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In the continental United States, estuaries
comprise more than 80% of the coastline
along the Atlantic Ocean and Gulf of Mexico
and more than 10% of the Pacific coast.
These fragile habitats, which are among this
nation’s most important natural resources, are
experiencing declining water quality and
eutrophication (1–4). In a recent comprehen-
sive survey of the trophic status of estuaries in
the continental United States, Bricker et al.
(3) concluded that 84 estuaries, representing
65% of the total estuarine surface area, were
presently showing signs of moderate to high
eutrophic conditions (Table 1). Rapidly
growing and diversifying anthropogenic
inputs associated with agriculture, aquacul-
ture, urbanization, coastal development, and
industrial expansion are a primary cause of
the decline in the quality of natural habitats
in these sensitive waters (1,5,6). 

Within the past three decades, many of
our estuarine and coastal waters have changed
from balanced and productive ecosystems to
ones experiencing sudden trophic changes,
biogeochemical alterations, and a deteriora-
tion in habitat quality. Nuisance and some-
times harmful phytoplankton blooms,
accompanied by oxygen depletion, toxicity,
fish kills, and shellfish mortality, are becoming
more common (2,3). The purpose of this gen-
eral overview is to furnish a working defini-
tion for estuarine eutrophication and to
outline some key ecological features associated
with the underlying processes. Although a
comprehensive review of all the facets of

eutrophication are well beyond the scope of
this concise overview, we have incorporated
many key concepts and have supplied a few
selected examples to illustrate different aspects
of estuarine eutrophication. Our overall goal is
to provide readers with a broad working
knowledge of eutrophication processes in the
context of environmental health issues.

A Definition of Eutrophication

The terms eutrophic, mesotrophic, and olig-
otrophic are adjectives commonly used to
describe the overall state of fertility or “trophic
status” of aquatic ecosystems. These three
broad categories delineate a gradient that ranges
from nutrient-poor, low-biomass systems (olig-
otrophic) to nutrient-rich, high-biomass habi-
tats (eutrophic). The term eutrophication, in
contrast, describes a process rather than a
trophic state. Nixon (1) proposed that eutroph-
ication be defined as “an increase in the rate of
supply of organic matter to an ecosystem.” This
definition has gained wide acceptance and may
be the most frequently used quantitative mea-
sure of eutrophication. Organic matter (OM) is
composed of many heterogenous chemical
compounds. The prevailing chemical element
in OM is carbon (C), and therefore OM is
most easily quantified in terms of units of C.
Hence, OM concentrations may be expressed
as particulate organic carbon (POC) and
dissolved organic carbon (DOC) with units of
µmol CL–1, or alternatively g Cm–3. Rates of
eutrophication are subsequently expressed in
units of C per area (or volume) per unit time. 

Although this working definition of
eutrophication is simple, the actual quantifi-
cation of rates is a formidable task and the
concentrations of many of the constituents
may be unknown for most ecosystems. In
estuaries, OM occurs in both particulate
(POM; plant debris, detritus, phytoplankton)
and dissolved forms (DOM; humics,
mucopolysaccharides, peptides, lipids). The
distinction between POM and DOM is arbi-
trary and depends on the methods used to
separate the two fractions (e.g., filtration,
ultrafiltration, centrifugation, dialysis).
Colloids and large proteins, for example, may
be included in either fraction depending on
the separation methodology. Measuring these
components requires specialized analytical
techniques such as C–H–N elemental analy-
sis, dissolved organic carbon analysis, and
ultrafiltration. In addition, the rates of supply
of different forms of OM are highly variable
in natural ecosystems and are strongly influ-
enced by the land use characteristics of the
watershed (rural, agricultural, urban, etc.),
hydrology, and climatology (6–8). 

Sources of OM can come from two major
pathways (1,6). Allochthonous OM originates
outside the estuary and is transported into the
estuary either from watershed runoff and
riverine inflow (usually the primary source) or
from coastal waters through tidal inlets (usu-
ally less important). Autochthonous OM is
generated within the system, mostly through
photosynthesis by primary producers or by
benthic regeneration of OM. In estuarine
habitats, the dominant primary producers are
phytoplankton, benthic microalgae, epiphytes,
seagrasses, and other submerged aquatic vege-
tation. Primary productivity, measured by
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either 14CO2 uptake or O2 evolution methods
for determining photosynthetic rates, is fairly
well known for many estuaries. For a few select
estuaries, rates of photosynthesis and estimates
of primary production have been recorded
routinely for several decades and offer useful
databases for assessing long-term trends in
trophic state. Using the known (or estimated)
annual organic C supply (in units of g C m–2

y–1), the trophic status of an estuary can be cat-
egorized as oligotrophic (<100), mesotrophic
(100–300), eutrophic (300–500), or hyper-
trophic (>500) (1). By definition, this annual
estimate should include both allochthonous
and autochthonous OM inputs. However, in
practice, most estuaries are classified solely on
estimates of the autochthonous primary
production of phytoplankton.

DOC and POC

Dissolved organic carbon, the major compo-
nent in DOM, is one of the largest organic
carbon pools on earth and plays a central role
in the biogeochemistry in estuarine, coastal,
and oceanic environments (7). This broad
class of compounds, although present in high
concentrations in most estuaries, is usually
not considered in most OM budget calcula-
tions; nonetheless, it is a large source of OM
for estuaries. In Gulf of Mexico estuaries, for
example, DOC fluxes range from 10 to more
than 300 kilotons C y–1 (Table 2) (8). DOC
is a mixture of a range of sizes of organic
molecules, that are usually characterized by
size or weight. A significant fraction of the
DOC in estuarine waters is composed of col-
loidal or macromolecular OM (9–11), which
plays an important role in the carbon cycle,
trace metal scavenging (12), and biogeochem-
ical processes (13–15). DOM sources in
coastal systems include production through
phytoplankton exudates (mucopolysaccha-
rides) or phytodetritus (16–18), inefficient
zooplankton feeding (19), fecal pellet decom-
position, sedimentary inputs through benthic
exchange (20), urban/agricultural runoff (16),
and sewage inputs. The pool of organic sub-
stances is dynamic. Some DOC can be
rapidly recycled by bacteria (21), whereas
other compounds undergo photochemical
degradation into more labile, low molecular
weight DOC that can be used directly by
some phytoplankton (22).

POC suspended in the water column of
estuaries is composed mainly of bacteria, phy-
toplankton, small zooplankton (ciliates,
rotifers, and other microheterotrophs), fecal
material (feces and pseudofeces), and decay-
ing plant material (detritus) (23–25).
Although larger invertebrates and fish are also
a form of POC, these animals are excluded
either by sample collection or filtration tech-
niques and are usually not considered in esti-
mates of POC. Likewise, surface sediments
contain many of the components listed above
that are delivered by deposition processes.
Phytoplankton POC is a major source of OM
in sediments. Under phytoplankton bloom
conditions, the growth rate of phytoplankton
species and biomass accumulation exceeds the
grazing and export rates. Under these condi-
tions, large amounts of phytoplankton C can
be deposited onto the sediment (24).
Macrophytes, such as the saltmarsh cordgrass
Spartina, seagrasses, and seaweeds can also
contribute large amounts of POC and POM
in the form of detritus (23–25). Sharp chemi-
cal gradients and redox conditions in the sedi-
ments foster high rates of microbial activity
and biogeochemical cycling (26). Aerobic
decomposition processes consume oxygen at
the sediment–water interface. When oxygen
consumption exceeds the rate of replenish-
ment (by diffusion or mixing processes), the
bottom water may become anoxic. In shallow
estuaries, wind-induced waves or tidal cur-
rents may resuspend the deposited POC as
well as the various dissolved organic and inor-
ganic degradation products. Resuspension
events can elevate nutrient concentrations in
the water column, reduce the amount of light
available for photosynthesis, and decrease the
dissolved O2 concentrations due to aerobic
decomposition of the particulate matter (20).
However, strong mixing events can rapidly
oxygenate (within hours) the entire water col-
umn and effectively remove all traces of
anoxia (except for mortalities incurred during
the anoxic event).

Causes of Eutrophication

The ultimate cause of estuarine eutrophication
is an increase in organic matter loading. This
loading is accomplished by either (or both) an

increase in the inputs of allochthonous C from
the watershed or by increased phytoplankton
and macrophyte primary production within
the estuary. In the strictest sense of the defini-
tion, all estuaries undergo eutrophication peri-
odically (27). Chronic and episodic changes in
hydrodynamics, geomorphology, and cli-
mate—including catastrophic events such as
hurricanes, floods, landslides, volcanism, and
earthquakes—are all features that influence
OM input rates. By their very nature, estuarine
ecosystems have evolved over time to buffer
themselves, and in some cases capitalize on,
these pulsing events (27). However, the eco-
logical context of eutrophication involves time
and space scales that transcend ephemeral and
seasonal events. Annual to decadal scales often
are used to assess the long-term changes in
OM loading as well as the ecosystem responses
to increased loading rates.

Although many factors influence estuarine
and coastal primary productivity, the rates of
supply of nutrients are fundamentally impor-
tant in regulating this process. In estuarine
ecosystems, nitrogen (N) is commonly the
most limiting nutrient for phytoplankton
production (1,28). Biologically available N
can occur in many dissolved organic (DON)
and inorganic (DIN) nitrogen forms.
Allochthonous N that enters from outside the
estuary is commonly referred to as new N
because it represents additional N that can be
used for phytoplankton growth and produc-
tion. In contrast, autochthonous or regener-
ated N is nitrogen that is captured and then
recycled in the estuary. 

In N-limited systems, ambient N concen-
trations govern phytoplankton growth rates
and primary productivity (29). Nutrient
acquisition is a major factor determining the
outcome of competitive interactions and phy-
toplankton community composition (i.e., the
species that make up the community) (30).
Nutrient uptake and assimilation by phyto-
plankton varies between species and N source
(31,32). Uptake rates are influenced by the
nutritional state and N-starved individuals
may take up N at higher rates (33,34). In
some species, ammonium inhibits nitrate
and/or urea uptake (35–37). An additional
source of N available to phytoplankton is in

Table 2. Estimates of dissolved organic carbon concentrations and inputs into selected Gulf of Mexico estuaries.a

River/Estuary DOC concentration (µM C) Annual DOC input (× 1010 g C/year)

Nueces/Corpus Christi, TX 560–630 0.5–0.6
San Antonio–Guadalupe, TX 330–480 0.1–0.2
Lavaca Bay, TX 830 3
Colorado, TX 650 2
Galveston Bay, TX 420–480 6.7
Sabine–Neches, TX 530 8.7
Lake Pontchartrain, LA 425–485 2.3
Mobile Bay, AL 424 ± 105 31.7 ± 7
Barataria, LA 558 4–28
Mississippi River, LA 270–330 170–209
aData compiled from Guo et al. (8).

Table 1. Broad characterization of the trophic status of
U.S. estuaries and the relative proportion of the total
estuarine surface area represented by each category.a

Eutrophic Number of Total estuarine
condition estuaries surface area (%)

High 44 40
Moderate 40 25
Low 38 35
Total 122 100
aData compiled from Bricker et al (3).
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the form of low molecular weight DON such
as urea and amino acids (38). 

Nitrogen formulations can also regulate
the cell-size distribution of phytoplankton
communities. The larger species may have the
capacity for more internal storage of nutrients
and become dominant in fluctuating nutrient
regimes (39,40). In general, smaller species
have a higher preference for NH4

+ uptake over
NO3

– than larger phytoplankton species (41).
The implication is that long-term changes in
the sources and concentrations of N com-
pounds in N-limited systems may alter both
the species composition of the phytoplankton
community and the relative size distribution
of phytoplankton cells. Therefore, prolonged
eutrophication can have cascading effects on
the composition of the phytoplankton com-
munity, food web relationships, and biogeo-
chemical cycling of impacted ecosystems.

Although N is the primary limiting nutri-
ent in most estuaries, other nutrients may be
important, especially as regulators of phyto-
plankton community composition. In some
estuaries, phosphate (PO4-

–3) can also be limit-
ing or colimiting during winter months or
when N concentrations are elevated (42,43).
Occasionally, silicate (Si), which is an essential
nutrient for diatoms, is a limiting nutrient for
diatom growth in some systems (43–45). The
Redfield ratio is used frequently to infer the
potential limiting nutrient. A stoichiometric
molar ratio of 16 N:1 P is accepted as the
“ideal” ratio for phytoplankton growth. Higher
values of the Redfield ratio are interpreted as
indicative of P limitation and, conversely, low
ratios suggest N limitation. However, direct
application of this principle is problematic for
estuarine systems. Measurements of nutrient
concentrations to infer limiting nutrients
neglect the importance of nutrient cycling rates.
Rapid regeneration of nutrients and short
turnover times, which are a known characteris-
tic of estuaries, can mask the “true” nutrient
availability and hence limitation. Furthermore,
measures of water column nutrient concentra-
tions represent what is available for use by phy-
toplankton. Large amounts of N and other
nutrients may be sequestered and stored in
biomass (i.e., POM) and therefore not consid-
ered when budgets are constructed. Nutrient
addition and dilution bioassays, in which nat-
ural samples are incubated under various
nutrient concentrations, allow the phyto-
plankton to function as bioindicators to signal
which nutrient(s) is limiting (46,47). This
experimental approach offers a direct and reli-
able assessment of the identity and relative
proportions of limiting nutrients.

Nutrient Input Sources

Nutrient input sources can be broadly
grouped into two categories. Point sources
include inputs derived from sewage outfalls,

wastewater treatment plants, industrial waste-
water, and stormwater drains. Nonpoint
sources of nutrients are primarily watershed
runoff (riverine inputs), groundwater, and
atmospheric deposition (rainfall and dryfall).
Although the nutrient concentrations from
localized, identifiable point sources are easily
regulated, more diffuse nonpoint sources are
difficult to control. In addition, numerous
surveys have shown nonpoint source loading
to be a dominant source of new N and other
nutrient inputs in many estuarine watersheds,
especially those dominated by agricultural
activities (1,44). Nonpoint nutrient sources
are therefore of major concern for most estu-
aries. Vegetated buffer zones, located along
the margin of rivers and estuaries, are fre-
quently employed as effective management
practices to control nonpoint source nutrient
inputs derived from watershed runoff.

Estuarine eutrophication is driven generally
by nonpoint sources of nutrients (48). A
regional-scale analysis of fluxes of N from the
North Atlantic coast demonstrated that non-
point sources of N exceeded sewage inputs (or
point sources) for all regions in both Europe
and North America (49). Overall sewage con-
tributed only 12% of the flux of N from
North America. Non-point sources also domi-
nated P inputs to surface waters of the United
States (50,51). Because of the effort to control
P pollution, nonpoint sources of P have grown
in relative importance since 1980 (52–54). For
the Mississippi River, sewage and industrial
point sources contribute an estimated 10%
(49) to 20% (55) of the total N flux (organic
and inorganic) and 40% of the total P flux
(55). One quarter of the N and P inputs into
the Chesapeake Bay come from wastewater
treatment plants and other point sources
(56,57). For heavily populated watersheds with
relatively small surface areas, wastewater can be
a major source of N to an estuary (58). Even in
some estuaries fed by larger watersheds, waste-
water can be the largest source of N if the
watershed is heavily polluted. Wastewater con-
tributes approximately 60% of the N inputs to

the Long Island Sound, New York, largely due
to sewage from New York City (59). 

A rapidly emerging source of nutrients to
estuarine and coastal waters is atmospheric
deposition in the form of rain (wet) and fine
particulates (dry) (60,61). This source pro-
vides diverse organic and inorganic chemical
species in both dissolved and particulate
forms. Atmospherically deposited nitrogen
(ADN) is a dynamic mixture of biologically
available dissolved inorganic (NO3

–, NO2
–,

NH4
+; DIN) and organic compounds (amino

acids, organonitrates, urea; DON) (62–65).
The combustion of fossil fuels and emissions
of agricultural and industrial N-containing
compounds into the atmosphere (as gases,
aerosols, and fine particulates) is a highly sig-
nificant and growing percentage of total N
inputs into estuarine and coastal ecosystems
(6,60,61). Current estimates of the percent-
age of total (i.e., natural + anthropogenic)
new N inputs attributed to direct ADN range
from 10 to 50%, depending on location and
relative sources (6,61,63). For many estuaries,
ADN is the single most abundant new N
source and warrants scrutiny as a key modula-
tor of eutrophication processes.

Although nutrient concentrations are usu-
ally the most common factor limiting primary
production in estuaries, physical factors may
also play a role. In systems with a high concen-
tration of suspended particulates, light penetra-
tion may be a principal limiting or colimiting
regulator (66,67) because the rate of photosyn-
thesis is a function of both light quantity (irra-
diance) and spectral distribution (light quality)
(68). Irradiance levels and light exposure of
phytoplankton are likewise determined by the
vertical mixing rate of the water column (69).

Nutrient Loading

Eutrophication of most estuaries is linked to
the rate at which nutrients (and OM) are added
to the system (Figure 1). Nutrient loading is a
generic term for which the definition varies
depending on the context in which it is used.
In a broad sense, loading is the rate of supply of
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particulate organic matter, respectively.
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a particular entity to receiving waters; it is
expressed frequently as a rate (e.g., tons N y–1).
Ecosystem responses depend on several critical
physical–chemical characteristics and processes.
Estuary size (surface area), depth, volume,
flushing rate, water residence time, tidal
exchange, vertical mixing, and stratification are
all factors that affect the transport, transforma-
tion, retention, and export of nutrients.

Although there are many methods for cal-
culating loading, the simplest approach is to
multiply the nutrient concentration (g N m–3)
by the river discharge rate (m3 s–1), groundwa-
ter flow rate (m3 s–1), or rainfall amounts (cm
m–2). The accuracy of loading rate estimations
is therefore related to the accuracy of measure-
ments of two variables: flow rate and entity
concentration. Nutrient loading rates, calcu-
lated on an annual basis, can be highly variable
from year to year (Table 3). The frequency of
the measurements becomes especially impor-
tant during episodic events that add large vol-
umes of water to the system (rainstorms,
hurricanes). During these events, nutrient and
OM loading over just a few days can exceed
the total loading for an entire year (Figures 2,
3). Although concentrations of OM or nutri-
ents may be low because of dilution by large
volumes of water, the actual loading rates may
be very high because of the total volume of
water flowing into the estuary. Unfortunately,
during extreme weather events, remote instru-
mentation (for measuring discharge rates) is
frequently damaged and field collections of
water samples for chemical analyses are post-
poned because of personnel safety concerns.
Therefore, some of the largest loading events
are frequently missed, or approximated with
low accuracy, during such periods.

The impact of nutrient loading will depend
on how quickly the inputs are transferred
through the estuary. The accumulation of OM
and nutrients in the system can be viewed con-
ceptually as the difference between inputs and
outputs (export) (Figure 1). Nutrients and OM
can be exported from the estuary by tidal flush-
ing or through microbial processes that convert
the combined form into an elemental form
(regeneration). The combined forms of N can
be converted to N2 through coupled nitrifica-
tion–denitrification (a microbially mediated
process). Ammonium, a primary decomposi-
tion product from OM, is first transformed by
microbes to nitrite (NO2

–) and then nitrate
(NO3

–) under oxic conditions (nitrification).
Under anoxic conditions, NO3

– and NO2
– can

be further transformed to nitrogen gas (N2) by
denitrification. A recent survey of 14 coastal
marine systems showed that denitrification
rates were highly variable but may remove from
3 to 100% of the total dissolved inorganic N
loading (70). Denitrification is one of the pri-
mary pathways by which excess N can be
removed from an estuary.

The export rate of OM is also a function
of the residence time of water in the estuary.
The hydraulic residence time of an estuary—
which is the time required to replace the
equivalent amount of freshwater in the estu-
ary by freshwater inputs—varies depending
on many factors, including freshwater input,
circulation, and bathymetry. Mathematically,
this phenomenon is treated as a mass-balance
calculation in which input volume is assumed
to equal output volume. A variety of methods
have been used to calculate residence times
(in units of time) and flushing rates (in units
of volume per unit of time) (71,72). One of
the simplest, but also among the least accu-
rate, is the freshwater fraction method, based
on the ratio of freshwater content of the estu-
ary and the freshwater inflow rate (73).
Another common approach, the tidal prism
method (74), is based on the volume of water
that enters the estuary over a tidal cycle and
the volume of freshwater entering over the
same period. Residence times for Gulf of

Mexico estuaries range from 1 to 350 days,
depending on the estuary (73).

Regeneration and recycling processes
within the estuary are important determi-
nants of system responses and recovery from
increased OM and nutrient loading. The
increase in primary production associated
with eutrophication will increase the concen-
trations of OM by two main mechanisms:
secretion of mucopolysaccharides by phyto-
plankton, especially under conditions of
stress, and bacterial degradation of phyto-
plankton-derived DOM and subsequent
release of DOM and nutrients. DOM (e.g.,
glucose, urea, amino acids) may contain
many of the inorganic nutrients required for
the growth and metabolism of heterotrophic
bacteria in aquatic systems (75–77). The
uptake of NH4

+, in particular, by het-
erotrophic bacteria is often significant (78).
The bacterial community may compete with
the phytoplankton for available inorganic
nutrients and, in the presence of mixotrophic

Table 3. Estimated total annual inputs from riverine sources to the Neuse River Estuary, North Carolina
(1994–1998).a

Year
Constituent 1994 1995 1996 1997 1998 Average

Particulate carbon (metric tons C) 2,492 4,137 5,228 1,842 2,564 3,253
Particulate nitrogen (metric tons N) 336 425 571 257 270 372
Nitrate (NO3

–) (metric tons N) 575 1,515 1,946 1,363 1,940 1,468
Ammonium (metric tons N) 94 159 389 87 133 172
Total DIN (metric tons N) 669 1,674 2,335 1,450 2,073 1,640
Phosphate (PO4

–3) 126 155 169 58 132 128
aData compiled from Paerl et al. (63).
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algae and/or heterotrophic flagellates (79), for
the available DOM. 

Another important process in nutrient
regeneration and recycling involves trophic
pathways. In contrast to the “bottom-up”
regulation of phytoplankton biomass and
productivity by nutrients and physical fea-
tures described above, herbivores and omni-
vores can exert “top-down” controls on
phytoplankton and other primary producers.
Inorganic N (mostly as NH4

+) is a product of
grazing by microzooplankton such as het-
erotrophic flagellates (nanoflagellates and cili-
ates) (80,81) as well as by larger zooplankton
and benthic invertebrates. Grazing of bacteria

by protozoa may be responsible for a signifi-
cant fraction of the regeneration of NH4

+ in
marine systems (78). Goldman et al. (82)
estimate that the amount of N regenerated by
heterotrophic grazing of bacteria (i.e., the
microbial loop) is about 10–50% of the bac-
terial N ingested. Therefore the microbial
loop can play an integral role in mediating
ecosystem responses to eutrophication.

Zooplankton grazers and benthic filter
feeders may consume significant amounts of
phytoplankton biomass and primary produc-
tivity in some estuaries. For example, Li and
Smayda (83) reported that, over long time
periods (1973–1990), the phytoplankton

biomass in Narragansett Bay, Rhode Island,
was controlled by zooplankton grazing.
Similarly, Lewitus et al. (84) found that
microzooplankton grazing during the summer
months in the North Inlet Estuary, South
Carolina, was an important regulator of phy-
toplankton biomass. In Fourleague Bay,
Louisiana, Dagg (85) estimated zooplankton
grazing rates that were nearly equal to the
phytoplankton standing stock in this estuary.
Therefore, the standing stock of phytoplank-
ton in the estuary can be conceptualized as the
product of a dynamic balance between bot-
tom-up and top-down control mechanisms.

Consequences of
Eutrophication
The cascading effects of anthropogenic new N
inputs on estuarine surface waters are concep-
tualized and summarized in Figure 4.
Nitrogen inputs, as well as P, Fe, Si, and other
potential rate-limiting nutrients, stimulate
phytoplankton growth and modulate commu-
nity composition. Although primary con-
sumers recycle a portion of phytoplankton C
and N, bloom events triggered by new N
loading may result in the delivery (deposition)
of phytoplankton C to the benthos. Microbial
degradation promotes bottom water anoxia,
which in turn facilitates sediment nutrient
release. Sediment nutrient release events may
further stimulate algal blooms, leading to a
positive feedback loop that perpetuates
blooms and eutrophication. This scenario is
particularly relevant in estuaries that have rela-
tively long residence times (months to years),
where feedback reactions can be important for
sustaining phytoplankton blooms throughout
the optimal growth season in the spring and
summer. Relatively long residence time and
nutrient-sensitive estuaries such as the
Chesapeake Bay in Virginia and Maryland,
the Pamlico Sound in North Carolina, Florida
Bay, and Texas lagoonal systems are suscepti-
ble to the detrimental effects of high OM
loading and nutrient input. The continued
addition of new N and OM, especially over
periods of years to decades, sustains and inten-
sifies the eutrophication cycle in estuaries. As
long as OM and nutrient inputs exceed losses,
the estuary will experience eutrophication.

In some estuaries, phytoplankton C load-
ing, especially following blooms, can produce
large-scale bottom water hypoxia (<2 mg O2
L–1) and anoxia (no detectable dissolved O2).
This phenomenon has been well documented
in many estuaries including the Neuse River in
North Carolina (63,86) and Chesapeake Bay
(87,88). Bottom-water hypoxia/anoxia results
from the interaction of excessive C loading
with several nonbiological variables, including
freshwater discharge, vertical stratification,
establishment of a salt wedge, and meteorolog-
ical conditions (primarily wind) (74,89).

Environmental Health Perspectives • VOLUME 109 | SUPPLEMENT 5 | October 2001 703

Figure 3. River discharge and dissolved inorganic nitrogen (DIN; nitrite, nitrate, ammonium) for the Neuse River
Estuary (1994–1998). Note that loading rates exhibit a regular seasonal pattern with large DIN loadings that occur
during high river discharge. Graph redrawn from Pearl et al. (63).
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Figure 4. Relationships among nutrient inputs, phytoplankton responses, and oxygen dynamics.
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Hypoxic and anoxic conditions can persist for
weeks and cover large areas in estuaries that
have relatively long water residence (weeks to
months), low flushing rates, and persistent ver-
tical stratification (63). High NH4

+ concentra-
tions usually arise from anoxic conditions (90).
The anoxic conditions inhibit nitrification and
the NH4

+ released from the sediments cannot
be nitrified to NO3

–. Benthic release of PO4
–3 is

also enhanced under low dissolved oxygen
concentrations (90). Thus, persistent anoxic
conditions may result in elevated ammonium
concentrations which are used by phytoplank-
ton that capitalize on the readily available
NH4

+. If these conditions continue, phyto-
plankton blooms may develop. The tight cou-
pling between anoxia and phytoplankton
blooms makes it difficult to assign cause and
effect relationships without careful considera-
tion of the hydrological, chemical, and biologi-
cal conditions initiating and controlling these
events. Assessments of conditions during and
following bloom events often provide little
insight into causative factors (91,92).

Phytoplankton C loading can have a direct
impact on the oxygen dynamics of estuaries.
However, nutrient and OM inputs can also
play a role in determining the predominant
species within phytoplankton communities.
The alteration of nutrient concentrations and
ratios may change the phytoplankton commu-
nity composition significantly, with subse-
quent cascading impacts at higher trophic
levels of the food web (Figure 4) (93). In estu-
arine and coastal waters, phytoplankton are
exposed to a range of N compounds in vary-
ing ratios and supply rates, depending on
location relative to N inputs. Previous work
has shown that phytoplankton species exhibit
different growth responses to N sources (94).
In particular, nitrate (NO3

–) and ammonium
(NH4

+) uptake rates vary spatially and season-
ally, suggesting differential community
responses to the N sources (95). These
species-specific responses may play an impor-
tant role in structuring natural phytoplankton
communities (41) and subsequent biogeo-
chemical alterations (e.g., C and N cycles). 

Phytoplankton-mediated assimilation and
fate of inorganic nutrients and organic matter
(both POM and DOM) are significant com-
ponents of nutrient transformations in estuar-
ine systems (90,96,97). Microalgal species
composition and abundance are intimately
linked to higher trophic levels through prefer-
ential grazing by herbivores (zooplankton,
suspension feeders, deposit feeders) (98–101).
The implication for food webs is that some
phytoplankton blooms may be ungrazed and
deposited in surficial sediments, providing
labile carbon substrates for benthic respira-
tion, hypoxia, and anoxia following large
blooms. Changes in the phytoplankton
species that support primary consumers and

predators may result in the loss of available
food for these consumers. The loss of the type
(phytoplankton species) and abundance of
food resources could result in the displace-
ment of motile species such as fish and crabs
to other, more suitable habitats. Species that
cannot search for food in other areas (e.g.,
oysters, clams, benthic infauna, zooplankton,
etc.) may suffer reduced reproductive fitness
and significant mortalities due to starvation.
Many important commercial and recreational
fisheries are among groups that may be nega-
tively impacted (1,2,48).

The development of harmful algal blooms
(HABs) is a possible consequence of eutrophi-
cation (2). Limiting nutrients, such as N, P,
and Si, foster the growth of most photosyn-
thetic phytoplankton species, and therefore
high nutrient concentrations may produce
algal blooms (28,42,45,48). Some of these
blooms may be composed of toxic species (2).
Perhaps a more interesting aspect of eutrophi-
cation is that DOM, in addition to dissolved
inorganic nutrients, may foster the growth of
HAB species. Several studies have shown that
OM can stimulate the growth of marine
dinoflagellates (81,102–104). Inputs of terres-
trially derived DOM, particularly humic sub-
stances, have been implicated as important
factors in blooms of Gymnodinium breve off
Florida (105) and Alexandrium tamarense in
the St. Lawrence Estuary in Canada (106).
Blooms of toxin-producing Gymnodinium
catenatum in southeast Tasmanian waters
appear to be preceded by a rainfall “trigger”
(107) with an associated influx of DOM from
land runoff. Doblin et al. (108) showed that
both the growth rate and biomass of G. catena-
tum increased when cultures were supple-
mented with a combination of humic acid and
naturally collected DOM. They concluded the
effect was manifested as a result of an indirect
effect of DOM on micronutrient availability
(Se) and/or N and P. Rates of uptake of DON
compounds by the brown tide organism
Aureococcus anophagefferens off Long Island
exceed rates of NH4

+ uptake (109). Blooms of a
similar species (Aureoumbra lagunensis) are
prevalent in some Texas estuaries (110).
Dinoflagellates (G. breve and G. sanguineum)
are among the major HAB formers in the Gulf
of Mexico (111). The heterotrophic dinofla-
gellate Pfiesteria piscicida Steidinger &
Burkholder and related Pfiesteria-like dinofla-
gellates reportedly use organic compounds
(112,113), but the primary mode of nutrition
for the nontoxic flagellated zoospore stage
seems to be other phytoplankton species
(113,114). Even if shifts in phytoplankton
community composition do not result in
HABs, they can still have cascading effects that
ultimately result in major changes in the
trophodynamics and food webs in essential
nursery habitats. Economically important

resources such as fisheries, recreation, and
tourism could be impacted negatively and
irreparably by these ecosystem alterations
(1,2,48). 

Another major group of toxic/nuisance
phytoplankton that occurs in estuaries is
cyanobacteria. Growing frequencies and geo-
graphic expansion of toxic cyanobacterial
blooms appears to be a worldwide phe-
nomenon (4,115). The combined effect of
increased water residence time and growing
pollutant inputs has led to longer exposure
periods of opportunistic microorganisms to
growth-promoting conditions. Bloom-
forming cyanobacteria are often superior
competitors under these conditions and fre-
quently thrive in nutrient-enriched waters
(116). For non–N2-fixing genera such as
Microcystis, Oscillatoria, or Lyngbya, both N
and P are important. Phosphate alone can
stimulate the growth of N2-fixing genera such
as Anabaeana, Anabaenopsis, Aphanizomenon,
Cylindrospermopsis) (117–119). Riverine and
estuarine waters in the southeastern United
States tend to exhibit nutrient-enriched,
N-limited (low N:P ratios) conditions, favor-
ing cyanobacterial (especially N2-fixing genera)
dominance (120). Many cyanobacterial bloom
formers also prefer OM-enriched conditions
(117), including OM originating from urban
wastewater, agricultural runoff, forest humics,
and soil erosion products (118). Substantial
individuality exists among cyanobacterial nui-
sance taxa in terms of their abilities to exploit
these environmental variables.

Eutrophication Management

Although OM is the currency used to measure
eutrophication, the mitigation of the effects of
eutrophication involves the regulation of inor-
ganic nutrient (primarily N and P) inputs into
receiving waters. These nutrients may be
delivered to the estuary as dissolved inorganic
ions or bound to OM and later released as the
OM is decomposed by microbial processes.
Without question, excessive nutrient inputs
lead to estuarine eutrophication. There is little
doubt that increases in supply rates and
changes in chemical forms and ratios of
growth limiting nutrients play roles in
regional and global expansion of blooms.
While nutrient enrichment can be invoked for
at least partially driving HAB expansion,
extrapolating specific local examples to other
estuaries, as well as regional coastal scales is
often confounded by the complicated inter-
play of physical, chemical, and biotic controls
on bloom dynamics. Invariably, even nearby
estuaries do not exhibit identical physical (res-
idence time, stratification, advection), chemi-
cal (specific nutrient supply and cycling rates),
and biological (community composition,
microbial associations, grazing) characteristics.
Therefore ecosystem sensitivity and response
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to enhanced nutrient loading may manifest
itself quite differently in such systems, often
leading to contrasting trophic states, degrees
of ecosystem resiliency to change, desirability
of habitats, and resources.

From a water quality management per-
spective, understanding the mechanistic link-
ages in space and time between man-made
alterations of hydrologic and nutrient regimes
in the watershed is of critical importance for
identifying growth- and bloom-regulating
factors that may be used for developing short-
and long-term control strategies to slow
eutrophication (121,122). The first step
involves the identification of relevant phyto-
plankton taxa, characterizing environmental
controls on their growth and toxin-producing
characteristics, and incorporating this infor-
mation in hydrodynamic and nutrient load-
ing budgets depicting ecosystem physical
chemical variability and extremes (88,89,
123,124). When these features are known, we
can begin to develop realistic and effective
management alternatives aimed at controlling
algal bloom development and expansion.
Arguably, appropriately scaled and parame-
terized nutrient and hydrologic controls are
the only realistic options for controlling
bloom, toxicity problems, and eutrophication
in estuarine ecosystems.
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