decreases in evapotranspiration and streamflow out of the Lower Ysidora. As would be expected from the conceptual model, the Model predicts the impact to be greater during consecutive years of below normal streamflow and precipitation. The modeled effects of augmented flows under historical conditions of pumping and wastewater discharge shows an increase in streamflow out







of the model area. The Model showed reduced evapotranspiration with the addition of a management plan of reduced pumping during continued dry years with F3 pumping, compared with F2 maximum pumping. Table D-15 quantifies and compares the results from these anticipated basin changes with the calibrated Model run.

|                                      | Run # 1 | Run # 2 | Run # 3 | <b>Run</b> # 5 | <b>Run</b> # 6 |
|--------------------------------------|---------|---------|---------|----------------|----------------|
| SMR Streamflow:                      | Н       | Н       | А       | А              | А              |
| Ground-Water Pumping:                | Н       | Н       | Н       | F2             | F3             |
| Wastewater Release:                  | yes     | no      | yes     | no             | no             |
| Inflow:                              |         |         |         |                |                |
| Subsurface Underflow                 | 850     | 840     | 840     | 1,460          | 1,420          |
| Santa Margarita River Inflow         | 53,340  | 53,340  | 55,860  | 55,860         | 55,860         |
| Lake O'Neill Spill and Release       | 1,990   | 1,990   | 1,990   | 1,990          | 1,990          |
| Minor Tributary Drainages            | 2,120   | 2,120   | 2,120   | 2,120          | 2,120          |
| Waste Water Discharge                | 2,030   | 0       | 2,030   | 0              | 0              |
| Direct Precipitation                 | 690     | 710     | 690     | 710            | 710            |
| Total Inflow:                        | 61,020  | 59,000  | 63,530  | 62,140         | 62,100         |
| Outflow:                             |         |         |         |                |                |
| Subsurface Underflow                 | 240     | 230     | 240     | 200            | 220            |
| Santa Margarita River Outflow        | 52,380  | 50,290  | 54,660  | 45,590         | 46,090         |
| Ground-Water Pumping                 | 5,560   | 5,560   | 5,560   | 14,800         | 14,050         |
| Evapotranspiration                   | 2,900   | 2,810   | 2,960   | 1,950          | 2,120          |
| Diversions to Lake O'Neill           | 490     | 490     | 490     | 490            | 490            |
| Total Outflow:                       | 61,570  | 59,380  | 63,910  | 63,030         | 62,970         |
| Net change in Storage:               | 790     | 380     | 380     | 890            | 870            |
| Water Exchange within Model Domain   |         |         |         |                |                |
| Net Infiltration from Recharge Ponds | 2,850   | 2,850   | 2,850   | 2,850          | 2,850          |
| Net Stream Recharge to GW            | 4,280   | 4,330   | 4,370   | 11,910         | 11,380         |

#### TABLE D - 15 ANTICIPATED BASIN CHANGES -- AVERAGE ANNUAL WATER BUDGET (AF/WY)

#### Attachment 1: Stream Package for Calibration Run, Stress Period 1

|       | 645               |          | 55           | 2        | 1       | 0      | 1           | -1       | 50       |                       |
|-------|-------------------|----------|--------------|----------|---------|--------|-------------|----------|----------|-----------------------|
| Laver | 645<br><b>Row</b> | Column   | 0<br>Segment | Reach    | Flow    | Stage  | Conductance | Btm Elev | Top Elev | Description           |
| 1     | 2                 | 81       | 1            | 1        | 1070150 | 130.45 | 400         | 124      | 130      | Santa Margarita River |
| 1     | 3                 | 82       | 2            | 1        | 5312    | 128.35 | 500         | 127      | 128      | East Tributary 1      |
| 1     | 3                 | 81       | 3            | 1        | -1      | 129.82 | 400         | 123      | 129.38   | SMR cont              |
| 1     | 4                 | 81       | 3            | 2        | 0       | 129.2  | 400         | 122      | 128.75   |                       |
| 1     | 4                 | 80<br>80 | ა<br>ვ       | 3<br>1   | 0       | 128.57 | 400         | 122      | 128.13   |                       |
| 1     | 6                 | 80       | 3            | 5        | 0       | 127.32 | 400         | 121      | 126.88   |                       |
| 1     | 6                 | 79       | 3            | 6        | 0       | 126.7  | 400         | 120      | 126.25   |                       |
| 1     | 7                 | 79       | 3            | 7        | 0       | 126.07 | 400         | 119      | 125.63   |                       |
| 1     | 8                 | 79       | 3            | 8        | 0       | 125.45 | 400         | 119      | 125      |                       |
| 1     | 9                 | 79       | 3            | 9        | 0       | 124.2  | 400         | 117      | 123.75   |                       |
| 1     | 10                | 79<br>70 | 3            | 10       | 0       | 122.95 | 400         | 116      | 122.5    |                       |
| 1     | 10                | 78       | 3            | 12       | 0       | 121.7  | 400         | 115      | 121.25   |                       |
| 1     | 12                | 78       | 3            | 13       | 0       | 119.45 | 400         | 113      | 119      |                       |
| 1     | 13                | 78       | 3            | 14       | 0       | 118.45 | 400         | 112      | 118      |                       |
| 1     | 14                | 78       | 3            | 15       | 0       | 117.45 | 400         | 111      | 117      |                       |
| 1     | 15                | 78       | 3            | 16       | 0       | 116.45 | 400         | 110      | 116      |                       |
| 1     | 16                | 78       | 3            | 17       | 0       | 115.45 | 400         | 109      | 115      |                       |
| 1     | 17                | 78<br>77 | 3            | 18       | 0       | 114.45 | 400         | 108      | 114      |                       |
| 1     | 10                | 77       | 3            | 19<br>20 | 0       | 112.45 | 400         | 100      | 112      |                       |
| 1     | 19                | 78       | 4            | 1        | 0       | 110.33 | 5           | 103      | 109.89   | Div to ponds/O'Neill  |
| 1     | 20                | 79       | 4            | 2        | 0       | 110.22 | 5           | 103      | 109.77   | •                     |
| 1     | 21                | 79       | 4            | 3        | 0       | 110.11 | 5           | 103      | 109.66   |                       |
| 1     | 22                | 79       | 4            | 4        | 0       | 109.99 | 5           | 103      | 109.55   |                       |
| 1     | 23                | 79       | 4            | 5        | 0       | 109.88 | 5           | 103      | 109.44   |                       |
| 1     | 24<br>25          | 79<br>70 | 4            | 6<br>7   | 0       | 109.77 | 5           | 103      | 109.32   |                       |
| 1     | 25<br>26          | 79<br>80 | 4            | ,<br>8   | 0       | 109.03 | 5           | 103      | 109.21   |                       |
| 1     | 27                | 80       | 4            | 9        | 0       | 109.43 | 5           | 102      | 108.98   |                       |
| 1     | 28                | 80       | 4            | 10       | 0       | 109.32 | 5           | 102      | 108.87   |                       |
| 1     | 29                | 81       | 4            | 11       | 0       | 109.11 | 5           | 102      | 108.67   |                       |
| 1     | 30                | 82       | 4            | 12       | 0       | 108.91 | 5           | 102      | 108.46   |                       |
| 1     | 31                | 83       | 4            | 13       | 0       | 108.7  | 5           | 102      | 108.26   |                       |
| 1     | 3∠<br>33          | 83<br>83 | 4<br>4       | 14       | 0       | 108.5  | ວ<br>5      | 102      | 108.05   |                       |
| 1     | 34                | 84       | 4            | 16       | 0       | 108.09 | 5           | 101      | 107.64   |                       |
| 1     | 35                | 84       | 4            | 17       | 0       | 107.88 | 5           | 101      | 107.44   |                       |
| 1     | 36                | 84       | 4            | 18       | 0       | 107.68 | 5           | 101      | 107.23   |                       |
| 1     | 38                | 84       | 4            | 20       | 0       | 107.27 | 5           | 100      | 106.82   |                       |
| 1     | 39                | 84       | 4            | 21       | 0       | 109.76 | 5           | 108.41   | 109.41   |                       |
| 1     | 39                | 85<br>84 | 4            | 22       | 0       | 113.35 | 5           | 112      | 113      |                       |
| 1     | 20                | 77       | 5            | 1        | -1      | 110.07 | 600         | 101      | 107.03   | SMR cont              |
| 1     | 19                | 74       | 6            | 1        | 25479   | 118.35 | 500         | 117      | 118      | West Tributary 1,     |
| 1     | 20                | 74       | 6            | 2        | 0       | 128.35 | 500         | 127      | 128      | Wood Canyon           |
| 1     | 20                | 75       | 6            | 3        | 0       | 118.35 | 500         | 117      | 118      |                       |
| 1     | 20                | 76       | 6            | 4        | 0       | 113.35 | 500         | 112      | 113      | <b></b>               |
| 1     | 21                | //<br>77 | 7            | 1        | -1      | 109.68 | 600         | 103      | 109.23   | SMR cont              |
| 1     | 22                | 77       | 7            | 2        | 0       | 108.53 | 6000        | 102      | 108.40   |                       |
| 1     | 24                | 77       | 7            | 4        | 0       | 108.14 | 6000        | 102      | 107.69   |                       |
| 1     | 25                | 77       | 7            | 5        | 0       | 107.76 | 6000        | 101      | 107.31   |                       |
| 1     | 26                | 77       | 7            | 6        | 0       | 107.37 | 6000        | 100      | 106.92   |                       |
| 1     | 26                | 78       | 7            | 7        | 0       | 106.99 | 6000        | 100      | 106.54   |                       |
| 1     | 27                | 78       | 7            | 8        | 0       | 106.6  | 6000        | 100      | 106.15   |                       |
| 1     | 28<br>20          | 78<br>77 | 7            | 9<br>10  | 0       | 106.22 | 6000        | 99       | 105.77   |                       |
| 1     | 29<br>30          | 77       | /<br>7       | 10       | 0       | 105.03 | 0000        | 99<br>99 | 100.08   |                       |
| 1     | 31                | 77       | 7            | 12       | 0       | 104.45 | 6000        | 98       | 103      |                       |
| 1     | 31                | 76       | 7            | 13       | 0       | 103.45 | 6000        | 97       | 103      |                       |

| Layer | Row      | <u>Column</u> | <u>Segment</u> | <b>Reach</b> | Flow   | <u>Stage</u> | Conductance  | Btm Elev | Top Elev       | <b>Description</b>   |
|-------|----------|---------------|----------------|--------------|--------|--------------|--------------|----------|----------------|----------------------|
| 1     | 32       | 76            | 7              | 14           | 0      | 102.45       | 6000         | 96       | 102            |                      |
| 1     | 33       | 76            | 7              | 15           | 0      | 101.45       | 6000         | 95       | 101            |                      |
| 1     | 34       | 76            | 7              | 16           | 0      | 100.45       | 6000         | 94       | 100            |                      |
| 1     | 34       | 75            | 7              | 17           | 0      | 100.03       | 6000         | 93       | 99.58          |                      |
| 1     | 35       | 75            | 7              | 18           | 0      | 99.62        | 6000         | 93       | 99.17          |                      |
| 1     | 36       | 75            | 7              | 19           | 0      | 99.2         | 6000         | 92       | 98.75          |                      |
| 1     | 36       | 74            | . 7            | 20           | 0      | 98 78        | 6000         | 92       | 98.33          |                      |
| 1     | 37       | 74            | 7              | 21           | Ő      | 98.37        | 6000         | 91       | 97 92          |                      |
| 1     | 30       | 74            | 7              | 21           | 0      | 07.05        | 0000<br>6000 | 01       | 07.5           |                      |
| 1     | 20       | 74            | 7              | 22           | 0      | 97.95        | 6000         | 91       | 97.5           |                      |
| 1     | 30<br>20 | 73            | 7              | 23           | 0      | 97.55        | 6000         | 91       | 97.06          |                      |
| 1     | 39       | 73            | 7              | 24           | 0      | 97.12        | 6000         | 90       | 96.67          |                      |
| 1     | 40       | 73            | 7              | 25           | 0      | 96.7         | 6000         | 90       | 96.25          |                      |
| 1     | 37       | 68            | 8              | 1            | 5904   | 118.35       | 500          | 117      | 118            | west Tributary 2     |
| 1     | 37       | 69            | 8              | 2            | 0      | 113.35       | 500          | 112      | 113            |                      |
| 1     | 37       | 70            | 8              | 3            | 0      | 113.35       | 500          | 112      | 113            |                      |
| 1     | 38       | 70            | 8              | 4            | 0      | 108.35       | 500          | 107      | 108            |                      |
| 1     | 39       | 71            | 8              | 5            | 0      | 106.35       | 500          | 105      | 106            |                      |
| 1     | 40       | 72            | 9              | 1            | -1     | 96.28        | 500          | 89       | 95.83          | SMR cont             |
| 1     | 41       | 72            | 9              | 2            | 0      | 95.87        | 500          | 89       | 95.42          |                      |
| 1     | 42       | 72            | 9              | 3            | 0      | 95.45        | 500          | 89       | 95             |                      |
| 1     | 43       | 72            | 9              | 4            | 0      | 94.83        | 500          | 88       | 94.38          |                      |
| 1     | 44       | 72            | 9              | 5            | 0      | 94.2         | 500          | 87       | 93.75          |                      |
| 1     | 45       | 72            | 9              | 6            | 0      | 93.58        | 500          | 87       | 93.13          |                      |
| 1     | 46       | 72            | 9              | 7            | 0      | 92 95        | 500          | 86       | 92.5           |                      |
| 1     | 47       | 72            | ğ              | 8            | Ő      | 92.33        | 500          | 85       | 91.88          |                      |
| 1     | 48       | 72            | g              | q            | 0      | Q1 7         | 500          | 85       | 91.00          |                      |
| 1     | 40<br>/0 | 72            | a<br>a         | 10           | 0      | 01.08        | 500          | 84       | 90.63          |                      |
| 1     | 40       | 72            | 9              | 10           | 0      | 00.45        | 500          | 04       | 30.03          |                      |
| 1     | 49       | 71            | 9              | 10           | 0      | 90.43        | 500          | 04       | 90 06          |                      |
| 1     | 50       | 71            | 9              | 12           | 0      | 90.41        | 500          | 00       | 09.90          |                      |
| 1     | 51       | 71            | 9              | 13           | 0      | 90.36        | 500          | 83       | 89.91          |                      |
| 1     | 52       | 71            | 9              | 14           | 0      | 90.32        | 500          | 83       | 89.87          |                      |
| 1     | 53       | 71            | 9              | 15           | 0      | 90.27        | 500          | 82       | 89.82          |                      |
| 1     | 54       | 71            | 9              | 16           | 0      | 90.23        | 500          | 82       | 89.78          |                      |
| 1     | 54       | 70            | 9              | 17           | 0      | 90.19        | 500          | 82       | 89.74          |                      |
| 1     | 55       | 70            | 9              | 18           | 0      | 90.14        | 500          | 82       | 89.69          |                      |
| 1     | 56       | 70            | 9              | 19           | 0      | 90.1         | 500          | 81       | 89.65          |                      |
| 1     | 57       | 70            | 9              | 20           | 0      | 90.06        | 500          | 81       | 89.61          |                      |
| 1     | 57       | 69            | 9              | 21           | 0      | 90.01        | 500          | 81       | 89.56          |                      |
| 1     | 58       | 69            | 9              | 22           | 0      | 89.97        | 500          | 80       | 89.52          |                      |
| 1     | 59       | 69            | 9              | 23           | 0      | 89.92        | 500          | 80       | 89.47          |                      |
| 1     | 60       | 69            | 9              | 24           | 0      | 89.88        | 500          | 80       | 89.43          |                      |
| 1     | 60       | 68            | 9              | 25           | 0      | 85.45        | 500          | 75       | 85             |                      |
| 1     | 61       | 68            | 9              | 26           | 0      | 84 74        | 500          | 74       | 84 29          |                      |
| . 1   | 62       | 68            | å              | 27           | 0      | 84.02        | 500          | 73       | 83 57          |                      |
| 1     | 63       | 68            | a<br>a         | 28           | 0      | 83 31        | 500          | 70       | 82.86          |                      |
| 1     | 64       | 68            | 9              | 20           | 0      | 82 50        | 500          | 72       | 92.00<br>92.14 |                      |
| 1     | 65       | 69            | 9              | 20           | 0      | 02.00        | 500          | 71       | 02.14          |                      |
| 1     | 66       | 67            | 9              | 30           | 0      | 01.00        | 500          | 70       | 01.43          |                      |
| 1     | 00       | 67            | 9              | 31           | 100000 | 01.10        | 500          | 69       | 00.71          | Outstation Daniel 4  |
|       | 49       | 87            | 10             | 1            | 106600 | 100.45       | 50           | 94       | 100            |                      |
| 1     | 48       | 87            | 11             | 1            | 0      | 100.45       | 50           | 94       | 100            | Lake O'Nelli Release |
| 1     | 48       | 86            | 12             | 1            | -1     | 100.45       | 50           | 94       | 100            | Release Canal        |
| 1     | 49       | 85            | 12             | 2            | 0      | 102.67       | 50           | 101.32   | 102.32         |                      |
| 1     | 50       | 85            | 12             | 3            | 0      | 97.45        | 50           | 91       | 97             |                      |
| 1     | 51       | 84            | 12             | 4            | 0      | 95.95        | 50           | 89       | 95.5           |                      |
| 1     | 52       | 83            | 12             | 5            | 0      | 94.45        | 50           | 87       | 94             |                      |
| 1     | 42       | 85            | 13             | 1            | 0      | 108.35       | 50           | 107      | 108            | Lake O'Neill Spill   |
| 1     | 43       | 84            | 13             | 2            | 0      | 103.35       | 50           | 102      | 103            |                      |
| 1     | 44       | 83            | 13             | 3            | 0      | 103.35       | 50           | 102      | 103            |                      |
| 1     | 45       | 83            | 13             | 4            | 0      | 103.35       | 50           | 102      | 103            |                      |
| 1     | 46       | 83            | 13             | 5            | 0      | 103.35       | 50           | 102      | 103            |                      |
| 1     | 47       | 82            | 13             | 6            | 0      | 103.35       | 50           | 102      | 103            |                      |
| 1     | 48       | 82            | 13             | 7            | 0      | 103.35       | 50           | 102      | 103            |                      |
| 1     | 49       | 82            | 13             | 8            | 0      | 103.35       | 50           | 102      | 103            |                      |
| 1     | 50       | 82            | 13             | a            | 0      | 93 35        | 50           | 92       | 03             |                      |
| 1     | 51       | 81            | 13             | 10           | 0      | 93 35        | 50           | 92       | 03             |                      |
| 1     | 52       | 81            | 13             | 11           | 0      | 93.35        | 50           | 92       | 03             |                      |
|       | 02       | 01            | 10             |              | 0      | 00.00        | 50           | 02       | 55             |                      |

| Layer  | Row | <u>Column</u> | Segment | Reach  | Flow | <u>Stage</u>   | <b>Conductance</b> | Btm Elev | Top Elev    | <b>Description</b>   |
|--------|-----|---------------|---------|--------|------|----------------|--------------------|----------|-------------|----------------------|
| 1      | 52  | 82            | 14      | 1      | -1   | 92.95          | 50                 | 85       | 92.5        | Release Canal cont   |
| 1      | 53  | 81            | 14      | 2      | 0    | 91.45          | 50                 | 84       | 91          |                      |
| 1      | 53  | 89            | 15      | 1      | 2354 | 113.35         | 500                | 112      | 113         | East Tributary 2     |
| 1      | 53  | 88            | 15      | 2      | 0    | 108.35         | 500                | 107      | 108         |                      |
| 1      | 53  | 87            | 15      | 3      | 0    | 103.35         | 500                | 102      | 103         |                      |
| 1      | 53  | 86            | 15      | 4      | 0    | 103.35         | 500                | 102      | 103         |                      |
| 1      | 54  | 85            | 15      | 5      | 0    | 103.35         | 500                | 102      | 103         |                      |
| 1      | 54  | 84            | 15      | 6      | 0    | 103.35         | 500                | 102      | 103         |                      |
| 1      | 54  | 83            | 15      | 7      | 0    | 103.35         | 500                | 102      | 103         |                      |
| 1      | 54  | 82            | 15      | 8      | 0    | 103.35         | 500                | 102      | 103         |                      |
| 1      | 54  | 81            | 15      | 9      | 0    | 93.35          | 500                | 92       | 93          |                      |
| 1      | 54  | 80            | 16      | 1      | -1   | 89.95          | 50                 | 82       | 89.5        | Release Canal cont   |
| 1      | 54  | 79            | 16      | 2      |      | 88.45          | 50                 | 80       | 88          |                      |
| 1      | 55  | 78            | 16      | 2      | 0    | 86.95          | 50                 | 78       | 86.5        |                      |
| 1      | 56  | 70            | 10      | 1      | 0    | 85.45          | 50                 | 70       | 85          |                      |
| 1      | 57  | 76            | 10      | 4<br>5 | 0    | 00.40<br>85    | 50                 | 76       | 84 55       |                      |
| 1      | 58  | 70            | 10      | 5      | 0    | 84 54          | 50                 | 70       | 84.00       |                      |
| 1      | 50  | 73            | 10      | 7      | 0    | 04.04          | 50                 | 73       | 04.09       |                      |
| 1      | 59  | 74            | 10      | 1      | 0    | 04.09          | 50                 | 74       | 03.04       |                      |
|        | 60  | 73            | 16      | 8      | 0    | 83.63          | 50                 | 73       | 83.18       |                      |
| 1      | 61  | 72            | 16      | 9      | 0    | 83.18          | 50                 | 73       | 82.73       |                      |
| 1      | 62  | 71            | 16      | 10     | 0    | 82.72          | 50                 | 72       | 82.27       |                      |
| 1      | 63  | 70            | 16      | 11     | 0    | 82.27          | 50                 | /1       | 81.82       |                      |
| 1      | 65  | 83            | 17      | 1      | 2441 | 128.35         | 500                | 127      | 128         | East Tributary 3,    |
| 1      | 65  | 82            | 17      | 2      | 0    | 108.35         | 500                | 107      | 108         | Rattlesnake Canyon   |
| 1      | 65  | 81            | 17      | 3      | 0    | 103.35         | 500                | 102      | 103         |                      |
| 1      | 65  | 80            | 17      | 4      | 0    | 103.35         | 500                | 102      | 103         |                      |
| 1      | 65  | 79            | 17      | 5      | 0    | 93.35          | 500                | 92       | 93          |                      |
| 1      | 65  | 78            | 17      | 6      | 0    | 88.35          | 500                | 87       | 88          |                      |
| 1      | 65  | 77            | 17      | 7      | 0    | 88.35          | 500                | 87       | 88          |                      |
| 1      | 65  | 76            | 17      | 8      | 0    | 88.35          | 500                | 87       | 88          |                      |
| 1      | 65  | 75            | 17      | 9      | 0    | 88.35          | 500                | 87       | 88          |                      |
| 1      | 65  | 74            | 17      | 10     | 0    | 88.35          | 500                | 87       | 88          |                      |
| 1      | 65  | 73            | 17      | 11     | 0    | 89.55          | 500                | 88.2     | 89.2        |                      |
| 1      | 64  | 72            | 17      | 12     | 0    | 93.35          | 500                | 92       | 93          |                      |
| 1      | 64  | 71            | 17      | 13     | 0    | 88.35          | 500                | 87       | 88          |                      |
| 1      | 64  | 70            | 18      | 1      | -1   | 81.81          | 50                 | 70       | 81.36       | Release Canal cont   |
| 1      | 65  | 69            | 18      | 2      | 0    | 81.36          | 50                 | 69       | 80.91       |                      |
| 1      | 66  | 68            | 18      | 3      | 0    | 80.9           | 50                 | 69       | 80.45       |                      |
| 1      | 67  | 67            | 19      | 1      | -1   | 80.35          | 1723               | 68       | 79.9        | SMR cont             |
| 1      | 68  | 67            | 19      | 2      | 0    | 79.75          | 838                | 67       | 79.3        |                      |
| 1      | 69  | 67            | 19      | 3      | 0    | 79.25          | 833                | 66       | 78.8        |                      |
| 1      | 69  | 66            | 19      | 4      | 0    | 78.75          | 833                | 66       | 78.3        |                      |
| 1      | 70  | 66            | 19      | 5      | 0    | 78.25          | 8865               | 65       | 77.8        |                      |
| 1      | 70  | 65            | 19      | 6      | 0    | 77 75          | 8865               | 65       | 77.3        |                      |
| 1      | 70  | 64            | 19      | 7      | Ő    | 77 25          | 8865               | 64       | 76.8        |                      |
| 1      | 71  | 76            | 20      | 1      | 2954 | 93.35          | 500                | 92       | 93          | Fast Tributary 4     |
| 1      | 71  | 75            | 20      | 2      |      | 93.35          | 500                | 92       | 93          | near General's House |
| 1      | 71  | 74            | 20      | 3      | 0    | 93.35          | 500                | 92       | 93          | neur General 5 nouse |
| 1      | 71  | 73            | 20      | 4      | 0    | 88 35          | 500                | 87       | 88          |                      |
| 1      | 71  | 70            | 20      | 5      | 0    | 88 35          | 500                | 87       | 88          |                      |
| 1      | 72  | 71            | 20      | 6      | 0    | 88 35          | 500                | 87       | 88          |                      |
| 1      | 73  | 70            | 20      | 7      | 0    | 88 35          | 500                | 87       | 88          |                      |
| 1      | 73  | 60            | 20      | 8      | 0    | 83 35          | 500                | 82       | 83          |                      |
| 1      | 70  | 69            | 20      | 0      | 0    | 00.00          | 500                | 02       | 00          |                      |
| 1      | 73  | 67            | 20      | 10     | 0    | 00.00          | 500                | 02       | 00          |                      |
| 1      | 73  | 66            | 20      | 10     | 0    | 00.00          | 500                | 07       | 00          |                      |
| 1      | 72  | 00<br>65      | 20      | 10     | 0    | 00.00          | 500                | 02       | 00          |                      |
| 1      | 72  | 64            | 20      | 12     | 0    | 00.00          | 500                | 02       | 00          |                      |
| 1      | 74  | 04            | 20      | 13     | 0    | 76 75          | 000                | 02       | 76.0        | SMD cont             |
| 1      | 71  | 04            | 21      | 1      | -1   | 76.05          | COQQ               | 04       | 70.3        | SWIT CONT            |
| 1      | 71  | 03            | 21      | 2      | 0    | 10.20<br>75 75 | 0005               | 03       | 10.8        |                      |
| 1      | 71  | 02            | 21      | 3<br>∡ | 0    | 10.10          | 8000               | 03       | 10.3        |                      |
| T<br>▲ | 72  | 62            | 21      | 4      | 0    | 10.45          | 1250               | 63       | /5<br>74 75 |                      |
| T A    | 12  | 61            | 21      | 5      | 0    | 75.2           | 1250               | 62       | /4./5       |                      |
| 1      | 72  | 60            | 21      | 6      | 0    | 74.95          | 1250               | 62       | 74.5        |                      |
| 1      | /3  | 60            | 21      | (      | 0    | (4./           | 2373               | 62       | /4.25       |                      |
| 1      | 73  | 59            | 21      | 8      | 0    | 74.45          | 2373               | 62       | 74          |                      |

| Layer | Row | <u>Column</u> | Segment | <b>Reach</b> | Flow  | Stage 54 | Conductance | Btm Elev | <u>Top Elev</u> | <b>Description</b> |
|-------|-----|---------------|---------|--------------|-------|----------|-------------|----------|-----------------|--------------------|
| 1     | 73  | 58            | 21      | 9            | 0     | 74.2     | 2373        | 61       | 73.75           |                    |
| 1     | 73  | 57            | 21      | 10           | 0     | 73.95    | 2373        | 61       | 73.5            |                    |
| 1     | 74  | 57            | 21      | 11           | 0     | 73.7     | 2155        | 61       | 73.25           |                    |
| 1     | 74  | 56            | 21      | 12           | 0     | 73.45    | 2155        | 61       | 73              |                    |
| 1     | 66  | 52            | 22      | 1            | 27321 | 88.35    | 500         | 87       | 88              | West Tributary 3,  |
| 1     | 67  | 52            | 22      | 2            | 0     | 83.35    | 500         | 82       | 83              | Basilone Road      |
| 1     | 68  | 52            | 22      | 3            | 0     | 80.35    | 500         | 79       | 80              |                    |
| 1     | 69  | 52            | 22      | 4            | 0     | 80.35    | 500         | 79       | 80              |                    |
| 1     | 70  | 53            | 22      | 5            | 0     | 80.35    | 500         | 79       | 80              |                    |
| 1     | 71  | 53            | 22      | 6            | 0     | 80.35    | 500         | 79       | 80              |                    |
| 1     | 72  | 54            | 22      | 7            | 0     | 83.35    | 500         | 82       | 83              |                    |
| 1     | 73  | 54            | 22      | 8            | 0     | 78.35    | 500         | 77       | 78              |                    |
| 1     | 74  | 55            | 23      | 1            | -1    | 73.2     | 2155        | 61       | 72.75           | SMR cont           |
| 1     | 75  | 55            | 23      | 2            | 0     | 72.95    | 1316        | 61       | 72.5            |                    |
| 1     | 75  | 54            | 23      | 3            | 0     | 72.7     | 1316        | 60       | 72.25           |                    |
| 1     | 75  | 53            | 23      | 4            | 0     | 72.45    | 1316        | 60       | 72              |                    |
| 1     | 76  | 53            | 23      | 5            | 0     | 72.2     | 1339        | 60       | 71.75           |                    |
| 1     | 76  | 52            | 23      | 6            | 0     | 71.95    | 1339        | 60       | 71.5            |                    |
| 1     | 76  | 51            | 23      | 7            | 0     | 71 7     | 1339        | 60       | 71 25           |                    |
| . 1   | 76  | 50            | 23      | 8            | 0     | 71 45    | 1339        | 59       | 71              |                    |
| 1     | 77  | 50            | 23      | ğ            | 0     | 71.2     | 1364        | 59       | 70 75           |                    |
| 1     | 77  | 49            | 23      | 10           | 0     | 70.95    | 1364        | 59       | 70.5            |                    |
| 1     | 77  | 48            | 23      | 10           | 0     | 70.00    | 1364        | 59       | 70.25           |                    |
| 1     | 78  | 48            | 23      | 12           | 0     | 70.45    | 741         | 59       | 70.20           |                    |
| 1     | 78  | 40            | 23      | 13           | 0     | 69.83    | 741         | 58       | 69 38           |                    |
| 1     | 70  | 47            | 23      | 14           | 0     | 69.2     | 755         | 58       | 68 75           |                    |
| 1     | 79  | 46            | 23      | 15           | 0     | 68 58    | 755         | 57       | 68 13           |                    |
| 1     | 80  | 46            | 23      | 16           | 0     | 67.95    | 962         | 57       | 67.5            |                    |
| . 1   | 80  | 45            | 23      | 17           | 0     | 67.33    | 962         | 56       | 66 88           |                    |
| . 1   | 81  | 45            | 23      | 18           | 0     | 66.7     | 980         | 56       | 66 25           |                    |
| 1     | 81  | 44            | 23      | 19           | 0     | 66.08    | 980         | 55       | 65.63           |                    |
| 1     | 82  | 44            | 23      | 20           | 0     | 65.45    | 1000        | 55       | 65              |                    |
| 1     | 82  | 43            | 23      | 21           | 0     | 65.16    | 1000        | 54       | 64.71           |                    |
| 1     | 83  | 43            | 23      | 22           | 0     | 64.86    | 1020        | 54       | 64.41           |                    |
| 1     | 84  | 43            | 23      | 23           | 0     | 64.57    | 1042        | 54       | 64.12           |                    |
| 1     | 84  | 42            | 23      | 24           | 0     | 64.27    | 1042        | 54       | 63.82           |                    |
| 1     | 85  | 43            | 23      | 25           | 0     | 63.98    | 1277        | 54       | 63.53           |                    |
| 1     | 85  | 42            | 23      | 26           | 0     | 63.69    | 1277        | 53       | 63.24           |                    |
| 1     | 85  | 41            | 23      | 27           | 0     | 63.39    | 1277        | 53       | 62.94           |                    |
| 1     | 86  | 41            | 23      | 28           | 0     | 63.1     | 1739        | 53       | 62.65           |                    |
| 1     | 86  | 40            | 23      | 29           | 0     | 62.8     | 1739        | 53       | 62.35           |                    |
| 1     | 87  | 40            | 23      | 30           | 0     | 62.51    | 1778        | 53       | 62.06           |                    |
| 1     | 88  | 40            | 23      | 31           | 0     | 62.21    | 2500        | 52       | 61.76           |                    |
| 1     | 88  | 39            | 23      | 32           | 0     | 61.92    | 2500        | 52       | 61.47           |                    |
| 1     | 89  | 39            | 23      | 33           | 0     | 61.63    | 2558        | 52       | 61.18           |                    |
| 1     | 89  | 38            | 23      | 34           | 0     | 61.33    | 2558        | 52       | 60.88           |                    |
| 1     | 90  | 38            | 23      | 35           | 0     | 61.04    | 2381        | 52       | 60.59           |                    |
| 1     | 90  | 37            | 23      | 36           | 0     | 60.74    | 2381        | 51       | 60.29           |                    |
| 1     | 91  | 37            | 23      | 37           | 0     | 60.45    | 2439        | 51       | 60              |                    |
| 1     | 92  | 37            | 23      | 38           | 0     | 60.2     | 1250        | 51       | 59.75           |                    |
| 1     | 92  | 36            | 23      | 39           | 0     | 59.95    | 1250        | 51       | 59.5            |                    |
| 1     | 93  | 36            | 23      | 40           | 0     | 59.7     | 1282        | 51       | 59.25           |                    |
| 1     | 93  | 35            | 23      | 41           | 0     | 59.45    | 1282        | 51       | 59              |                    |
| 1     | 94  | 35            | 23      | 42           | 0     | 59.2     | 1316        | 51       | 58.75           |                    |
| 1     | 94  | 34            | 23      | 43           | 0     | 58.95    | 1316        | 50       | 58.5            |                    |
| 1     | 95  | 34            | 23      | 44           | 0     | 58.7     | 1351        | 50       | 58.25           |                    |
| 1     | 95  | 33            | 23      | 45           | 0     | 58.45    | 1351        | 50       | 58              |                    |
| 1     | 96  | 33            | 23      | 46           | 0     | 58.2     | 1667        | 50       | 57.75           |                    |
| 1     | 96  | 32            | 23      | 47           | 0     | 57.95    | 1667        | 50       | 57.5            |                    |
| 1     | 96  | 31            | 23      | 48           | 0     | 57.7     | 1667        | 50       | 57.25           |                    |
| 1     | 96  | 30            | 23      | 49           | 0     | 57.45    | 1667        | 49       | 57              |                    |
| 1     | 96  | 29            | 23      | 50           | 0     | 57.2     | 1667        | 49       | 56.75           |                    |
| 1     | 96  | 28            | 23      | 51           | 0     | 56.95    | 1667        | 49       | 56.5            |                    |
| 1     | 96  | 27            | 23      | 52           | 0     | 56.7     | 1667        | 49       | 56.25           |                    |
| 1     | 97  | 27            | 23      | 53           | 0     | 56.45    | 1714        | 49       | 56              |                    |
| 1     | 97  | 26            | 23      | 54           | 0     | 56.2     | 1714        | 48       | 55.75           |                    |

| Layer | Row | <u>Column</u> | <u>Segment</u> | Reach   | Flow  | <u>Stage</u>   | <b>Conductance</b> | Btm Elev       | Top Elev | <b>Description</b> |
|-------|-----|---------------|----------------|---------|-------|----------------|--------------------|----------------|----------|--------------------|
| 1     | 97  | 25            | 23             | 55      | 0     | 55.95          | 1714               | 48             | 55.5     |                    |
| 1     | 98  | 25            | 23             | 56      | 0     | 55.7           | 1765               | 48             | 55.25    |                    |
| 1     | 98  | 24            | 23             | 57      | 0     | 55.45          | 1765               | 48             | 55       |                    |
| 1     | 99  | 24            | 23             | 58      | 0     | 55.03          | 3030               | 47             | 54.58    |                    |
| 1     | 99  | 23            | 23             | 59      | 0     | 54.62          | 3030               | 47             | 54.17    |                    |
| 1     | 100 | 23            | 23             | 60      | 0     | 54.2           | 3125               | 47             | 53.75    |                    |
| 1     | 82  | 29            | 24             | 1       | 25270 | 68.35          | 500                | 67             | 68       | Oxidation Pond 8   |
| 1     | 82  | 30            | 25             | 1       | 19304 | 73.07          | 500                | 71.72          | 72.72    | West Tributary 4   |
| 1     | 83  | 30            | 26             | 1       | -1    | 63.35          | 500                | 62             | 63       | to river           |
| 1     | 84  | 29            | 26             | 2       | 0     | 63.35          | 500                | 62             | 63       |                    |
| 1     | 85  | 29            | 26             | 3       | 0     | 63.35          | 500                | 62             | 63       |                    |
| 1     | 86  | 28            | 26             | 4       | 0     | 63.35          | 500                | 62             | 63       |                    |
| 1     | 86  | 27            | 26             | 5       | 0     | 63.35          | 500                | 62             | 63       |                    |
| 1     | 87  | 27            | 26             | 6       | 0     | 62.16          | 500                | 60.81          | 61.81    |                    |
| 1     | 88  | 26            | 26             | /       | 0     | 60.87          | 500                | 59.52          | 60.52    |                    |
| 1     | 89  | 20            | 20             | 8       | 0     | 59.59          | 500                | 58.24          | 59.24    |                    |
| 1     | 90  | 20            | 20             | 9<br>10 | 0     | 59.59          | 500                | 58.24<br>57    | 59.24    |                    |
| 1     | 91  | 20            | 20             | 10      | 0     | 00.00<br>EC 00 | 500                | 57<br>55 02    | 50       |                    |
| 1     | 92  | 24            | 20             | 11      | 0     | 50.38          | 500                | 55.03          | 56.03    |                    |
| 1     | 93  | 24            | 20             | 12      | 0     | 50.38          | 500                | 55.03          | 56.03    |                    |
| 1     | 94  | 20            | 20             | 13      | 0     | 57.34          | 500                | 55.99          | 50.99    |                    |
| 1     | 90  | 20            | 20             | 14      | 0     | 56.06          | 500                | 04.71<br>54.71 | 55.71    |                    |
| 1     | 90  | 20            | 20             | 10      | 0     | 00.00          | 500                | 54.71          | 55.71    |                    |
| 1     | 97  | 22            | 20             | 10      | 0     | 55.41          | 500                | 54.06          | 55.06    |                    |
| 1     | 90  | 22            | 20             | 10      | 0     | 55.41          | 500                | 54.06          | 55.06    |                    |
| 1     | 100 | 22            | 20<br>27       | 10      | _1    | 52 79          | 3125               | 54.00          | 53.00    |                    |
| 1     | 100 | 22            | 27             | ו<br>כ  | -1    | 53.70          | 3123               | 40             | 52.00    |                    |
| 1     | 101 | 22            | 27             | 2       | 0     | 52.05          | 3220               | 40             | 52.52    |                    |
| 1     | 101 | 21            | 27             | J<br>1  | 0     | 52.53          | 3220               | 40             | 52.08    |                    |
| 1     | 102 | 21            | 27             | -+      | 0     | 52.55          | 3448               | 40             | 51 67    |                    |
| 1     | 103 | 21            | 27             | 5       | 0     | 51 7           | 2041               | 43             | 51.07    |                    |
| 1     | 105 | 21            | 27             | 7       | 0     | 51.28          | 2041               | 44             | 50.83    |                    |
| 1     | 105 | 21            | 27             | 8       | 0     | 50.87          | 2041               | 43             | 50.00    |                    |
| 1     | 100 | 20            | 27             | q       | 0     | 50.07          | 2041               | 43             | 50.42    |                    |
| 1     | 107 | 20            | 27             | 10      | 0     | 49.62          | 2041               | 42             | 49 17    |                    |
| 1     | 108 | 20            | 27             | 10      | 0     | 48 78          | 2941               | 41             | 48.33    |                    |
| 1     | 108 | 19            | 27             | 12      | 0     | 47.95          | 2941               | 40             | 47.5     |                    |
| 1     | 109 | 19            | 27             | 13      | 0     | 47.12          | 2941               | 39             | 46.67    |                    |
| 1     | 110 | 19            | 27             | 14      | 0     | 46.28          | 2941               | 39             | 45.83    |                    |
| 1     | 110 | 18            | 27             | 15      | 0     | 45.45          | 2941               | 38             | 45       |                    |
| 1     | 111 | 18            | 27             | 16      | 0     | 45.07          | 2941               | 37             | 44.62    |                    |
| 1     | 111 | 17            | 27             | 17      | 0     | 44.68          | 2941               | 37             | 44.23    |                    |
| 1     | 112 | 17            | 27             | 18      | 0     | 44.3           | 2941               | 37             | 43.85    |                    |
| 1     | 113 | 17            | 27             | 19      | 0     | 43.91          | 2941               | 36             | 43.46    |                    |
| 1     | 113 | 16            | 27             | 20      | 0     | 43.53          | 2941               | 36             | 43.08    |                    |
| 1     | 114 | 16            | 27             | 21      | 0     | 43.14          | 2941               | 35             | 42.69    |                    |
| 1     | 115 | 16            | 27             | 22      | 0     | 42.76          | 2941               | 35             | 42.31    |                    |
| 1     | 116 | 16            | 27             | 23      | 0     | 42.37          | 2941               | 35             | 41.92    |                    |
| 1     | 87  | 60            | 28             | 1       | 8575  | 78.35          | 500                | 77             | 78       | East Tributary 5   |
| 1     | 87  | 59            | 28             | 2       | 0     | 76.29          | 500                | 74.94          | 75.94    |                    |
| 1     | 88  | 59            | 28             | 3       | 0     | 74.35          | 500                | 73             | 74       |                    |
| 1     | 89  | 58            | 28             | 4       | 0     | 68.35          | 500                | 67             | 68       |                    |
| 1     | 90  | 57            | 28             | 5       | 0     | 68.35          | 500                | 67             | 68       |                    |
| 1     | 91  | 56            | 28             | 6       | 0     | 74.35          | 500                | 73             | 74       |                    |
| 1     | 92  | 55            | 28             | 7       | 0     | 68.35          | 500                | 67             | 68       |                    |
| 1     | 93  | 55            | 28             | 8       | 0     | 68.35          | 500                | 67             | 68       |                    |
| 1     | 94  | 54            | 28             | 9       | 0     | 68.35          | 500                | 67             | 68       |                    |
| 1     | 95  | 53            | 28             | 10      | 0     | 65.69          | 500                | 64.34          | 65.34    |                    |
| 1     | 96  | 52            | 28             | 11      | 0     | 63.35          | 500                | 62             | 63       |                    |
| 1     | 97  | 51            | 28             | 12      | 0     | 63.35          | 500                | 62             | 63       |                    |
| 1     | 98  | 50            | 28             | 13      | 0     | 63.35          | 500                | 62             | 63       |                    |
| 1     | 98  | 49            | 28             | 14      | 0     | 63.35          | 500                | 62             | 63       |                    |
| 1     | 112 | 61            | 29             | 1       | 9803  | 143.35         | 50                 | 142            | 143      | East Tributary 6   |
| 1     | 111 | 61            | 29             | 2       | 0     | 133.35         | 50                 | 132            | 133      |                    |
| 1     | 110 | 60            | 29             | 3       | 0     | 93.35          | 50                 | 92             | 93       |                    |

| Layer | <u>Row</u> | <u>Column</u> | Segment | <u>Reach</u> | <u>Flow</u> | <u>Stage</u>   | Conductance | Btm Elev | <u>Top Elev</u> | Description             |
|-------|------------|---------------|---------|--------------|-------------|----------------|-------------|----------|-----------------|-------------------------|
| 1     | 110        | 59            | 29      | 4            | 0           | 93.35          | 50          | 92       | 93              |                         |
| 1     | 109        | 58            | 29      | 5            | 0           | 73.07          | 50          | 71.72    | 72.72           |                         |
| 1     | 108        | 57            | 29      | 6            | 0           | 69.54          | 50          | 68.19    | 69.19           |                         |
| 1     | 107        | 50<br>55      | 29      | /            | 0           | 69.54          | 50          | 68.19    | 69.19           |                         |
| 1     | 100        | 50<br>54      | 29      | 0            | 0           | 00.30<br>63.35 | 50          | 62       | 00              |                         |
| 1     | 105        | 53            | 29      | 9<br>10      | 0           | 63 35          | 50          | 62       | 63              |                         |
| 1     | 104        | 52            | 29      | 10           | 0           | 63 35          | 50          | 62       | 63              |                         |
| 1     | 103        | 52            | 29      | 12           | 0           | 63 35          | 50          | 62       | 63              |                         |
| 1     | 102        | 51            | 29      | 13           | 0           | 63.35          | 50          | 62       | 63              |                         |
| 1     | 100        | 50            | 29      | 14           | 0           | 63.35          | 50          | 62       | 63              |                         |
| 1     | 99         | 49            | 30      | 1            | -1          | 63.35          | 5           | 62       | 63              | MCAS Ditch              |
| 1     | 99         | 48            | 30      | 2            | 0           | 63.35          | 5           | 62       | 63              |                         |
| 1     | 99         | 47            | 30      | 3            | 0           | 63.35          | 5           | 62       | 63              |                         |
| 1     | 100        | 46            | 30      | 4            | 0           | 63.35          | 5           | 62       | 63              |                         |
| 1     | 100        | 45            | 30      | 5            | 0           | 63.35          | 5           | 62       | 63              |                         |
| 1     | 101        | 44            | 30      | 6            | 0           | 63.35          | 5           | 62       | 63              |                         |
| 1     | 101        | 43            | 30      | 7            | 0           | 58.35          | 5           | 57       | 58              |                         |
| 1     | 102        | 42            | 30      | 8            | 0           | 53.35          | 5           | 52       | 53              |                         |
| 1     | 102        | 41            | 30      | 9            | 0           | 58.35          | 5           | 57       | 58              |                         |
| 1     | 103        | 40            | 30      | 10           | 0           | 53.35          | 5           | 52       | 53              |                         |
| 1     | 103        | 39            | 30      | 11           | 0           | 58.35          | 5           | 57       | 58              |                         |
| 1     | 104        | 38            | 30      | 12           | 0           | 53.35          | 5           | 52       | 53              |                         |
| 1     | 104        | 37            | 30      | 13           | 0           | 58.35          | 5           | 57       | 58              |                         |
| 1     | 105        | 30<br>25      | 30      | 14           | 0           | 58.35          | 5           | 57       | 58              |                         |
| 1     | 106        | 30            | 30      | 15           | 0           | 53.35          | 5           | 52       | 53              |                         |
| 1     | 107        | 34<br>33      | 30      | 10           | 0           | 53.35          | ວ<br>5      | 52       | 53              |                         |
| 1     | 107        | 32            | 30      | 18           | 0           | 53 35          | 5           | 52       | 53              |                         |
| 1     | 108        | 31            | 30      | 19           | 0           | 53 35          | 5           | 52       | 53              |                         |
| 1     | 100        | 30            | 30      | 20           | 0           | 53.35          | 5           | 52       | 53              |                         |
| . 1   | 110        | 29            | 30      | 21           | 0           | 53.35          | 5           | 52       | 53              |                         |
| 1     | 110        | 28            | 30      | 22           | 0           | 56.06          | 5           | 54.71    | 55.71           |                         |
| 1     | 111        | 27            | 30      | 23           | 0           | 53.35          | 5           | 52       | 53              |                         |
| 1     | 111        | 26            | 30      | 24           | 0           | 53.35          | 5           | 52       | 53              |                         |
| 1     | 112        | 25            | 30      | 25           | 0           | 53.35          | 5           | 52       | 53              |                         |
| 1     | 112        | 24            | 30      | 26           | 0           | 53.35          | 5           | 52       | 53              |                         |
| 1     | 113        | 23            | 30      | 27           | 0           | 53.35          | 5           | 52       | 53              |                         |
| 1     | 114        | 22            | 30      | 28           | 0           | 53.35          | 5           | 52       | 53              |                         |
| 1     | 115        | 21            | 30      | 29           | 0           | 53.35          | 5           | 52       | 53              |                         |
| 1     | 115        | 20            | 30      | 30           | 0           | 52.2           | 5           | 50.85    | 51.85           |                         |
| 1     | 116        | 19            | 30      | 31           | 0           | 58.35          | 5           | 57       | 58              |                         |
| 1     | 116        | 18            | 30      | 32           | 0           | 53.35          | 5           | 52       | 53              |                         |
| 1     | 117        | 17            | 30      | 33           | 0           | 43.35          | 5           | 42       | 43              | 014D                    |
| 1     | 117        | 16            | 31      | 1            | -1          | 41.99          | 2941        | 34       | 41.54           | SMR cont                |
| 1     | 118        | 16            | 31      | 2            | 0           | 41.6           | 2353        | 34       | 41.15           |                         |
| 1     | 119        | 10            | 21      | ა<br>⊿       | 0           | 41.22          | 1170        | აა<br>22 | 40.77           |                         |
| 1     | 120        | 10            | 31      | 4<br>5       | 0           | 40.03          | 1170        | 33       | 40.30           |                         |
| 1     | 121        | 10            | 31      | 5            | 0           | 40.43          | 1170        | 30       | 30 58           |                         |
| 1     | 121        | 13            | 31      | 7            | 0           | 38 78          | 1324        | 31       | 38.33           |                         |
| 1     | 123        | 14            | 31      | 8            | 0           | 38.37          | 1103        | 31       | 37.92           |                         |
| 1     | 123        | 13            | 31      | 9            | 0<br>0      | 37.95          | 1103        | 30       | 37.5            |                         |
| 1     | 124        | 13            | 31      | 10           | 0           | 37.53          | 882         | 30       | 37.08           |                         |
| 1     | 124        | 12            | 31      | 11           | 0           | 37.12          | 882         | 29       | 36.67           |                         |
| 1     | 125        | 13            | 32      | 1            | 51017       | 43.35          | 500         | 42       | 43              | <b>Oxidation Pond 3</b> |
| 1     | 125        | 12            | 33      | 1            | -1          | 36.7           | 882         | 29       | 36.25           | SMR cont                |
| 1     | 126        | 12            | 33      | 2            | 0           | 36.28          | 882         | 29       | 35.83           |                         |
| 1     | 126        | 11            | 33      | 3            | 0           | 35.87          | 882         | 28       | 35.42           |                         |
| 1     | 127        | 11            | 33      | 4            | 0           | 35.45          | 735         | 28       | 35              |                         |
| 1     | 128        | 11            | 33      | 5            | 0           | 35.14          | 1029        | 27       | 34.69           |                         |
| 1     | 128        | 10            | 33      | 6            | 0           | 34.83          | 1029        | 27       | 34.38           |                         |
| 1     | 129        | 10            | 33      | 7            | 0           | 34.51          | 1029        | 27       | 34.06           |                         |
| 1     | 130        | 10            | 33      | 8            | 0           | 34.2           | 1029        | 26       | 33.75           |                         |
| 1     | 82         | 19            | 34      | 1            | 9844        | 78.35          | 500         | 77       | 78              | West Tributary 5        |
| 1     | 83         | 19            | 34      | 2            | 0           | 78.35          | 500         | 77       | 78              |                         |

3

| <u>Layer</u> | <u>Row</u> | <u>Column</u> | Segment | <u>Reach</u> | <u>Flow</u> | <u>Stage</u> | Conductance | Btm Elev | <u>Top Elev</u> | Description               |
|--------------|------------|---------------|---------|--------------|-------------|--------------|-------------|----------|-----------------|---------------------------|
| 1            | 84         | 19            | 34      | 3            | 0           | 73.07        | 500         | 71.72    | 72.72           |                           |
| 1            | 85         | 19            | 34      | 4            | 0           | 68.35        | 500         | 67       | 68              |                           |
| 1            | 86         | 19            | 34      | 5            | 0           | 63.35        | 500         | 62       | 63              |                           |
| 1            | 87         | 19            | 34      | 6            | 0           | 63.35        | 500         | 62       | 63              |                           |
| 1            | 88         | 18            | 34      | 7            | 0           | 58.35        | 500         | 57       | 58              |                           |
| 1            | 88         | 17            | 34      | 8            | 0           | 58.35        | 500         | 57       | 58              |                           |
| 1            | 88         | 16            | 34      | 9            | 0           | 58.35        | 500         | 57       | 58              |                           |
| 1            | 89         | 15            | 34      | 10           | 0           | 55.35        | 500         | 54       | 55              |                           |
| 1            | 89         | 14            | 34      | 11           | 0           | 55.35        | 500         | 54       | 55              |                           |
| 1            | 90         | 13            | 34      | 12           | 0           | 55.35        | 500         | 54       | 55              |                           |
| 1            | 91         | 12            | 34      | 13           | 0           | 57.34        | 500         | 55.99    | 56.99           |                           |
| 1            | 92         | 12            | 34      | 14           | 0           | 58.35        | 500         | 57       | 58              |                           |
| 1            | 93         | 12            | 34      | 15           | 0           | 58.35        | 500         | 57       | 58              |                           |
| 1            | 92         | 5             | 35      | 1            | 2562        | 118.35       | 500         | 117      | 118             | West Tributary 6          |
| 1            | 93         | 6             | 35      | 2            | 0           | 103.35       | 500         | 102      | 103             |                           |
| 1            | 93         | 7             | 35      | 3            | 0           | 88.35        | 500         | 87       | 88              |                           |
| 1            | 93         | 8             | 35      | 4            | 0           | 83.35        | 500         | 82       | 83              |                           |
| 1            | 93         | 9             | 35      | 5            | 0           | 68.35        | 500         | 67       | 68              |                           |
| 1            | 93         | 10            | 35      | 6            | 0           | 60.35        | 500         | 59       | 60              |                           |
| 1            | 94         | 11            | 36      | 1            | -1          | 58.35        | 500         | 57       | 58              | West Tributaries 5 & 6    |
| 1            | 95         | 10            | 36      | 2            | 0           | 58.35        | 500         | 57       | 58              |                           |
| 1            | 96         | 10            | 36      | 3            | 0           | 53.35        | 500         | 52       | 53              |                           |
| 1            | 97         | 9             | 36      | 4            | 0           | 53.35        | 500         | 52       | 53              |                           |
| 1            | 98         | 8             | 36      | 5            | 0           | 53.35        | 500         | 52       | 53              |                           |
| 1            | 99         | 7             | 36      | 6            | 0           | 53.35        | 500         | 52       | 53              |                           |
| 1            | 100        | 6             | 36      | 7            | 0           | 52.2         | 500         | 50.85    | 51.85           |                           |
| 1            | 101        | 5             | 36      | 8            | 0           | 52.2         | 500         | 50.85    | 51.85           |                           |
| 1            | 102        | 4             | 36      | 9            | 0           | 52.2         | 500         | 50.85    | 51.85           |                           |
| 1            | 103        | 4             | 36      | 10           | 0           | 53.35        | 500         | 52       | 53              |                           |
| 1            | 104        | 5             | 36      | 11           | 0           | 44.41        | 500         | 43.06    | 44.06           |                           |
| 1            | 105        | 5             | 36      | 12           | 0           | 44.41        | 500         | 43.06    | 44.06           |                           |
| 1            | 105        | 3             | 37      | 1            | 6096        | 53.35        | 500         | 52       | 53              | West Tributary 7          |
| 1            | 106        | 4             | 37      | 2            | 0           | 43.35        | 500         | 42       | 43              |                           |
| 1            | 106        | 5             | 38      | 1            | -1          | 43.35        | 500         | 42       | 43              | West Tributaries 5, 6 & 7 |
| 1            | 107        | 5             | 38      | 2            | 0           | 43.35        | 500         | 42       | 43              |                           |
| 1            | 108        | 5             | 38      | 3            | 0           | 43.35        | 500         | 42       | 43              |                           |
| 1            | 109        | 5             | 38      | 4            | 0           | 43.35        | 500         | 42       | 43              |                           |
| 1            | 110        | 5             | 38      | 5            | 0           | 43.35        | 500         | 42       | 43              |                           |
| 1            | 111        | 5             | 38      | 6            | 0           | 43.35        | 500         | 42       | 43              |                           |
| 1            | 112        | 5             | 38      | 7            | 0           | 41.04        | 500         | 39.69    | 40.69           |                           |
| 1            | 113        | 5             | 38      | 8            | 0           | 41.04        | 500         | 39.69    | 40.69           |                           |
| 1            | 114        | 5             | 38      | 9            | 0           | 41.04        | 500         | 39.69    | 40.69           |                           |
| 1            | 115        | 5             | 38      | 10           | 0           | 38.35        | 500         | 37       | 38              |                           |
| 1            | 116        | 5             | 38      | 11           | 0           | 38.35        | 500         | 37       | 38              |                           |
| 1            | 117        | 5             | 38      | 12           | 0           | 38.35        | 500         | 37       | 38              |                           |
| 1            | 118        | 5             | 38      | 13           | 0           | 38.35        | 500         | 37       | 38              |                           |
| 1            | 119        | 5             | 38      | 14           | 0           | 38.35        | 500         | 37       | 38              |                           |
| 1            | 120        | 6             | 38      | 15           | 0           | 39.35        | 500         | 38       | 39              |                           |
| 1            | 121        | 6             | 38      | 16           | 0           | 41.04        | 500         | 39.69    | 40.69           |                           |
| 1            | 122        | 6             | 38      | 17           | 0           | 42.16        | 500         | 40.81    | 41.81           |                           |
| 1            | 123        | 6             | 38      | 18           | 0           | 42.16        | 500         | 40.81    | 41.81           |                           |
| 1            | 124        | 6             | 38      | 19           | 0           | 38.35        | 500         | 37       | 38              |                           |
| 1            | 125        | 6             | 38      | 20           | 0           | 38.35        | 500         | 37       | 38              |                           |
| 1            | 126        | 6             | 38      | 21           | 0           | 38.35        | 500         | 37       | 38              |                           |
| 1            | 127        | 7             | 38      | 22           | 0           | 43.35        | 500         | 42       | 43              |                           |
| 1            | 128        | 7             | 38      | 23           | 0           | 43.35        | 500         | 42       | 43              |                           |
| 1            | 129        | 7             | 38      | 24           | 0           | 43.35        | 500         | 42       | 43              |                           |
| 1            | 130        | 8             | 38      | 25           | 0           | 38.35        | 500         | 37       | 38              |                           |
| 1            | 131        | 8             | 38      | 26           | 0           | 38.35        | 500         | 37       | 38              |                           |
| 1            | 131        | 9             | 38      | 27           | 0           | 38.82        | 500         | 37.47    | 38.47           |                           |
| 1            | 131        | 10            | 39      | 1            | -1          | 33.89        | 1029        | 26       | 33.44           | SMR cont                  |
| 1            | 132        | 10            | 39      | 2            | 0           | 33.58        | 1029        | 26       | 33.13           |                           |
| 1            | 132        | 11            | 39      | 3            | 0           | 33.26        | 1029        | 26       | 32.81           |                           |
| 1            | 133        | 11            | 39      | 4            | 0           | 32.95        | 1176        | 25       | 32.5            |                           |
| 1            | 134        | 11            | 39      | 5            | 0           | 32.64        | 1176        | 25       | 32.19           |                           |
| 1            | 135        | 11            | 39      | 6            | 0           | 32.33        | 1176        | 25       | 31.88           |                           |

| Layer | Row  | <u>Column</u> | Segment | Reach | Flow  | Stage | Conductance | Btm Elev | Top Elev | Description             |
|-------|------|---------------|---------|-------|-------|-------|-------------|----------|----------|-------------------------|
| 1     | 136  | 11            | 39      | 7     | 0     | 32.01 | 1618        | 24       | 31.56    |                         |
| 1     | 137  | 11            | 39      | 8     | 0     | 31.7  | 1618        | 24       | 31.25    |                         |
| 1     | 138  | 11            | 39      | 9     | 0     | 31.39 | 1618        | 24       | 30.94    |                         |
| 1     | 138  | 10            | 39      | 10    | 0     | 31.08 | 1618        | 23       | 30.63    |                         |
| 1     | 139  | 10            | 39      | 11    | 0     | 30.76 | 1618        | 23       | 30.31    |                         |
| 1     | 140  | 10            | 39      | 12    | 0     | 30.45 | 1618        | 23       | 30       |                         |
| 1     | 141  | 10            | 39      | 13    | 0     | 30.14 | 1618        | 22       | 29.69    |                         |
| 1     | 142  | 10            | 39      | 14    | 0     | 29.83 | 735         | 22       | 29.38    |                         |
| 1     | 143  | 10            | 39      | 15    | 0     | 29.51 | 735         | 22       | 29.06    |                         |
| 1     | 140  | 10            | 30      | 16    | 0     | 20.01 | 735         | 21       | 28.00    |                         |
| 1     | 1/5  | 10            | 30      | 17    | 0     | 28.80 | 1324        | 21       | 20.75    |                         |
| 1     | 1/6  | 10            | 30      | 18    | 0     | 28.58 | 1324        | 21       | 20.44    |                         |
| 1     | 140  | 10            | 30      | 10    | 0     | 20.00 | 1324        | 21       | 20.13    |                         |
| 1     | 1/10 | 10            | 30      | 20    | 0     | 20.20 | 1327        | 20       | 27.01    |                         |
| 1     | 140  | 10            | 30      | 20    | 0     | 27.95 | 1397        | 20       | 27.5     |                         |
| 1     | 140  | 9             | 39      | 21    | 0     | 27.04 | 2676        | 20       | 21.13    |                         |
| 1     | 149  | 9             | 39      | 22    | 0     | 27.00 | 3070        | 20       | 20.00    |                         |
| 1     | 150  | 9             | 39      | 23    | 0     | 27.01 | 3070        | 19       | 20.00    |                         |
| 1     | 150  | 10            | 39      | 24    | 0     | 20.7  | 3070        | 19       | 20.20    |                         |
| 1     | 151  | 10            | 39      | 25    | 0     | 26.39 | 3676        | 19       | 25.94    |                         |
| 1     | 152  | 10            | 39      | 26    | 0     | 26.08 | 3676        | 18       | 25.63    |                         |
| 1     | 150  | 5             | 40      | 1     | 6831  | 34.62 | 500         | 33.27    | 34.27    | West Tributary 8        |
| 1     | 151  | 6             | 40      | 2     | 0     | 34.62 | 500         | 33.27    | 34.27    |                         |
| 1     | 152  | 7             | 40      | 3     | 0     | 33.35 | 500         | 32       | 33       |                         |
| 1     | 152  | 8             | 40      | 4     | 0     | 33.35 | 500         | 32       | 33       |                         |
| 1     | 153  | 9             | 40      | 5     | 0     | 28.35 | 500         | 27       | 28       |                         |
| 1     | 153  | 10            | 41      | 1     | -1    | 25.45 | 1912        | 18       | 25       | SMR cont                |
| 1     | 154  | 10            | 41      | 2     | 0     | 25.26 | 1912        | 18       | 24.81    |                         |
| 1     | 154  | 11            | 41      | 3     | 0     | 25.07 | 1912        | 17       | 24.62    |                         |
| 1     | 155  | 11            | 41      | 4     | 0     | 24.87 | 1912        | 17       | 24.42    |                         |
| 1     | 156  | 11            | 41      | 5     | 0     | 24.68 | 1912        | 17       | 24.23    |                         |
| 1     | 157  | 11            | 41      | 6     | 0     | 24.49 | 1912        | 17       | 24.04    |                         |
| 1     | 158  | 11            | 41      | 7     | 0     | 24.3  | 1912        | 17       | 23.85    |                         |
| 1     | 159  | 11            | 41      | 8     | 0     | 24.1  | 1912        | 16       | 23.65    |                         |
| 1     | 160  | 11            | 41      | 9     | 0     | 23.91 | 4412        | 16       | 23.46    |                         |
| 1     | 160  | 12            | 41      | 10    | 0     | 23.72 | 4412        | 16       | 23.27    |                         |
| 1     | 161  | 12            | 41      | 11    | 0     | 23.53 | 3676        | 16       | 23.08    |                         |
| 1     | 162  | 12            | 41      | 12    | 0     | 23.33 | 3676        | 16       | 22.88    |                         |
| 1     | 142  | 23            | 42      | 1     | 12488 | 53.35 | 500         | 52       | 53       | East Tributary 7        |
| 1     | 143  | 23            | 42      | 2     | 0     | 52.35 | 500         | 51       | 52       |                         |
| 1     | 144  | 22            | 42      | 3     | 0     | 51.35 | 500         | 50       | 51       |                         |
| 1     | 144  | 21            | 42      | 4     | 0     | 50.35 | 500         | 49       | 50       |                         |
| 1     | 145  | 21            | 42      | 5     | 0     | 48.35 | 500         | 46       | 48       |                         |
| 1     | 146  | 20            | 42      | 6     | 0     | 43.35 | 500         | 42       | 43       |                         |
| 1     | 147  | 20            | 42      | 7     | 0     | 40.35 | 500         | 39       | 40       |                         |
| 1     | 148  | 21            | 42      | 8     | 0     | 37.35 | 500         | 36       | 37       |                         |
| 1     | 149  | 21            | 42      | 9     | 0     | 32.35 | 500         | 31       | 32       |                         |
| 1     | 150  | 21            | 42      | 10    | 0     | 28.35 | 500         | 27       | 28       |                         |
| 1     | 151  | 22            | 42      | 11    | 0     | 28.35 | 500         | 27       | 28       |                         |
| 1     | 152  | 22            | 42      | 12    | 0     | 28.35 | 500         | 27       | 28       |                         |
| 1     | 153  | 22            | 42      | 13    | 0     | 28.35 | 500         | 27       | 28       |                         |
| 1     | 154  | 23            | 42      | 14    | 0     | 28.35 | 500         | 27       | 28       |                         |
| 1     | 155  | 23            | 42      | 15    | 0     | 28.35 | 500         | 27       | 28       |                         |
| 1     | 156  | 23            | 42      | 16    | 0     | 28.35 | 500         | 27       | 28       |                         |
| 1     | 157  | 23            | 42      | 17    | 0     | 28.35 | 500         | 27       | 28       |                         |
| 1     | 158  | 23            | 42      | 18    | 0     | 28.35 | 500         | 27       | 28       |                         |
| 1     | 159  | 22            | 42      | 19    | 0     | 28.35 | 500         | 27       | 28       |                         |
| 1     | 160  | 21            | 42      | 20    | 0     | 28.35 | 500         | 27       | 28       |                         |
| 1     | 159  | 20            | 43      | 1     | 83264 | 28.35 | 500         | 27       | 28       | Oxidation Pond 13 and 2 |
| 1     | 160  | 20            | 44      | 1     | -1    | 28.35 | 500         | 27       | 28       | East Trib r/o cont      |
| 1     | 161  | 10            | 44      | 2     | -1    | 28.35 | 500         | 27       | 20       |                         |
| 1     | 161  | 18            | 44      | 2     | 0     | 28.35 | 500         | 27       | 20       |                         |
| 1     | 161  | 17            | 44      | 4     | 0     | 28.35 | 500         | 27       | 20       |                         |
| 1     | 162  | 16            | 44      | 4     | 0     | 28.35 | 500         | 27       | 20       |                         |
| 1     | 162  | 15            | 44      | 6     | 0     | 28.35 | 500         | 27       | 20       |                         |
| 1     | 163  | 14            | 44      | 7     | 0     | 28.35 | 500         | 27       | 20       |                         |
| 1     | 163  | 13            | 44      | 8     | 0     | 28.35 | 500         | 27       | 28       |                         |
|       |      | .0            |         | 0     | 5     | _0.00 | 000         |          | 20       |                         |

| Layer | Row | <u>Column</u> | Segment         | Reach   | Flow   | <u>Stage</u>   | <b>Conductance</b> | Btm Elev | Top Elev | <b>Description</b> |
|-------|-----|---------------|-----------------|---------|--------|----------------|--------------------|----------|----------|--------------------|
| 1     | 163 | 12            | 45              | 1       | -1     | 23.14          | 3676               | 15       | 22.69    | SMR cont           |
| 1     | 164 | 12            | 45              | 2       | 0      | 22.95          | 3676               | 15       | 22.5     |                    |
| 1     | 164 | 13            | 45              | 3       | 0      | 22.76          | 3676               | 15       | 22.31    |                    |
| 1     | 165 | 13            | 45              | 4       | 0      | 22.18          | 3676               | 14       | 21.73    |                    |
| 1     | 166 | 13            | 45              | 5       | 0      | 21.99          | 3676               | 14       | 21.54    |                    |
| 1     | 167 | 13            | 45              | 6       | 0      | 21.8           | 3676               | 14       | 21.35    |                    |
| 1     | 168 | 13            | 45              | 7       | 0      | 21.6           | 3676               | 14       | 21.15    |                    |
| 1     | 168 | 14            | 45              | 8       | 0      | 21.41          | 3676               | 14       | 20.96    |                    |
| 1     | 169 | 14            | 45              | 9       | 0      | 21.22          | 3676               | 13       | 20.77    |                    |
| 1     | 170 | 14            | 45              | 10      | 0      | 21.03          | 3676               | 13       | 20.58    |                    |
| 1     | 171 | 14            | 45              | 11      | 0      | 20.83          | 3676               | 13       | 20.38    |                    |
| 1     | 172 | 14            | 45              | 12      | 0      | 20.64          | 4412               | 13       | 20.19    |                    |
| 1     | 172 | 13            | 45              | 13      | 0      | 20.45          | 4412               | 13       | 20       |                    |
| 1     | 170 | 8             | 46              | 1       | 8491   | 38.35          | 500                | 37       | 38       | West Tributary 9   |
| 1     | 171 | 9             | 46              | 2       | 0      | 28.35          | 500                | 27       | 28       |                    |
| 1     | 171 | 10            | 46              | 3       | 0      | 22.27          | 500                | 20.92    | 21.92    |                    |
| 1     | 172 | 11            | 46              | 4       | 0      | 22.27          | 500                | 20.92    | 21.92    |                    |
| 1     | 172 | 12            | 46              | 5       | 0      | 22.27          | 500                | 20.92    | 21.92    |                    |
| 1     | 173 | 13            | 47              | 1       | -1     | 20.16          | 4412               | 12       | 19.71    | SMR cont           |
| 1     | 174 | 13            | 47              | 2       | 0      | 19.86          | 4412               | 12       | 19.41    |                    |
| 1     | 174 | 12            | 47              | 3       | 0      | 19.57          | 4412               | 12       | 19.12    |                    |
| 1     | 175 | 12            | 47              | 4       | 0      | 19.27          | 4412               | 12       | 18.82    |                    |
| 1     | 176 | 12            | 47              | 5       | 0      | 18.98          | 4412               | 11       | 18.53    |                    |
| 1     | 177 | 12            | 47              | 6       | 0      | 18.69          | 4412               | 11       | 18.24    |                    |
| 1     | 178 | 12            | 47              | 7       | 0      | 18.39          | 4412               | 11       | 17.94    |                    |
| 1     | 178 | 11            | 47              | 8       | 0      | 18.1           | 4412               | 10       | 17.65    |                    |
| 1     | 179 | 11            | 47              | 9       | 0      | 17.8           | 4412               | 10       | 17.35    |                    |
| 1     | 180 | 11            | 47              | 10      | 0      | 17.51          | 4412               | 10       | 17.06    |                    |
| 1     | 181 | 11            | 47              | 11      | 0      | 17.21          | 4412               | 9        | 16.76    |                    |
| 1     | 182 | 11            | 47              | 12      | 0      | 16.92          | 4412               | 9        | 16.47    |                    |
| 1     | 182 | 10            | 47              | 13      | 0      | 16.63          | 4412               | 9        | 16.18    |                    |
| 1     | 183 | 10            | 47              | 14      | 0      | 10.33          | 4412               | 9        | 15.88    |                    |
| 1     | 104 | 10            | 47              | 10      | 0      | 10.04          | 3070               | 0        | 15.59    |                    |
| 1     | 104 | 9             | 47              | 10      | 0      | 15.74          | 3070               | 0        | 15.29    |                    |
| 1     | 160 | 28            | 47              | 1       | 6012   | 52.25          | 5070               | 52       | 10       | East Tributary 8   |
| 1     | 158 | 20            | <b>40</b><br>48 | 2       | 0912   | 13.33<br>13.35 | 500                | J2<br>42 | JJ<br>13 | Last moutary o     |
| 1     | 150 | 26            | 40              | 2       | 0      | 33 35          | 500                | 32       | 40       |                    |
| 1     | 160 | 20            | 40              | J<br>1  | 0      | 28 35          | 500                |          | 28       |                    |
| 1     | 161 | 20            | 48              | -+<br>5 | 0      | 28.35          | 500                | 27       | 20       |                    |
| 1     | 162 | 27            | 48              | 6       | 0      | 28.35          | 500                | 27       | 28       |                    |
| 1     | 163 | 27            | 48              | 7       | 0      | 27.35          | 500                | 26       | 27       |                    |
| . 1   | 164 | 27            | 48              | 8       | 0      | 27.35          | 500                | 26       | 27       |                    |
| 1     | 165 | 27            | 48              | 9       | 0      | 27.35          | 500                | 26       | 27       |                    |
| . 1   | 166 | 28            | 48              | 10      | 0<br>0 | 28.35          | 500                | 27       | 28       |                    |
| 1     | 167 | 28            | 48              | 11      | 0      | 28.35          | 500                | 27       | 28       |                    |
| 1     | 168 | 28            | 48              | 12      | 0      | 27.35          | 500                | 26       | 27       |                    |
| 1     | 169 | 29            | 48              | 13      | 0      | 26.35          | 500                | 25       | 26       |                    |
| 1     | 170 | 29            | 48              | 14      | 0      | 25.35          | 500                | 24       | 25       |                    |
| 1     | 171 | 29            | 48              | 15      | 0      | 25.35          | 500                | 24       | 25       |                    |
| 1     | 172 | 30            | 48              | 16      | 0      | 25.35          | 500                | 24       | 25       |                    |
| 1     | 173 | 30            | 48              | 17      | 0      | 25.35          | 500                | 24       | 25       |                    |
| 1     | 174 | 30            | 48              | 18      | 0      | 24.35          | 500                | 23       | 24       |                    |
| 1     | 175 | 30            | 48              | 19      | 0      | 24.35          | 500                | 23       | 24       |                    |
| 1     | 169 | 37            | 49              | 1       | 12443  | 83.35          | 500                | 82       | 83       | East Tributary 9   |
| 1     | 170 | 37            | 49              | 2       | 0      | 93.35          | 500                | 92       | 93       | -                  |
| 1     | 170 | 36            | 49              | 3       | 0      | 88.35          | 500                | 87       | 88       |                    |
| 1     | 170 | 35            | 49              | 4       | 0      | 43.35          | 500                | 42       | 43       |                    |
| 1     | 170 | 34            | 49              | 5       | 0      | 38.35          | 500                | 37       | 38       |                    |
| 1     | 171 | 33            | 49              | 6       | 0      | 38.35          | 500                | 37       | 38       |                    |
| 1     | 172 | 33            | 49              | 7       | 0      | 38.35          | 500                | 37       | 38       |                    |
| 1     | 173 | 32            | 49              | 8       | 0      | 27.35          | 500                | 26       | 27       |                    |
| 1     | 174 | 32            | 49              | 9       | 0      | 27.35          | 500                | 26       | 27       |                    |
| 1     | 175 | 32            | 49              | 10      | 0      | 27.35          | 500                | 26       | 27       |                    |
| 1     | 176 | 31            | 49              | 11      | 0      | 24.35          | 500                | 23       | 24       |                    |
| 1     | 176 | 30            | 50              | 1       | -1     | 24.35          | 500                | 23       | 24       | East Tib r/o cont  |

| Layer | <u>Row</u> | <u>Column</u> | Segment | <u>Reach</u> | <u>Flow</u> | <u>Stage</u> | Conductance | Btm Elev | <u>Top Elev</u> | Description       |
|-------|------------|---------------|---------|--------------|-------------|--------------|-------------|----------|-----------------|-------------------|
| 1     | 177        | 30            | 50      | 2            | 0           | 24.35        | 500         | 23       | 24              |                   |
| 1     | 179        | 37            | 51      | 1            | 6970        | 43.35        | 500         | 42       | 43              | East Tributary 10 |
| 1     | 179        | 36            | 51      | 2            | 0           | 38.35        | 500         | 37       | 38              |                   |
| 1     | 179        | 35            | 51      | 3            | 0           | 33.35        | 500         | 32       | 33              |                   |
| 1     | 179        | 34            | 51      | 4            | 0           | 27.35        | 500         | 26       | 27              |                   |
| 1     | 178        | 33            | 51      | 5            | 0           | 25.35        | 500         | 24       | 25              |                   |
| 1     | 178        | 32            | 51      | 6            | 0           | 25.35        | 500         | 24       | 25              |                   |
| 1     | 178        | 31            | 51      | 7            | 0           | 24.35        | 500         | 23       | 24              |                   |
| 1     | 178        | 30            | 52      | 1            | -1          | 24.35        | 500         | 23       | 24              | East Tib r/o cont |
| 1     | 179        | 29            | 52      | 2            | 0           | 23.32        | 500         | 21.97    | 22.97           |                   |
| 1     | 180        | 29            | 52      | 3            | 0           | 23.32        | 500         | 21.97    | 22.97           |                   |
| 1     | 181        | 28            | 52      | 4            | 0           | 23.32        | 500         | 21.97    | 22.97           |                   |
| 1     | 182        | 27            | 52      | 5            | 0           | 22.27        | 500         | 20.92    | 21.92           |                   |
| 1     | 182        | 26            | 52      | 6            | 0           | 22.27        | 500         | 20.92    | 21.92           |                   |
| 1     | 183        | 25            | 52      | 7            | 0           | 22.27        | 500         | 20.92    | 21.92           |                   |
| 1     | 183        | 24            | 52      | 8            | 0           | 22.27        | 500         | 20.92    | 21.92           |                   |
| 1     | 183        | 23            | 52      | 9            | 0           | 22.27        | 500         | 20.92    | 21.92           |                   |
| 1     | 183        | 22            | 52      | 10           | 0           | 22.27        | 500         | 20.92    | 21.92           |                   |
| 1     | 183        | 21            | 52      | 11           | 0           | 22.27        | 500         | 20.92    | 21.92           |                   |
| 1     | 183        | 20            | 52      | 12           | 0           | 20.17        | 500         | 18.82    | 19.82           |                   |
| 1     | 183        | 19            | 52      | 13           | 0           | 21.22        | 500         | 19.87    | 20.87           |                   |
| 1     | 183        | 18            | 52      | 14           | 0           | 20.35        | 500         | 19       | 20              |                   |
| 1     | 183        | 17            | 52      | 15           | 0           | 20.35        | 500         | 19       | 20              |                   |
| 1     | 183        | 16            | 52      | 16           | 0           | 19.38        | 500         | 18.03    | 19.03           |                   |
| 1     | 183        | 15            | 52      | 17           | 0           | 19.38        | 500         | 18.03    | 19.03           |                   |
| 1     | 183        | 14            | 52      | 18           | 0           | 18.35        | 500         | 17       | 18              |                   |
| 1     | 183        | 13            | 52      | 19           | 0           | 19.12        | 500         | 17.77    | 18.77           |                   |
| 1     | 184        | 12            | 52      | 20           | 0           | 18.35        | 500         | 17       | 18              |                   |
| 1     | 185        | 11            | 52      | 21           | 0           | 18.35        | 500         | 17       | 18              |                   |
| 1     | 185        | 10            | 52      | 22           | 0           | 19.12        | 500         | 17.77    | 18.77           |                   |
| 1     | 186        | 9             | 53      | 1            | -1          | 15           | 2206        | 7        | 14.55           | SMR cont          |
| 1     | 186        | 8             | 53      | 2            | 0           | 14.54        | 2206        | 7        | 14.09           |                   |
| 1     | 187        | 8             | 53      | 3            | 0           | 14.09        | 1000        | 4        | 13.64           |                   |
| 1     | 187        | 7             | 53      | 4            | 0           | 13.63        | 1000        | 4        | 13.18           |                   |
| 1     | 188        | 7             | 53      | 5            | 0           | 13.18        | 1000        | 3        | 12.73           |                   |
| 1     | 188        | 6             | 53      | 6            | 0           | 12.72        | 1000        | 3        | 12.27           |                   |
| 1     | 189        | 6             | 53      | 7            | 0           | 12.27        | 1000        | 2        | 11.82           |                   |
| 1     | 190        | 6             | 53      | 8            | 0           | 11.81        | 1000        | 2        | 11.36           |                   |
| 1     | 191        | 6             | 53      | 9            | 0           | 11.36        | 1000        | 1        | 10.91           |                   |
| 1     | 192        | 6             | 53      | 10           | 0           | 10.9         | 1000        | 1        | 10.45           |                   |
| 1     | 193        | 6             | 53      | 11           | 0           | 10.45        | 1000        | 1        | 10              |                   |
| 1     | 193        | 5             | 53      | 12           | 0           | 10.25        | 1000        | 0        | 9.8             |                   |
| 1     | 194        | 5             | 53      | 13           | 0           | 10.05        | 1000        | 0        | 9.6             |                   |
| 1     | 195        | 5             | 53      | 14           | 0           | 9.85         | 1222        | 0        | 9.4             |                   |
| 1     | 196        | 5             | 53      | 15           | 0           | 9.65         | 1222        | 0        | 9.2             |                   |
| 1     | 197        | 5             | 53      | 16           | 0           | 9.45         | 1111        | 0        | 9               |                   |
| 1     | 197        | 4             | 53      | 17           | 0           | 9.25         | 1111        | 0        | 8.8             |                   |
| 1     | 198        | 4             | 53      | 18           | 0           | 9.05         | 1111        | 0        | 8.6             |                   |
| 1     | 199        | 4             | 53      | 19           | 0           | 8.85         | 1111        | 0        | 8.4             |                   |
| 1     | 200        | 8             | 54      | 1            | 5198        | 18.35        | 500         | 12       | 13              | East Tributary 11 |
| 1     | 200        | 7             | 54      | 2            | 0           | 18.35        | 500         | 17       | 18              |                   |
| 1     | 200        | 6             | 54      | 3            | 0           | 13.35        | 500         | 12       | 13              |                   |
| 1     | 200        | 5             | 54      | 4            | 0           | 13.35        | 500         | 12       | 13              |                   |
| 1     | 200        | 4             | 55      | 1            | -1          | 8.65         | 1000        | 0        | 8.2             | SMR cont          |
| 1     | 201        | 4             | 55      | 2            | 0           | 8.45         | 1000        | 0        | 8               | -                 |

| <u>Trib</u> | <u>Trib</u> | Trib = Stream Tributary |
|-------------|-------------|-------------------------|
| 0           | 0           |                         |
| 0           | 0           |                         |
| 1           | 2           | Str Seg 1+2 -> 3        |
| 0           | 0           |                         |
| 3           | 0           | Str Seg 3 -> 5          |
| 0           | 0           |                         |
| 5           | 6           | Str Seg 5+6 ->7         |
| 0           | 0           |                         |
| 7           | 8           | Str Seg 7+8 -> 9        |
|             |             |                         |

| Layer | Row | <u>Column</u> | Segment | <u>Reach</u> | Flow | <u>Stage</u> | Conductance | Btm Elev | Top Elev Description      |
|-------|-----|---------------|---------|--------------|------|--------------|-------------|----------|---------------------------|
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 10    | 11  |               |         |              |      |              |             |          | Str Seg 10+11 -> 12       |
| 0     | 0   |               |         |              |      |              |             |          | -                         |
| 12    | 13  |               |         |              |      |              |             |          | Str Seg 12+13 -> 14       |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 14    | 15  |               |         |              |      |              |             |          | Str Seg 14+15 -> 16       |
| 14    | 0   |               |         |              |      |              |             |          |                           |
| 16    | 17  |               |         |              |      |              |             |          | Str Sog 16:17 > 19        |
| 10    | 10  |               |         |              |      |              |             |          | Subset Seg $0.19 > 10$    |
| 9     | 10  |               |         |              |      |              |             |          | Sti Seg 9+10 -> 19        |
| 0     | 0   |               |         |              |      |              |             |          | 0, 0, 10, 00, 01          |
| 19    | 20  |               |         |              |      |              |             |          | Str Seg 19+20 -> 21       |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 21    | 22  |               |         |              |      |              |             |          | Str Seg 21+22 -> 23       |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 24    | 25  |               |         |              |      |              |             |          | Str Seg 24+25 -> 26       |
| 23    | 26  |               |         |              |      |              |             |          | Str Seg 23+26 -> 27       |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 28    | 29  |               |         |              |      |              |             |          | Str Seq 28+29 -> 30       |
| 27    | 30  |               |         |              |      |              |             |          | Str Seg 27+30 -> 31       |
| 0     | 0   |               |         |              |      |              |             |          | 5                         |
| .31   | 32  |               |         |              |      |              |             |          | Str Seg 31+32 -> 33       |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 34    | 25  |               |         |              |      |              |             |          | Str Sog 34 35 -> 36       |
| 04    |     |               |         |              |      |              |             |          | 311 3eg 34+33 -> 30       |
| 0     | 0   |               |         |              |      |              |             |          | 01-000-07-00              |
| 30    | 37  |               |         |              |      |              |             |          | Str Seg 30+37 -> 38       |
| 33    | 38  |               |         |              |      |              |             |          | Str Seg 33+38 -> 39       |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 39    | 40  |               |         |              |      |              |             |          | Str Seg 39+40 -> 41       |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 42    | 43  |               |         |              |      |              |             |          | Str Seg 42+43 -> 44       |
| 41    | 44  |               |         |              |      |              |             |          | Str Seg 41+44 -> 45       |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 45    | 46  |               |         |              |      |              |             |          | Str Seg 45+46 -> 47       |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 48    | 49  |               |         |              |      |              |             |          | Str Seg 48+49 -> 50       |
| 0     | 0   |               |         |              |      |              |             |          | 5                         |
| 50    | 51  |               |         |              |      |              |             |          | Str Seg 50+51 -> 52       |
| 47    | 52  |               |         |              |      |              |             |          | Str Seg 47+52 -> 53       |
| 0     | 0   |               |         |              |      |              |             |          |                           |
| 53    | 54  |               |         |              |      |              |             |          | Str Seg 53+54 -> 55       |
| 00    | 04  |               |         |              |      |              |             |          |                           |
| Div   |     |               |         |              |      |              |             |          | Div - Stream Diversion    |
|       |     |               |         |              |      |              |             |          |                           |
| 0     |     |               |         |              |      |              |             |          | no diversata Ota Cara O   |
| 0     |     |               |         |              |      |              |             |          | no divinto Str Seg 2      |
| 0     |     |               |         |              |      |              |             |          | no div into Str Seg 3     |
| 3     |     |               |         |              |      |              |             |          | DIV from Str 3 -> 4       |
| 0     |     |               |         |              |      |              |             |          | no div into Str Seg 5     |
|       |     |               |         |              |      |              |             |          | no div in downstream segs |

#### Attachment 2; Table D-A2-1: Simulated Diversions from the Santa Margarita River

E

see Appendix E for calculation of SMR Flow at Model Boundary Pond Diversions from Camp Pendelton records Lake O'Neill Diversions estimated from Water Master Reports

|        |        |            |            |            | <u>CF/L</u><br>Ground Wat | o Input<br>or Flow Model |
|--------|--------|------------|------------|------------|---------------------------|--------------------------|
|        |        | SMR Flow   | Pond       | I O'Neill  | GIOUNU Wate               |                          |
|        | Precin | at Model   | Diversions | Diversions | Stress                    | Diversions               |
| mo-vr  | in/mo  | Boundary   | af         | af         | Period                    | cf/d                     |
| Oct-79 | 0.80   | 748        | 0          | 0          | 1                         | 0                        |
| Nov-79 | 0.90   | 615        | 0          | 0          | 2                         | 0                        |
| Dec-79 | 0.40   | 671        | 0          | 0          | 3                         | 0                        |
| Jan-80 | 10.10  | 20,303     | 0          | 0          | 4                         | 0                        |
| Feb-80 | 7.50   | 106,429    | 0          | 0          | 5                         | 0                        |
| Mar-80 | 5.10   | 28,604     | 0          | 0          | 6                         | 0                        |
| Apr-80 | 0.90   | 9,256      | 0          | 0          | 7                         | 0                        |
| May-80 | 0.10   | 4,787      | 0          | 0          | 8                         | 0                        |
| Jun-80 | 0.00   | 1,171      | 0          | 0          | 9                         | 0                        |
| Jul-80 | 0.00   | 928        | 0          | 0          | 10                        | 0                        |
| Aug-80 | 0.10   | 956        | 0          | 0          | 11                        | 0                        |
| Sep-80 | 0.00   | 950        | 0          | 0          | 12                        | 0                        |
| Oct-80 | 0.50   | 746        | 0          | 0          | 13                        | 0                        |
| Nov-80 | 0.00   | 661        | 0          | 0          | 14                        | 0                        |
| Dec-80 | 1.20   | 1,395      | 0          | 0          | 15                        | 0                        |
| Jan-81 | 1.70   | 2,289      | 0          | 0          | 16                        | 0                        |
| Feb-81 | 1.90   | 1,925      | 0          | 0          | 17                        | 0                        |
| Mar-81 | 3.00   | 5,242      | 0          | 0          | 18                        | 0                        |
| Apr-81 | 0.60   | 944        | 0          | 0          | 19                        | 0                        |
| May-81 | 0.00   | 786        | 0          | 0          | 20                        | 0                        |
| Jun-81 | 0.00   | 642        | 0          | 0          | 21                        | 0                        |
| Jul-81 | 0.00   | 638        | 0          | 0          | 22                        | 0                        |
| Aug-81 | 0.00   | 576        | 0          | 0          | 23                        | 0                        |
| Sep-81 | 0.00   | 579        | 0          | 0          | 24                        | 0                        |
| Oct-81 | 0.10   | 521        | 0          | 0          | 25                        | 0                        |
| Nov-81 | 2.20   | 4,798      | 0          | 0          | 26                        | 0                        |
| Dec-81 | 0.90   | 993        | 0          | 0          | 27                        | 0                        |
| Jan-82 | 4.20   | 8,983      | 0          | 0          | 28                        | 0                        |
| Feb-82 | 1.20   | 3,037      | 0          | 0          | 29                        | 0                        |
| Mar-82 | 5.30   | 25,368     | 0          | 0          | 30                        | 0                        |
| Apr-82 | 0.90   | 3,269      | 0          | 0          | 31                        | 0                        |
| May-82 | 0.10   | 1,091      | 0          | 0          | 32                        | 0                        |
| JUN-82 | 0.10   | 080<br>560 | 0          | 0          | 33                        | 0                        |
|        | 0.00   | 200        | 0          | 0          | 34<br>25                  | 0                        |
| Aug-oz | 0.00   | 300<br>606 | 0          | 0          | 30                        | 0                        |
| Oct-82 | 0.10   | 492        | 0          | 0          | 30                        | 0                        |
| Nov-82 | 2 30   | 2 558      | 0          | 0          | 38                        | 0                        |
| Dec-82 | 2.00   | 4 853      | 0          | 0          | 30                        | 0                        |
| Jan-83 | 3.00   | 6 643      | 603        | 0          | 40                        | 862 871                  |
| Feb-83 | 3 10   | 7 828      | 2 466      | 0<br>0     | 41                        | 3 528 907                |
| Mar-83 | 7.20   | 37.674     | 1.545      | 183        | 42                        | 2.473.006                |
| Apr-83 | 2.80   | 6.157      | 1.824      | 0          | 43                        | 2.610.251                |
| May-83 | 0.30   | 2,172      | 1,186      | 0          | 44                        | 1,697,849                |
| Jun-83 | 0.00   | 1,055      | 0          | 38         | 45                        | 54,383                   |
| Jul-83 | 0.00   | 801        | 0          | 0          | 46                        | 0                        |
| Aug-83 | 0.30   | 773        | 0          | 0          | 47                        | 0                        |
| Sep-83 | 1.60   | 3,065      | 0          | 0          | 48                        | 0                        |
| Oct-83 | 1.10   | 2,707      | 0          | 0          | 49                        | 0                        |
| Nov-83 | 2.90   | 4,188      | 0          | 0          | 50                        | 0                        |
| Dec-83 | 3.30   | 6,652      | 0          | 0          | 51                        | 0                        |
| Jan-84 | 0.00   | 756        | 793        | 0          | 52                        | 1,134,184                |
| Feb-84 | 0.20   | 628        | 613        | 0          | 53                        | 877,883                  |
| Mar-84 | 0.00   | 670        | 15         | 274        | 54                        | 413,053                  |
| Apr-84 | 0.30   | 635        | 0          | 266        | 55                        | 380,680                  |
| May-84 | 0.00   | 536        | 0          | 29         | 56                        | 41,503                   |

|                                                      |        | SMR Flow     | Pond       | L. O'Neill |        | All                                               |
|------------------------------------------------------|--------|--------------|------------|------------|--------|---------------------------------------------------|
|                                                      | Precip | at Model     | Diversions | Diversions | Stress | Diversions                                        |
| mo-yr                                                | in/mo  | Boundary     | af         | af         | Period | cf/d                                              |
| Jun-84                                               | 0.10   | 714          | 0          | 0          | 57     | 0                                                 |
| Jul-84                                               | 0.00   | 321          | 0          | 0          | 58     | 0                                                 |
| Aug-84                                               | 0.00   | 448          | 0          | 0          | 59     | 0                                                 |
| Sep-84                                               | 0.00   | 365          | 0          | 0          | 60     | 0                                                 |
| Oct-84                                               | 0.50   | 867          | 0          | 0          | 61     | 0                                                 |
| Nov-84                                               | 1.50   | 1.426        | 23         | 11         | 62     | 48.687                                            |
| Dec-84                                               | 4 50   | 7 401        | 25         | 599        | 63     | 893 540                                           |
| lan-85                                               | 0.90   | 846          | 866        | 33         | 64     | 1 286 456                                         |
| 50h-85                                               | 1 30   | 2 212        | 1 027      | 0          | 65     | 1,200,400                                         |
| Feb-00<br>Mor 95                                     | 0.40   | 2,213        | 1,027      | 0          | 00     | 1,409,713                                         |
|                                                      | 0.40   | 1,062        | 000        | 0          | 00     | 000,092                                           |
| Apr-85                                               | 0.20   | 499          | 71         | 0          | 67     | 102,183                                           |
| May-85                                               | 0.00   | 4//          | 0          | 0          | 68     | 0                                                 |
| Jun-85                                               | 0.00   | 430          | 0          | 0          | 69     | 0                                                 |
| Jul-85                                               | 0.00   | 472          | 0          | 0          | 70     | 0                                                 |
| Aug-85                                               | 0.00   | 472          | 0          | 0          | 71     | 0                                                 |
| Sep-85                                               | 0.10   | 425          | 0          | 0          | 72     | 0                                                 |
| Oct-85                                               | 0.20   | 357          | 0          | 0          | 73     | 0                                                 |
| Nov-85                                               | 5.00   | 14,659       | 324        | 0          | 74     | 464,258                                           |
| Dec-85                                               | 1.60   | 3,400        | 248        | 355        | 75     | 862,828                                           |
| Jan-86                                               | 1.00   | 1,154        | 44         | 604        | 76     | 927,773                                           |
| Feb-86                                               | 3.70   | 8,919        | 1.554      | 187        | 77     | 2,490,981                                         |
| Mar-86                                               | 3 50   | 7 192        | 2 701      | 0          | 78     | 3 864 822                                         |
| Apr-86                                               | 1 00   | 1 490        | 1 230      | 0<br>0     | 79     | 1 760 260                                         |
| May-86                                               | 0.00   | 3/1          | 592        | 0          | 80     | 847 343                                           |
| lun-86                                               | 0.00   | 217          | 00         | 0          | 81     | 1/1 023                                           |
|                                                      | 0.00   | 317          | 99         | 0          | 01     | 141,023                                           |
| Jui-86                                               | 0.00   | 414          | 0          | 0          | 82     | 0                                                 |
| Aug-86                                               | 0.00   | 3/3          | 0          | 0          | 83     | 0                                                 |
| Sep-86                                               | 2.30   | 4,812        | 0          | 0          | 84     | 0                                                 |
| Oct-86                                               | 0.70   | 693          | 0          | 0          | 85     | 0                                                 |
| Nov-86                                               | 1.50   | 3,873        | 0          | 0          | 86     | 0                                                 |
| Dec-86                                               | 0.00   | 284          | 0          | 0          | 87     | 0                                                 |
| Jan-87                                               | 1.00   | 2,650        | 27         | 375        | 88     | 575,314                                           |
| Feb-87                                               | 0.10   | 433          | 358        | 164        | 89     | 747,050                                           |
| Mar-87                                               | 0.00   | 620          | 432        | 759        | 90     | 1,704,475                                         |
| Apr-87                                               | 0.00   | 263          | 0          | 38         | 91     | 54,383                                            |
| May-87                                               | 0.00   | 276          | 218        | 0          | 92     | 311,986                                           |
| Jun-87                                               | 0.00   | 214          | 0          | 0          | 93     | 0                                                 |
| Jul-87                                               | 0.20   | 192          | 0          | 0          | 94     | 0                                                 |
| Aug-87                                               | 0.10   | 275          | 0          | 0          | 95     | 0                                                 |
| Sep-87                                               | 0.00   | 250          | Õ          | 0<br>0     | 96     | 0                                                 |
| Oct-87                                               | 2.80   | 5 401        | ů<br>0     | 0          | 97     | 0                                                 |
| Nov-87                                               | 2.00   | 570          | 0          | 0          | 97     | 0                                                 |
| Nov-07                                               | 2.00   | 570<br>6.009 | 0          | 0          | 90     | 0                                                 |
| Dec-or                                               | 3.00   | 0,090        | 026        | 0          | 99     | 1 224 592                                         |
|                                                      | 1.70   | 0,004        | 920        | 0          | 100    | 1,024,082                                         |
| Г <del>С</del> О О О О О О О О О О О О О О О О О О О | 1.40   | 3,622        | 91         | 129        | 101    | 1,1/4,056                                         |
| IVIAI-88                                             | 0.00   | 299          | 324        | 1/5        | 102    | /13,819                                           |
| Apr-88                                               | 2.90   | 5,733        | 593        | U          | 103    | 849,261                                           |
| May-88                                               | 0.10   | 261          | 189        | 0          | 104    | 271,056                                           |
| Jun-88                                               | 0.00   | 307          | 2          | 0          | 105    | 2,476                                             |
| Jul-88                                               | 0.00   | 260          | 0          | 0          | 106    | 0                                                 |
| Aug-88                                               | 0.40   | 319          | 0          | 0          | 107    | 0                                                 |
| Sep-88                                               | 0.00   | 266          | 0          | 0          | 108    | 0                                                 |
| Oct-88                                               | 0.00   | 252          | 3          | 0          | 109    | 3,893                                             |
| Nov-88                                               | 1.90   | 2,698        | 101        | 0          | 110    | 144,172                                           |
| Dec-88                                               | 4.10   | 6,997        | 692        | 0          | 111    | 989,841                                           |
| Jan-89                                               | 0.50   | 421          | 196        | 502        | 112    | 999,415                                           |
| Feb-89                                               | 0.90   | 342          | 250        | 648        | 113    | 1.284.739                                         |
| Mar-89                                               | 1.10   | 1 932        | 591        | 145        | 114    | 1.052.596                                         |
| Anr-80                                               | 0.00   | 181          | 324        | 0          | 115    | 463 428                                           |
| Ma\1-80                                              | 0.00   | 306          | 100        | 0          | 116    | 270, <del>1</del> 20                              |
| 1010-20                                              | 0.00   | 200          | 0          | 0          | 117    | <i>د</i> ، ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, |
| 111 00                                               | 0.00   | 202          | 0          | 0          | 117    | 0                                                 |
|                                                      | 0.00   | 210          | 0          | 0          | 110    | 0                                                 |
| Aug-89                                               | 0.00   | 295          | U          | U          | 119    | 0                                                 |

|                  |        | SMR Flow   | Pond       | L. O'Neill |        | All        |
|------------------|--------|------------|------------|------------|--------|------------|
|                  | Precip | at Model   | Diversions | Diversions | Stress | Diversions |
| mo-yr            | in/mo  | Boundary   | af         | af         | Period | cf/d       |
| Sep-89           | 0.31   | 368        | 0          | 0          | 120    | 0          |
| Oct-89           | 0.35   | 585        | 133        | 0          | 121    | 190,340    |
| Nov-89           | 0.20   | 373        | 20         | 0          | 122    | 28,623     |
| Dec-89           | 0.00   | 399        | 105        | 0          | 123    | 150,269    |
| Jan-90           | 1.80   | 1,618      | 365        | 209        | 124    | 821,468    |
| Feb-90           | 1.80   | 2,432      | 290        | 658        | 125    | 1,356,711  |
| Mar-90           | 0.40   | 828        | 570        | 0          | 126    | 815.744    |
| Apr-90           | 1.30   | 1.020      | 626        | 0          | 127    | 895.887    |
| May-90           | 0.60   | 843        | 388        | 0          | 128    | 555,278    |
| .lun-90          | 0.60   | 663        | 259        | 0          | 129    | 370,663    |
| .101-90          | 0.00   | 215        | 0          | 0          | 130    | 0,000      |
| Aug-90           | 0.00   | 141        | 0          | 0          | 131    | 0          |
| Sep-90           | 0.00   | 140        | 0          | 0          | 132    | 0          |
| Oct-90           | 0.00   | 440        | 0          | 0          | 132    | 0          |
| Nov-90           | 0.00   | 440        | 52         | 0          | 134    | 7/ /10     |
| Doc-90           | 0.30   | +0+<br>507 | 126        | 0          | 134    | 180 222    |
| Lop 01           | 1.00   | 307        | 210        | 0          | 135    | 100,322    |
| Jan-91<br>Ech 01 | 2.40   | 2 5 4 0    | 219        | 14         | 130    | 430,330    |
| Feb-91           | 2.40   | 3,340      | 230        | 14         | 137    | 349,190    |
| IVIAI-91         | 0.20   | 40,350     | 1,200      | 944        | 130    | 3,079,790  |
| Apr-91           | 0.00   | 3,229      | 1,374      | 0          | 139    | 1,966,372  |
| May-91           | 0.00   | 1,515      | 920        | 0          | 140    | 1,316,639  |
| Jun-91           | 0.00   | 1,125      | 436        | 0          | 141    | 623,972    |
| Jul-91           | 0.10   | 508        | 235        | 0          | 142    | 336,315    |
| Aug-91           | 0.00   | 577        | 149        | 0          | 143    | 213,238    |
| Sep-91           | 0.00   | 490        | 129        | 0          | 144    | 184,616    |
| Oct-91           | 0.40   | 567        | 150        | 0          | 145    | 214,669    |
| Nov-91           | 0.00   | 292        | 76         | 0          | 146    | 108,766    |
| Dec-91           | 2.40   | 1,519      | 370        | 0          | 147    | 529,518    |
| Jan-92           | 2.80   | 2,690      | 1,201      | 0          | 148    | 1,718,786  |
| Feb-92           | 4.40   | 12,049     | 1,211      | 702        | 149    | 2,737,750  |
| Mar-92           | 3.20   | 8,075      | 1,919      | 0          | 150    | 2,746,337  |
| Apr-92           | 0.10   | 2,507      | 300        | 0          | 151    | 429,339    |
| May-92           | 0.20   | 2,091      | 205        | 0          | 152    | 293,382    |
| Jun-92           | 0.00   | 959        | 29         | 0          | 153    | 41,503     |
| Jul-92           | 0.10   | 723        | 0          | 0          | 154    | 0          |
| Aug-92           | 0.00   | 702        | 0          | 0          | 155    | 0          |
| Sep-92           | 0.00   | 603        | 0          | 0          | 156    | 0          |
| Oct-92           | 0.20   | 489        | 0          | 0          | 157    | 0          |
| Nov-92           | 0.00   | 394        | 0          | 0          | 158    | 0          |
| Dec-92           | 2.40   | 2,279      | 231        | 0          | 159    | 330,591    |
| Jan-93           | 11.30  | 126,916    | 398        | 68         | 160    | 666,906    |
| Feb-93           | 2.10   | 65.980     | 0          | 0          | 161    | 0          |
| Mar-93           | 1.40   | 13,105     | 0          | 0          | 162    | 0          |
| Apr-93           | 0.00   | 6.122      | 0          | 0          | 163    | 0          |
| May-93           | 0.00   | 4,514      | 0          | 0          | 164    | 0          |
| Jun-93           | 0.50   | 2,410      | 0          | Õ          | 165    | 0          |
| .101-93          | 0.00   | 1 068      | 0          | 0          | 166    | 0          |
| Aug-93           | 0.00   | 754        | 0<br>0     | 0          | 167    | 0          |
| Sen-93           | 0.00   | 635        | 0          | 0          | 168    | 0          |
| Oct-93           | 0.00   | 1 1 2 8    | 0          | 0          | 160    | 0          |
| Nov-03           | 0.00   | 71/        | 0          | 0          | 100    | 0          |
| N0V-93           | 0.00   | 714        | 0          | 0          | 170    | 0          |
| Jop 04           | 0.33   | 150        | 0          | 0          | 171    | 0          |
| Jan-94<br>Ech 04 | 2.00   | 900        | 010        | 0          | 172    | 1 170 664  |
| Feb-94           | 2.90   | 0,000      | 010        | 0          | 173    | 1,170,004  |
| IVIAI-94         | 0.00   | 2,453      | 001        | 0          | 174    | 1,232,202  |
| Apr-94           | 0.50   | 1,560      | 934        | U          | 1/5    | 1,336,675  |
| May-94           | 0.10   | 1,069      | 733        | U          | 1/6    | 1,049,018  |
| Jun-94           | 0.00   | 678        | 353        | U          | 177    | 505,189    |
| Jul-94           | 0.00   | 326        | 60         | 0          | 178    | 85,868     |
| Aug-94           | 0.10   | 302        | 0          | 0          | 179    | 0          |
| Sep-94           | 0.00   | 339        | 0          | 0          | 180    | 0          |
| Oct-94           | 0.00   | 367        | 22         | 0          | 181    | 31,485     |
| Nov-94           | 0.00   | 420        | 160        | 0          | 182    | 228,981    |

|                  |             | SMR Flow         | Pond          | L. O'Neill |        | All        |
|------------------|-------------|------------------|---------------|------------|--------|------------|
|                  | Precip      | at Model         | Diversions    | Diversions | Stress | Diversions |
| mo-yr            | in/mo       | Boundary         | af            | af         | Period | cf/d       |
| Dec-94           | 0.20        | 474              | 11            | 0          | 183    | 110,197    |
| Jan-95<br>Ech 05 | 0.50        | 32,734           | 0             | 0          | 104    | 0          |
| Feb-95<br>Mar-95 | 2.50        | 38 / 65          | 0             | 0          | 185    | 0          |
| Δnr-95           | 1.80        | 6 613            | 205           | 515        | 187    | 1 030 413  |
| May-95           | 0.10        | 2 555            | 158           | 283        | 188    | 631 128    |
| Jun-95           | 0.40        | 1 579            | 182           | 0          | 189    | 260,466    |
| Jul-95           | 0.10        | 904              | 0             | 0          | 190    | 200,100    |
| Aug-95           | 0.00        | 604              | 0             | 0          | 191    | 0          |
| Sep-95           | 0.00        | 502              | 0             | 0          | 192    | 0          |
| Oct-95           | 0.00        | 607              | 0             | 0          | 193    | 0          |
| Nov-95           | 0.00        | 897              | 0             | 0          | 194    | 0          |
| Dec-95           | 0.40        | 895              | 0             | 0          | 195    | 0          |
| Jan-96           | 1.70        | 1,061            | 9             | 0          | 196    | 12,880     |
| Feb-96           | 1.90        | 3,628            | 577           | 0          | 197    | 825,762    |
| Mar-96           | 0.80        | 2,250            | 461           | 0          | 198    | 659,751    |
| Apr-96           | 0.20        | 878              | 52            | 0          | 199    | 74,419     |
| May-96           | 0.00        | 683              | 0             | 0          | 200    | 0          |
| Jun-96           | 0.00        | 372              | 0             | 0          | 201    | 0          |
| Jul-96           | 0.00        | 206              | 0             | 0          | 202    | 0          |
| Aug-96           | 0.00        | 214              | 0             | 0          | 203    | 0          |
| Sep-96           | 0.00        | 220              | 0             | 0          | 204    | 0          |
| Oct-96           | 0.90        | 390              | 23            | 0          | 205    | 32,916     |
| Nov-96           | 2.60        | 1,739            | 0             | 0          | 206    | 0          |
| Dec-96           | 2.70        | 2,252            | 43            | 0          | 207    | 61,539     |
| Jan-97           | 5.40        | 10,057           | 588           | 0          | 208    | 841,504    |
| Feb-97           | 0.40        | 2,656            | 1,178         | 0          | 209    | 1,685,870  |
| Mar-97           | 0.00        | 1,161            | 370           | 0          | 210    | 529,518    |
| Apr-97           | 0.20        | 1,113            | ///           | 0          | 211    | 1,111,988  |
| May-97           | 0.00        | 554              | 463           | 0          | 212    | 662,613    |
| Jun-97           | 0.00        | 201              | 191           | 0          | 213    | 273,340    |
| Jul-97           | 0.00        | 320              | 0             | 0          | 214    | 0          |
| Aug-97           | 0.00        | 230              | 0             | 0          | 215    | 0          |
| Oct-97           | 0.00        | 350              | 0             | 0          | 210    | 0          |
| Nov-97           | 1.90        | 500              | 0             | 0          | 217    | 0          |
| Dec-97           | 1.50        | 2 790            | 0             | 0          | 210    | 0          |
| Jan-98           | 0.00        | 4 061            | 52            | 0          | 220    | 74 419     |
| Feb-98           | 8.50        | 62,608           | 939           | 291        | 220    | 1.760.289  |
| Mar-98           | 0.00        | 11.851           | 1.741         | 0          | 222    | 2.491.596  |
| Apr-98           | 0.00        | 7.315            | 973           | 0          | 223    | 1,392,489  |
| May-98           | 0.20        | 6,984            | 663           | 0          | 224    | 948,839    |
| Jun-98           | 0.00        | 1,968            | 0             | 0          | 225    | 0          |
| Jul-98           | 0.10        | 1,124            | 0             | 0          | 226    | 0          |
| Aug-98           | 0.00        | 570              | 0             | 0          | 227    | 0          |
| Sep-98           | 0.00        | 546              | 0             | 0          | 228    | 0          |
| Oct-98           | 0.30        | 633              | 0             | 0          | 229    | 0          |
| Nov-98           | 1.20        | 1,116            | 0             | 0          | 230    | 0          |
| Dec-98           | 0.60        | 961              | 0             | 0          | 231    | 0          |
| Jan-99           | 0.00        | 1,111            | 0             | 0          | 232    | 0          |
| Feb-99           | 0.80        | 995              | 676           | 0          | 233    | 967,443    |
| Mar-99           | 0.00        | 943              | 639           | 0          | 234    | 914,492    |
| Apr-99           | 1.20        | 1,442            | 1,114         | 0          | 235    | 1,594,278  |
| May-99           | 0.00        | 630              | 526           | U          | 236    | 752,774    |
| Jun-99           | 0.40        | 502              | U             | U          | 237    | 0          |
| Jul-99           | 1.40        | 431              | U             | U          | 238    | 0          |
| AUG-99           | 0.00        | 285              | U             | U          | 239    | 0          |
| Seh-aa           | 20 yr total | <b>1,028,298</b> | <u>54,602</u> | 9,798      | 240    | 0          |



#### Attachment 2, Table D-A2-2: Simulated Discharge to Santa Margarita River and Infiltration to Ground Water from Waste Water Oxidation Pol

Note: Volume of water discharged to the Santa Margarita River or infiltrated to ground water is after precipitation and evaporation are accounted for. Ox Ponds 1, 3, 8, and 13 -- flow to SMR accounts for [ (WWQ from STP ) - Evap + Precip] \* 90% -- (the 90% accounts for 10% infiltration to ground water) Ox Pond 1 -- flow to SMR accounts for (WWQ from STP ) - Evap -- (no infiltration to ground water) Note: if potential evaporation for the month is > STP discharge to the pond, discharge to SMR =0

OxPonds post STP 1,3,8,and13 assume 10% infiltration into gw; note OX Pond 1 is not within model domain

STP: Sewage Treatment Plant

STP 2: \* estimated flow volume at USGS gage location from col AC of worksheet STPdata.xls / stp2 flow toward Pond 2

\*\* discharge from STP 2 to SMR takes the following course: Horse Lake, div to irrigate golf course, USGS gage, ox ponds 2 & 3, invert pipe to SMR

\*\* STP2 discharge to the SMR accounts for reuse of water as irrigation to the golf course, and evap from oxidation ponds 2 and 3 (post Brood Mare Lake

\*\* assume no infiltration to ground water from ponds post STP2 plant discharge

| 90% Discharge to Santa Margarita River |              |                            |              |              |               | 10% Infiltration to Ground Water |               |       |              |              |               |
|----------------------------------------|--------------|----------------------------|--------------|--------------|---------------|----------------------------------|---------------|-------|--------------|--------------|---------------|
|                                        | Ox<br>Pond 1 | outflow near<br>Ox Pond 13 | Ox<br>Pond 3 | Ox<br>Pond 8 | Ox<br>Pond 13 |                                  |               |       | Ox<br>Pond 3 | Ox<br>Pond 8 | Ox<br>Pond 13 |
| AF/WY                                  | STP 1        | STP 2 **                   | STP 3        | STP 8        | STP 13        | Total                            | AF/WY         | Total | STP 3        | STP 8        | STP 13        |
| 1980                                   | 807          | 191                        | 449          | 199          | 660           | 2,307                            | 1980          | 145   | 50           | 22           | 73            |
| 1981                                   | 649          | 146                        | 466          | 201          | 681           | 2,142                            | 1981          | 150   | 52           | 22           | 76            |
| 1982                                   | 572          | 139                        | 363          | 179          | 703           | 1,956                            | 1982          | 138   | 40           | 20           | 78            |
| 1983                                   | 528          | 89                         | 603          | 182          | 793           | 2,195                            | 1983          | 175   | 67           | 20           | 88            |
| 1984                                   | 438          | 57                         | 625          | 226          | 775           | 2,122                            | 1984          | 181   | 69           | 25           | 86            |
| 1985                                   | 519          | 137                        | 577          | 360          | 767           | 2,360                            | 1985          | 189   | 64           | 40           | 85            |
| 1986                                   | 394          | 82                         | 478          | 314          | 692           | 1,961                            | 1986          | 165   | 53           | 35           | 77            |
| 1987                                   | 731          | 76                         | 347          | 448          | 1,094         | 2,695                            | 1987          | 210   | 39           | 50           | 122           |
| 1988                                   | 784          | 233                        | 712          | 319          | 1,105         | 3,153                            | 1988          | 237   | 79           | 35           | 123           |
| 1989                                   | 422          | 148                        | 678          | 154          | 1,085         | 2,486                            | 1989          | 213   | 75           | 17           | 121           |
| 1990                                   | 408          | 43                         | 662          | 148          | 1,104         | 2,365                            | 1990          | 213   | 74           | 16           | 123           |
| 1991                                   | 360          | 99                         | 567          | 52           | 894           | 1,972                            | 1991          | 168   | 63           | 6            | 99            |
| 1992                                   | 410          | 91                         | 445          | 54           | 1,061         | 2,061                            | 1992          | 173   | 49           | 6            | 118           |
| 1993                                   | 401          | 81                         | 538          | 70           | 1,332         | 2,422                            | 1993          | 216   | 60           | 8            | 148           |
| 1994                                   | 366          | 105                        | 496          | 108          | -             | 1,076                            | 1994          | 67    | 55           | 12           | -             |
| 1995                                   | 393          | 109                        | 460          | 81           | -             | 1,042                            | 1995          | 60    | 51           | 9            | -             |
| 1996                                   | 346          | 63                         | 443          | 67           | -             | 918                              | 1996          | 57    | 49           | 7            | -             |
| 1997                                   | 400          | 65                         | 486          | 63           | -             | 1,014                            | 1997          | 61    | 54           | 7            | -             |
| 1998                                   | 416          | 66                         | 419          | 81           | -             | 983                              | 1998          | 56    | 47           | 9            | -             |
| 1999                                   | 438          | 160                        | 400          | 64           | -             | 1,062                            | 1999          | 52    | 44           | 7            | -             |
| Average                                | 489          | 109                        | 511          | 169          | 637           | 1,915                            | Average       | 146   | 57           | 19           | 71            |
| Median                                 | 419          | 95                         | 482          | 151          | 735           | 2,092                            | Median        | 166   | 54           | 17           | 82            |
| Total                                  | 9,785        | 2,181                      | 10,211       | 3,370        | 12,746        | 38,294                           | Total         | 2,925 | 1,135        | 374          | 1,416         |
| avg AF/M                               | STP 1        | STP 2**                    | STP 3        | STP 8        | STP 13        | Total                            | avg AF/M      | Total | STP 3        | STP 8        | STP 13        |
| Oct                                    | 40           | 1                          | 39           | 15           | 55            | 150                              | Oct           | 12    | 4            | 2            | 6             |
| Nov                                    | 39           | 12                         | 37           | 15           | 55            | 158                              | Nov           | 12    | 4            | 2            | 6             |
| Dec                                    | 40           | 22                         | 42           | 15           | 54            | 172                              | Dec           | 12    | 5            | 2            | 6             |
| Jan                                    | 42           | 21                         | 43           | 16           | 59            | 180                              | Jan           | 13    | 5            | 2            | 7             |
| Feb                                    | 40           | 28                         | 43           | 14           | 51            | 177                              | Feb           | 12    | 5            | 2            | 6             |
| Mar                                    | 44           | 19                         | 46           | 15           | 55            | 179                              | Mar           | 13    | 5            | 2            | 6             |
| Apr                                    | 40           | 5                          | 42           | 14           | 51            | 153                              | Apr           | 12    | 5            | 2            | 6             |
| May                                    | 43           | 1                          | 43           | 13           | 51            | 152                              | May           | 12    | 5            | 1            | 6             |
| Jun                                    | 41           | -                          | 44           | 14           | 51            | 149                              | Jun           | 12    | 5            | 2            | 6             |
| Jul                                    | 41           | -                          | 45           | 13           | 51            | 151                              | Jul           | 12    | 5            | 1            | 6             |
| Aug                                    | 42           | -                          | 45           | 13           | 52            | 152                              | Aug           | 12    | 5            | 1            | 6             |
| Sep                                    | 38           | 0                          | 42           | 11           | 52            | 143                              | Sep           | 12    | 5            | 1            | 6             |
| Avg Mnthly                             | 41           | 9                          | 43           | 14           | 53            |                                  | Avg Monthly   | 12    | 5            | 2            | 6             |
| Med Mnthly                             | 41           | 3                          | 43           | 14           | 52            |                                  | Med Monthly   | 12    | 5            | 2            | 6             |
| Avg Ttl=Anl                            | 489          | 109                        | 511          | 169          | 637           | 1,915                            | Avg Total=Anl | 146   | 57           | 19           | 71            |

| Model R      | ch Zone #:       | 2        | 3             | 4            | 5            | 6                        | 7                        | 8             | 9          | 10                   | 11             | 12                       | 13            | 14         | 15                |
|--------------|------------------|----------|---------------|--------------|--------------|--------------------------|--------------------------|---------------|------------|----------------------|----------------|--------------------------|---------------|------------|-------------------|
| Are          | ea (acres):      | 4,142    | 1,604         | 334          | 372          | 148                      | 154                      | 1,720         | 186        | 540                  | 1,215          | 617                      | 620           | 161        | 384               |
| # M          | lodel Cells:     | 4,543    | 4             | 6            | 9            | 5                        | 4                        | 12            | 3          | 8                    | 6              | 24                       | 2             | 4          | 8                 |
| AF/W-Yr      | Precip           | Qal      | W Trib 1      | E Trib 1     | W Trib 2     | E Trib 2                 | E Trib 3                 | W Trib 3      | E Trib 4   | E Trib 5             | W Trib 4       | E Trib 6                 | W Trib 5      | W Trib 6   | W Trib 7          |
| Year         | in/yr            | af/yr    | af/yr         | af/yr        | af/yr        | af/yr                    | af/yr                    | af/yr         | af/yr      | af/yr                | af/yr          | af/yr                    | af/yr         | af/yr      | af/yr             |
| 1980         | 25.90            | 1,315    | 52            | 11           | 12           | 5                        | 5                        | 56            | 6          | 17                   | 39             | 20                       | 20            | 5          | 12                |
| 1981         | 8.90             | -        | 18            | 4            | 4            | 2                        | 2                        | 19            | 2          | 6                    | 14             | 7                        | 7             | 2          | 4                 |
| 1982         | 16.10            | 307      | 32            | 7            | 7            | 3                        | 3                        | 35            | 4          | 11                   | 24             | 12                       | 12            | 3          | 8                 |
| 1983         | 22.80            | 393      | 46            | 10           | 11           | 4                        | 4                        | 49            | 5          | 15                   | 35             | 18                       | 18            | 5          | 11                |
| 1984         | 7.90             | 132      | 16            | 3            | 4            | 1                        | 2                        | 17            | 2          | 5                    | 12             | 6                        | 6             | 2          | 4                 |
| 1985         | 9.40             | 230      | 19            | 4            | 4            | 2                        | 2                        | 20            | 2          | 6                    | 14             | 7                        | 7             | 2          | 5                 |
| 1986         | 18.30            | 302      | 37            | 8            | 9            | 3                        | 4                        | 39            | 4          | 12                   | 28             | 14                       | 14            | 4          | 9                 |
| 1987         | 3.60             | -        | 7             | 2            | 2            | 1                        | 1                        | 8             | 1          | 2                    | 5              | 3                        | 3             | 1          | 2                 |
| 1988         | 13.00            | 83       | 26            | 5            | 6            | 2                        | 2                        | 28            | 3          | 9                    | 20             | 10                       | 10            | 3          | 6                 |
| 1989         | 9.11             | 191      | 18            | 4            | 4            | 2                        | 2                        | 20            | 2          | 6                    | 14             | 7                        | 7             | 2          | 4                 |
| 1990         | 7.05             | -        | 14            | 3            | 3            | 1                        | 1                        | 15            | 2          | 5                    | 11             | 5                        | 5             | 1          | 3                 |
| 1991         | 10.10            | 210      | 20            | 4            | 5            | 2                        | 2                        | 22            | 2          | 7                    | 15             | 8                        | 8             | 2          | 5                 |
| 1992         | 13.60            | 218      | 27            | 6            | 6            | 3                        | 3                        | 29            | 3          | 9                    | 21             | 10                       | 11            | 3          | 7                 |
| 1993         | 17.90            | 906      | 36            | 7            | 8            | 3                        | 3                        | 38            | 4          | 12                   | 27             | 14                       | 14            | 4          | 9                 |
| 1994         | 4.41             | -        | 9             | 2            | 2            | 1                        | 1                        | 9             | 1          | 3                    | 7              | 3                        | 3             | 1          | 2                 |
| 1995         | 16.00            | 793      | 32            | 7            | 7            | 3                        | 3                        | 34            | 4          | 11                   | 24             | 12                       | 12            | 3          | 8                 |
| 1996         | 5.00             | -        | 10            | 2            | 2            | 1                        | 1                        | 11            | 1          | 3                    | 8              | 4                        | 4             | 1          | 2                 |
| 1997         | 13.00            | 357      | 26            | 5            | 6            | 2                        | 2                        | 28            | 3          | 9                    | 20             | 10                       | 10            | 3          | 6                 |
| 1998         | 12.30            | 547      | 25            | 5            | 6            | 2                        | 2                        | 26            | 3          | 8                    | 19             | 9                        | 10            | 2          | 6                 |
| 1999         | 5.90             | -        | 12            | 2            | 3            | 1                        | 1                        | 13            | 1          | 4                    | 9              | 5                        | 5             | 1          | 3                 |
| Average      | 12.01            | 299      | 24            | 5            | 6            | 2                        | 2                        | 26            | 3          | 8                    | 18             | 9                        | 9             | 2          | 6                 |
| Median       | 11.20            | 214      | 22            | 5            | 5            | 2                        | 2                        | 24            | 3          | 8                    | 17             | 9                        | 9             | 2          | 5                 |
| Total        | 240              | 5,983    | 482           | 100          | 112          | 45                       | 46                       | 516           | 56         | 162                  | 365            | 185                      | 186           | 48         | 115               |
|              | <b>D</b> and a l |          | 14/ T 1 4     | <b>FT1</b> 4 |              | <b>FT</b> <sup>1</sup> 0 | <b>FT</b> <sup>1</sup> 0 |               |            | <b>FT</b> 1 <b>F</b> | M/ T 1 4       | <b>FT</b> <sup>1</sup> 0 |               | M T 1 0    | \\\ <b>T</b> '  7 |
| AVG AF/M     | Precip           | Qal      |               |              | W Trib 2     | E Trib 2                 | E Trib 3                 | W I rib 3     | E I rib 4  | E I rib 5            | VV I rib 4     | E I IID 6                | W I rib 5     | VV I rib 6 | VV I rib /        |
| month        | 0.45             | avg ai/m | avg al/m      | avg al/m     | avg ai/m     | avg ai/m                 | avg ai/m                 | avg ai/m      | avg ai/m   | avg ai/m             | avg ai/m       | avg ai/m                 | avg ai/m      | avg ai/m   | avg ai/m          |
| Uct          | 0.45             | 0.0      | 391.7         | 11.3         | 9.3          | 2.1                      | 3.0                      | 150.1         | 10.7       | 22.2                 | 149.9          | 9.7                      | 220.0         | 4.0        | 11.Z              |
|              | 1.20             | 12.2     | 1096.5        | 31.0         | 20.2         | 7.5                      | 10.1                     | 421.0         | 19.7       | 02.Z                 | 420.4          | 27.1                     | 320.0         | 11.1       | 31.4              |
| Dec          | 1.59             | 151.0    | 1395.0        | 40.4         | 55.5<br>61 5 | 9.5                      | 12.0                     | 000 2         | 20.0       | 146.0                | 006 0          | 04.4<br>62 6             | 760.9         | 14.1       | 39.9<br>72 0      |
| Jan<br>Eob   | 2.35             | 61.3     | 2056.0        | 50 G         | 40.1         | 17.0                     | 19.0                     | 788.3         | 40.Z       | 140.0                | 900.0<br>787.2 | 50.8                     | 614.1         | 20.1       | 73.0<br>58.0      |
| Mor          | 2.55             | 36.8     | 2030.9        | 50.0         | 49.1         | 14.0                     | 10.9                     | 672.6         | 30.9       | 00.4                 | 671.6          | 12.2                     | 522.0         | 20.0       | 50.9              |
| Apr          | 2.01             | 0.0      | 652.1         | 18.0         | 41.9         | 12.0                     | 6.0                      | 2/0.0         | 11 7       | 39.4                 | 2/0.5          | 40.0                     | 104 7         | 6.6        | 18.7              |
| Арі<br>Мау   | 0.75             | 0.0      | 032.1         | 10.9         | 10.0         | 4.5                      | 0.0                      | 249.9         | 11.7       | 5 2                  | 249.0          | 10.1                     | 194.7<br>27.4 | 0.0        | 10.7              |
| lup          | 0.11             | 0.0      | 91.9          | 2.7          | 2.2          | 0.0                      | 0.0                      | 35.2          | 1.0        | 5.2                  | 35.2           | 2.3                      | 27.4          | 0.9        | 2.0               |
| Jul          | 0.11             | 0.0      | 91.9          | 2.1          | 2.2          | 0.0                      | 0.0                      | 33.2          | 1.0        | 5.0                  | 33.5           | 2.3                      | 27.4          | 0.9        | 2.0               |
| Jui          | 0.10             | 0.0      | 12.9          | 2.3          | 2.1          | 0.0                      | 0.0                      | 16.9          | 1.0        | 2.5                  | 16.7           | 2.2                      | 20.1          | 0.9        | 2.0               |
| Sen          | 0.00             | 0.0      | 43.0<br>271 Q | 7.0          | 1.0          | 1 0                      | 2.5                      | 10.0          | 0.0<br>⊿ 0 | 2.5<br>15 /          | 10.7           | 67                       | 81.1          | 27         | 7.9               |
|              | 1.00             | 0.0      | 076.0         | 1.3<br>DE 4  | 20.0         | 1.3                      | 2.5                      | 225.0         | 4.3        | 10.4                 | 225.2          | 0.7                      | 261.0         | 2.1        | 7.0<br>25.4       |
| Mod Mo       | 1.00             | 25       | 521 0         | 20.4         | 20.9<br>10 5 | 0.0                      | 0.0<br>1 0               | 200.0         | 10.7       | 49.0<br>20 G         | 100 7          | ∠1.0<br>10.0             | 201.0         | 0.9<br>E 2 | 20.1              |
|              | 12.00            | 207      | 10515         | 10.1         | 12.0         | 3.0<br>70                | 4.0                      | 200.0<br>1020 | ७.4<br>१०० | 29.0                 | 199.7          | 12.9                     | 2120          | 100        | 201               |
| Avg i li=Ani | 12.01            | 297      | 10010         | 305          | 201          | 12                       | 97                       | 4030          | 100        | 590                  | 4024           | 239                      | 3139          | 100        | 301               |

#### Attachment 2; Table D-A2-3: Simulated Recharge Package Summary

| Rch Zone #:    | 16       | 17       | 18       | 19       | 20       | 21        | 22        | 23       | 24       | 25        | 26       | 27       | 28       | 29       | 30       |
|----------------|----------|----------|----------|----------|----------|-----------|-----------|----------|----------|-----------|----------|----------|----------|----------|----------|
| Area (acres):  | 786      | 430      | 435      | 783      | 534      | 439       | 327       | 4        | 3        | 27        | 14       | 7        | 7        | 16       | 5        |
| # Model Cells: | 9        | 7        | 8        | 2        | 10       | 4         | 6         | 4        | 3        | 29        | 15       | 7        | 8        | 18       | 5        |
| AF/W-Yr        | E Trib 7 | W Trib 8 | E Trib 8 | E Trib 9 | W Trib 9 | E Trib 10 | E Trib 11 | OxPond 8 | OxPond 3 | OxPond 13 | Perc 1   | Perc 2   | Perc 3   | Perc 4   | Perc 5   |
| Year           | af/yr    | af/yr    | af/yr    | af/yr    | af/yr    | af/yr     | af/yr     | af/yr    | af/yr    | af/yr     | af/yr    | af/yr    | af/yr    | af/yr    | af/yr    |
| 1980           | 25       | 14       | 14       | 25       | 17       | 14        | 11        | 50       | 22       | 73        | 16       | 8        | 8        | 18       | 5        |
| 1981           | 9        | 5        | 5        | 9        | 6        | 5         | 4         | 52       | 22       | 76        | -        | -        | -        | -        | -        |
| 1982           | 16       | 9        | 9        | 16       | 11       | 9         | 7         | 40       | 20       | 78        | 4        | 2        | 2        | 4        | 1        |
| 1983           | 22       | 12       | 12       | 22       | 15       | 13        | 9         | 67       | 20       | 88        | 2,233    | 1,119    | 1,192    | 2,667    | 572      |
| 1984           | 8        | 4        | 4        | 8        | 5        | 4         | 3         | 69       | 25       | 86        | 1,236    | 254      | 1        | 2        | 1        |
| 1985           | 9        | 5        | 5        | 9        | 6        | 5         | 4         | 64       | 40       | 85        | 1,806    | 790      | 153      | 3        | 1        |
| 1986           | 18       | 10       | 10       | 18       | 12       | 10        | 7         | 53       | 35       | 77        | 2,342    | 1,156    | 1,175    | 1,713    | 269      |
| 1987           | 4        | 2        | 2        | 4        | 2        | 2         | 1         | 39       | 50       | 122       | 1,019    | -        | -        | -        | -        |
| 1988           | 13       | 7        | 7        | 13       | 9        | 7         | 5         | 79       | 35       | 123       | 1,598    | 591      | 12       | 1        | 0        |
| 1989           | 9        | 5        | 5        | 9        | 6        | 5         | 4         | 75       | 17       | 121       | 1,928    | 479      | 38       | 3        | 1        |
| 1990           | 7        | 4        | 4        | 7        | 5        | 4         | 3         | 74       | 16       | 123       | 2,030    | 828      | 83       | -        | -        |
| 1991           | 10       | 5        | 5        | 10       | 7        | 6         | 4         | 63       | 6        | 99        | 2,074    | 1,330    | 1,052    | 1,085    | 1        |
| 1992           | 13       | 7        | 7        | 13       | 9        | 7         | 6         | 49       | 6        | 118       | 2,741    | 1,080    | 1,033    | 928      | 5        |
| 1993           | 18       | 10       | 10       | 18       | 12       | 10        | 7         | 60       | 8        | 148       | 640      | 5        | 5        | 13       | 4        |
| 1994           | 4        | 2        | 2        | 4        | 3        | 2         | 2         | 55       | 12       | -         | 1,777    | 1,212    | 774      | 274      | -        |
| 1995           | 16       | 9        | 9        | 16       | 11       | 9         | 1         | 51       | 9        | -         | 728      | 92       | 5        | 11       | 3        |
| 1996           | 5        | 3        | 3        | 5        | 3        | 3         | 2         | 49       | /        | -         | 1,088    | -        |          | -        | -        |
| 1997           | 13       | 7        | 1        | 13       | 9        | 1         | 5         | 54       | 1        | -         | 2,319    | 982      | 511      | 5        | 1        |
| 1998           | 12       | /        | /        | 12       | 8        | /         | 5         | 47       | 9        | -         | 1,690    | 1,108    | 889      | 972      | 2        |
| 1999           | 6        | 3        | 3        | 6        | 4        | 3         |           | 44       | 1        | -         | 1,641    | /8/      | 426      | 289      | -        |
| Average        | 12       | 6        | 7        | 12       | 8        | 7         | 5         | 57       | 19       | 71        | 1445     | 591      | 368      | 399      | 43       |
| Median         | 11       | 6        | 6        | 11       | /        | 6         | 5         | 54       | 17       | 82        | 1666     | 689      | 60       | 8        | 1        |
| lotal          | 236      | 129      | 131      | 235      | 161      | 132       | 98        | 1,135    | 374      | 1,416     | 28908    | 11821    | 7359     | 7989     | 866      |
| Avg AF/M       | E Trib 7 | W Trib 8 | E Trib 8 | E Trib 9 | W Trib 9 | E Trib 10 | E Trib 11 | OxPond 8 | OxPond 3 | OxPond 13 | Perc 1   | Perc 2   | Perc 3   | Perc 4   | Perc 5   |
| month          | avg af/m  | avg af/m  | avg af/m | avg af/m | avg af/m  | avg af/m | avg af/m | avg af/m | avg af/m | avg af/m |
| Oct            | 41.8     | 16.1     | 14.4     | 186.8    | 17.4     | 29.3      | 10.9      | 4.3      | 1.6      | 6.1       | 10.4     | 7.7      | 0.0      | 0.0      | 0.0      |
| Nov            | 117.3    | 45.1     | 40.4     | 523.9    | 48.8     | 82.2      | 30.5      | 4.2      | 1.6      | 6.1       | 41.6     | 0.1      | 0.1      | 0.2      | 0.0      |
| Dec            | 149.0    | 57.3     | 51.4     | 665.7    | 62.0     | 104.4     | 38.7      | 4.7      | 1.6      | 6.0       | 77.2     | 19.4     | 2.0      | 0.5      | 0.1      |
| Jan            | 275.3    | 105.9    | 94.9     | 1229.9   | 114.6    | 193.0     | 71.6      | 4.8      | 1.7      | 6.5       | 253.5    | 63.2     | 16.8     | 2.1      | 0.6      |
| Feb            | 219.6    | 84.5     | 75.7     | 981.1    | 91.4     | 153.9     | 57.1      | 4.9      | 1.6      | 5.6       | 361.4    | 125.2    | 70.8     | 61.9     | 13.2     |
| Mar            | 187.4    | 72.1     | 64.6     | 837.1    | 78.0     | 131.3     | 48.7      | 5.1      | 1.7      | 6.1       | 318.7    | 129.4    | 88.6     | 160.3    | 14.1     |
| Apr            | 69.6     | 26.8     | 24.0     | 311.0    | 29.0     | 48.8      | 18.1      | 4.7      | 1.5      | 5.6       | 205.5    | 127.4    | 86.2     | 115.4    | 9.3      |
| May            | 9.8      | 3.8      | 3.4      | 43.8     | 4.1      | 6.9       | 2.6       | 4.8      | 1.5      | 5.7       | 134.7    | 98.2     | 65.7     | 53.7     | 6.6      |
| Jun            | 9.8      | 3.8      | 3.4      | 43.8     | 4.1      | 6.9       | 2.6       | 4.9      | 1.5      | 5.6       | 32.0     | 51.6     | 20.2     | 3.7      | 0.0      |
| Jul            | 9.3      | 3.6      | 3.2      | 41.7     | 3.9      | 6.6       | 2.4       | 5.1      | 1.5      | 5.7       | 15.0     | 12.8     | 1.7      | 0.0      | 0.0      |
| Aug            | 4.7      | 1.8      | 1.6      | 20.9     | 1.9      | 3.3       | 1.2       | 5.0      | 1.4      | 5.8       | 4.3      | 5.6      | 0.0      | 0.0      | 0.0      |
| Sep            | 29.0     | 11.2     | 10.0     | 129.6    | 12.1     | 20.3      | 7.5       | 4.7      | 1.2      | 5.8       | 4.3      | 4.1      | 0.0      | 0.0      | 0.0      |
| Avg Mo         | 93.6     | 36.0     | 32.2     | 418.0    | 38.9     | 65.6      | 24.3      | 4.8      | 1.5      | 5.9       | 121.6    | 53.7     | 29.3     | 33.1     | 3.7      |
| Med Mo         | 55.7     | 21.4     | 19.2     | 248.9    | 23.2     | 39.1      | 14.5      | 4.8      | 1.5      | 5.8       | 59.4     | 35.5     | 9.4      | 1.3      | 0.1      |
| Avg Ttl=Anl    | 1123     | 432      | 387      | 5015     | 467      | 787       | 292       | 57       | 18       | 71        | 1459     | 645      | 352      | 398      | 44       |

#### Attachment 3: Production Well Pumping Schedules

#### Historical Pumping Well Summary (af)

| monthly pump | oing data fro | m Camp F | Pendelton |       |       |       |       |       |       |       |       |
|--------------|---------------|----------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|
| Well ID      | Basin         | 1980     | 1981      | 1982  | 1983  | 1984  | 1985  | 1986  | 1987  | 1988  | 1989  |
| 10/4-5D1     | UY            | -        | 258       | 466   | 398   | 402   | 524   | 385   | 254   | 0     | -     |
| 10/4-7A2     | UY            | 613      | 475       | 531   | 172   | 328   | 850   | 608   | 515   | 650   | 766   |
| 10/4-7A3     | UY            | -        | -         | -     | -     | -     | -     | -     | -     | -     | -     |
| 10/4-7H2     | UY            | 586      | 401       | 290   | 479   | 480   | 0     | 148   | 438   | 182   | 190   |
| 10/4-7J9     | UY            | -        | -         | -     | -     | -     | -     | -     | -     | -     | -     |
| 10/4-7R2     | UY            | 788      | 779       | 805   | 848   | 577   | 964   | 117   | 127   | 449   | 622   |
| 10/4-18E3    | СН            | -        | 128       | 540   | 592   | 783   | 835   | 1.150 | 643   | 293   | 476   |
| 10/4-18M4    | СН            | 381      | 945       | 914   | 901   | 476   | -     | 204   | 979   | 536   | 949   |
| 10/5-13R2    | СН            | 1.082    | 793       | 350   | -     | -     | -     | -     | -     | -     | -     |
| 10/5-23G3    | СН            | 265      | 346       | 32    | -     | -     | -     | 84    | 1     | 20    | -     |
| 10/5-23G4    | СН            | -        | -         | _     | -     | -     | -     | -     | -     | _     | -     |
| 10/5-23J1    | CH            | 528      | 502       | 0     | 122   | 1.155 | 834   | 617   | 458   | 1.585 | 1.210 |
| 10/5-23K1    | CH            | 228      | -         | -     | -     | _     | -     | -     | -     | -     | -     |
| 10/5-23K2    | CH            | -        | -         | -     | -     | -     | -     | 275   | 370   | 242   | 296   |
| 10/5-23K3    | CH            | -        | -         | -     | -     | -     | -     | -     | -     |       | -     |
| 10/5-26C1    | СН            | 911      | 611       | 1,042 | 703   | 299   | 463   | 1,088 | 914   | 574   | 510   |
| 10/5-26F1    | LY N          | 835      | 1,464     | 1,447 | 942   | 1,078 | 1,069 | 731   | 1,098 | 1,109 | 805   |
| 11/5-2D3     | LY            | -        | -         | -     | -     | -     | -     | 222   | -     | 115   | 52    |
| 11/5-2A1     | LY            | -        | -         | -     | -     | -     | -     | -     | -     | -     | 24    |
| 11/5-2A3     | LY            | 114      | 1         | 53    | 2     | -     | 294   | 134   | 139   | 192   | -     |
|              |               |          |           |       |       |       |       |       |       |       |       |
|              | UY            | 1,986    | 1,914     | 2,093 | 1,897 | 1,787 | 2,338 | 1,257 | 1,334 | 1,280 | 1,578 |
|              | СН            | 3,395    | 3,326     | 2,878 | 2,317 | 2,713 | 2,132 | 3,417 | 3,365 | 3,249 | 3,442 |
|              | LY            | 949      | 1,466     | 1,500 | 944   | 1,078 | 1,362 | 1,086 | 1,237 | 1,415 | 880   |
|              |               | 6,331    | 6,705     | 6,471 | 5,158 | 5,579 | 5,833 | 5,760 | 5,936 | 5,944 | 5,900 |
|              |               |          |           |       |       |       |       |       |       |       |       |
|              |               |          |           |       |       |       |       |       |       |       |       |
| Sub Basin    | : UY          | UY       | UY        | UY    | UY    | UY    | CH    | СН    | СН    | СН    | CH    |
| Average      | e 10/4-       | 10/4-    | 10/4-     | 10/4- | 10/4- | 10/4- | 10/4- | 10/4- | 10/5- | 10/5- | 10/5- |
| AF/N         | 1 5D1         | 7A2      | 7A3       | 7H2   | 7J9   | 7R2   | 18E3  | 18M4  | 13R2  | 23G3  | 23G4  |
| Oc           | t 11          | 58       | -         | 24    | -     | 39    | 36    | 50    | 32    | 4     | -     |
| Nov          | / 7           | 40       | -         | 29    | -     | 39    | 31    | 39    | 21    | 2     | -     |
| Dec          | ; 5           | 32       | -         | 21    | -     | 24    | 30    | 41    | 22    | 4     | -     |
| Jar          | า 8           | 33       | -         | 23    | -     | 36    | 34    | 35    | 25    | 2     | -     |
| Feb          | o 8           | 31       | -         | 19    | -     | 30    | 29    | 29    | 23    | 1     | -     |
| Mai          | r 9           | 42       | -         | 26    | -     | 41    | 40    | 48    | 28    | 3     | -     |
| Арі          | r 9           | 42       | -         | 23    | -     | 34    | 37    | 46    | 22    | 5     | -     |
| May          | / 13          | 58       | 1         | 25    | -     | 34    | 39    | 46    | 29    | 7     | 1     |
| Jur          | n 18          | 69       | 2         | 24    | -     | 38    | 36    | 68    | 38    | 8     | 3     |
| Ju           | l 19          | 76       | 3         | 29    | -     | 48    | 42    | 70    | 36    | 5     | 6     |
| Auc          | <b>1</b> 2    | 79       | 4         | 26    | -     | 47    | 42    | 73    | 29    | 3     | 6     |
| Sep          | b 14          | 68       | 3         | 24    | -     | 51    | 46    | 64    | 31    | 3     | 6     |
| Avg Monthly  | / 11          | 52       | 1         | 24    | -     | 38    | 37    | 51    | 28    | 4     | 2     |
| Med Monthly  | / 10          | 50       | 0         | 24    | 0     | 38    | 37    | 47    | 28    | 3     | 0     |
| Avg Total=An | l 134         | 627      | 12        | 293   | 0     | 461   | 442   | 608   | 334   | 44    | 22    |

### Historical Pumping Well Summary (af)

monthly pumping data from Camp Pendelton

| Well ID       | 1990       | 1991  | 1992  | 1993       | 1994       | 1995  | 1996  | 1997  | 1998  | 1999  |
|---------------|------------|-------|-------|------------|------------|-------|-------|-------|-------|-------|
| 10/4-5D1      | -          | -     | -     | -          | -          | -     | -     | -     | -     | -     |
| 10/4-7A2      | 557        | 387   | 709   | 740        | 1,106      | 619   | 1,160 | 902   | -     | 854   |
| 10/4-7A3      | -          | -     | -     | -          | -          | -     | -     | -     | -     | 235   |
| 10/4-7H2      | 370        | 75    | -     | 375        | 310        | 283   | 354   | 260   | 384   | 246   |
| 10/4-7J9      | -          | -     | -     | -          | -          | -     | -     | -     | -     | -     |
| 10/4-7R2      | 575        | 350   | 139   | 0          | -          | 185   | 80    | 499   | 1,016 | 302   |
| 10/4-18E3     | 703        | 394   | 7     | 96         | 365        | 478   | 290   | 464   | 326   | 273   |
| 10/4-18M4     | 633        | 276   | 753   | 537        | -          | 459   | 723   | 1,057 | 1,444 | -     |
| 10/5-13R2     | 114        | 312   | 450   | 259        | -          | 808   | 637   | 815   | 1,047 | 20    |
| 10/5-23G3     | -          | 4     | 33    | 29         | 69         | 0     | -     | -     | -     | -     |
| 10/5-23G4     | -          | -     | -     | -          | -          | -     | -     | -     | -     | 444   |
| 10/5-23J1     | 471        | 475   | 105   | 116        | 83         | 440   | 544   | 40    | -     | 1,138 |
| 10/5-23K1     | -          | -     | -     | -          | -          | -     | -     | -     | -     | -     |
| 10/5-23K2     | 162        | 160   | 184   | 214        | -          | -     | -     | -     | 160   | 343   |
| 10/5-23K3     | -          | -     | -     | -          | -          | -     | -     | -     | -     | 461   |
| 10/5-26C1     | 642        | 716   | 860   | 612        | 1,217      | 504   | 1,412 | 1,201 | 1,091 | 739   |
| 10/5-26F1     | 790        | 501   | 695   | 844        | 1,153      | 797   | 926   | 969   | 856   | 898   |
| 11/5-2D3      | 65         | 72    | 203   | 223        | 317        | 182   | 74    | 97    | 170   | 167   |
| 11/5-2A1      | -          | -     | -     | -          | -          | -     | -     | -     | -     | -     |
| 11/5-2A3      | -          | -     | -     | -          | -          | -     | -     | -     | -     | -     |
|               |            |       |       |            |            |       |       |       |       |       |
|               | 1,502      | 812   | 847   | 1,115      | 1,416      | 1,087 | 1,593 | 1,661 | 1,400 | 1,636 |
|               | 2,725      | 2,338 | 2,393 | 1,865      | 1,734      | 2,688 | 3,605 | 3,577 | 4,068 | 3,418 |
| _             | 855        | 573   | 898   | 1,067      | 1,471      | 979   | 1,000 | 1,066 | 1,026 | 1,065 |
|               | 5,083      | 3,724 | 4,138 | 4,046      | 4,621      | 4,754 | 6,199 | 6,304 | 6,494 | 6,119 |
|               |            |       |       |            |            |       |       |       |       |       |
|               | 011        | 0.1   | 011   | 011        | 011        |       | 1.57  | 1.57  | 1.17  |       |
| Sub Basin:    | CH<br>40/F |       |       | CH<br>40/F | CH<br>40/F |       |       |       |       |       |
| Average       | 10/5-      | 10/5- | 10/5- | 10/5-      | 10/5-      | 10/5- | 11/5- | 11/5- | 11/5- |       |
| AF/M          | 23J1       | 23K1  | 23K2  | 23K3       | 2601       | 26F1  | 2D3   | 2A1   | 2A3   |       |
| Oct           | 40         | 2     | 11    | -          | 67         | 111   | 13    | 1     | 3     |       |
| NOV           | 42         | 1     | 9     | -          | 59         | 58    | 6     | -     | 2     |       |
| Dec           | 32         | 1     | 9     | -          | 53         | 16    | 5     | -     | 1     |       |
| Jan           | 39         | 1     | 10    | -          | 55         | 22    | 2     | -     | 4     |       |
| Feb           | 34         | 1     | 1     | -          | 44         | 22    | 2     | -     | 2     |       |
| Mar           | 39         | 3     | 10    | -          | 56         | 38    | 1     | -     | 6     |       |
| Apr           | 47         | 1     | 12    | -          | 51         | 75    | 1     | -     | 6     |       |
| May           | 38         | 1     | 13    | 1          | 85         | 96    | 5     | -     | 6     |       |
| Jun           | 53         | 0     | 12    | 3          | 83         | 104   | 5     | -     | 1     |       |
| Jul           | 59         | -     | 8     | 6          | 85         | 126   | 6     | -     | 4     |       |
| Aug           | 53         | -     | 10    | 1          | 88         | 128   | 23    | -     | 3     |       |
| Sep           | 45         | -     | 9     | 6          | /9         | 155   | 29    | -     | 2     |       |
| Avg Monthly   | 43         | 1     | 10    | 2          | 67         | 79    | 8     | 0     | 4     |       |
| Med Monthly   | _41        | _1    | 10    | 0          | 63         | 85    | 5     | 0     | 4     |       |
| Avg Total=Anl | 521        | 11    | 120   | 23         | 805        | 950   | 98    | 1     | 46    |       |

### Historical Pumping Well Summary (af)

monthly pumping data from Camp Pendelton

| Well ID   | WY of<br>Operation | # of WY of<br>Operation | Avg AFY of<br>Operation | Average | Median | 20 Yr<br>Total |
|-----------|--------------------|-------------------------|-------------------------|---------|--------|----------------|
| 10/4-5D1  | 1981-87            | 7                       | 380                     | 134     | -      | 2.686          |
| 10/4-7A2  | 1980-99            | 20                      | 630                     | 627     | 616    | 12 542         |
| 10/4-7A3  | 1999               | 1                       | 240                     | 12      | -      | 235            |
| 10/4-7H2  | 1980-99            | 20                      | 290                     | 293     | 300    | 5.850          |
| 10/4-7J9  |                    | 0                       |                         |         | -      | -              |
| 10/4-7R2  | 1980-99            | 20                      | 460                     | 461     | 474    | 9,221          |
| 10/4-18E3 | 1981-99            | 19                      | 470                     | 442     | 429    | 8,836          |
| 10/4-18M4 | 1980-1998          | 19                      | 640                     | 608     | 585    | 12,168         |
| 10/5-13R2 | 1980-82 + 90-99    | 13                      | 510                     | 334     | 187    | 6,687          |
| 10/5-23G3 | 7 years            | 7                       | 130                     | 44      | 1      | 884            |
| 10/5-23G4 | 1999               | 1                       | 440                     | 22      | -      | 444            |
| 10/5-23J1 | 1980-99            | 20                      | 520                     | 521     | 473    | 10,424         |
| 10/5-23K1 | 1980               | 1                       | 230                     | 11      | -      | 228            |
| 10/5-23K2 | 10 years           | 10                      | 240                     | 120     | 80     | 2,405          |
| 10/5-23K3 | 1999               | 1                       | 460                     | 23      | -      | 461            |
| 10/5-26C1 | 1980-99            | 20                      | 810                     | 805     | 728    | 16,109         |
| 10/5-26F1 | 1980-99            | 20                      | 950                     | 950     | 912    | 19,007         |
| 11/5-2D3  | 1986-99            | 14                      | 140                     | 98      | 73     | 1,958          |
| 11/5-2A1  | 1989               | 1                       | 20                      | 1       | -      | 24             |
| 11/5-2A3  | 1980-88            | 9                       | 100                     | 46      | -      | 929            |
|           |                    |                         |                         |         |        |                |
|           |                    |                         | UY                      | 1,527   | 1,540  | 30,535         |
|           |                    |                         | СН                      | 2,932   | 3,064  | 58,646         |
|           |                    |                         | LY                      | 1,096   | 1,065  | 21,918         |
|           |                    |                         |                         | 5,555   | 5,866  | 111,098        |

|     |         |            | Buildout |
|-----|---------|------------|----------|
|     | Monthly | % of Total | Pumping  |
|     | Total   | Pumping    | / well   |
| Oct | 501     | 9.0%       | 793      |
| Nov | 383     | 6.9%       | 607      |
| Dec | 293     | 5.3%       | 465      |
| Jan | 330     | 5.9%       | 523      |
| Feb | 283     | 5.1%       | 449      |
| Mar | 391     | 7.0%       | 619      |
| Apr | 411     | 7.4%       | 651      |
| May | 498     | 9.0%       | 789      |
| Jun | 570     | 10.3%      | 903      |
| Jul | 628     | 11.3%      | 994      |
| Aug | 632     | 11.4%      | 1,001    |
| Sep | 634     | 11.4%      | 1,005    |
|     | 5,555   | 100.0%     | 8,800    |

Stetson Engineers Inc. / North State Resources



Appendix D, Attachment 3, Figure D - A3 - 1