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Nitric oxide (NO) is a free radical that is
endogenously produced by the enzyme NO
synthase (NOS), which catalyzes the oxida-
tion of L-arginine, yielding NO and L-cit-
rulline (1,2). NO regulates various cell
functions via cyclic GMP-dependent and
-independent mechanisms (3,4), and these
effects are critical in the physiological regula-
tion of nervous, immune, and vascular sys-
tems. It is important to note, however, that
excessive or inappropriate formation of NO
might cause deleterious effects relevant in
various human pathologies such as acute
endotoxemia, neurological disorders, athero-
sclerosis, and ischemia/reperfusion (3,5).
Although NO can be directly detrimental to
target cells, most of its toxic effects appear to
be mediated by peroxynitrite, the coupling
product of NO and superoxides (5–7). The
cytotoxic potential of peroxynitrite has long
been attributed to its ability to react with all
the major classes of biomolecules (8–11).
Indeed, peroxynitrite causes an array of
effects, including lipid peroxidation (12),
protein nitration and nitrosylation (13),
DNA damage (9,10,14), and oxidation of
thiols (15), which most likely represent
upstream events leading to inhibition of
mitochondrial respiration (5,14,16,17), mito-
chondrial permeability transition (18), and/or
other dysfunctions promoting cell death.

Thus, unraveling the exact role of each of
the lesions generated by peroxynitrite in the
context of cell death is not an easy task, and
as a consequence, the ensuing lethal response
has traditionally been viewed as the result of a
stochastic process of cell damage.

An obvious consequence of the above
premise is that the strategies to mitigate the
deleterious effects mediated by peroxynitrite
are restricted to the use of scavengers of this
species (19,20) and to agents inhibiting its

formation (e.g., superoxide dismutase
mimetics or NOS inhibitors) (20–22), which
all present some important limitations when
used in vivo.

It is important to note, however, that a
paradigm shift has recently been occurring
whereby reactive nitrogen species are appreci-
ated as signaling molecules (23,24). The iden-
tification of events triggered by peroxynitrite
and leading to cytotoxicity would therefore
allow the development of cytoprotective strate-
gies targeted downstream to peroxynitrite.

Cell Signaling Induced 
by Peroxynitrite
Accumulating evidence suggests that various
reactive oxygen and nitrogen species, includ-
ing peroxynitrite, serve several physiological
or pathological functions. In particular, per-
oxynitrite was recently shown to upregulate
src tyrosine kinases (25) as well as the phos-
phoinositide 3-kinase Akt pathway (26). A
large number of studies investigated the
effects of peroxynitrite on mitogen-activated
protein kinases (27–30), a family of
serine/threonine kinases that regulate an array
of cellular activities. It was found that the
three major subfamilies, extracellular signal-
regulated kinases, p38 mitogen–activated
protein kinases, and c-Jun NH2-terminal
kinases, are activated by peroxynitrite.
Because mitogen-activated protein kinases,
p38 mitogen–activated protein kinase and
c-Jun NH2-terminal kinase in particular, are
implicated in apoptosis, the possibility exists
that these responses play a major role in the
process of peroxynitrite-induced cell death.

We recently reported that both endoge-
nous and exogenous peroxynitrite effectively
promotes a release of arachidonic acid medi-
ated by stimulation of phospholipase A2
(PLA2) activity in PC12 cells (31). This

response does not appear to be directly trig-
gered by peroxynitrite but rather seems to be
mediated by reactive oxygen species generated
in the respiratory chain, most likely at the level
of complex III. Additional studies revealed that
superoxide dismutase mimetic agents sup-
pressed both the release of arachidonic acid
and the oxidation of a superoxide-sensitive flu-
orescent probe mediated by peroxynitrite.
Because under the same conditions the oxida-
tion of a hydrogen peroxide–sensitive fluores-
cent probe was unchanged, it appears that
superoxides play a pivotal role in peroxynitrite-
dependent activation of PLA2. These results
therefore suggest that downstream products of
the PLA2 pathway may play a role in the lethal
response evoked by peroxynitrite.

Cell Death Induced 
by Peroxynitrite
Apoptosis is the most frequently reported
mode of peroxynitrite-induced cell death
(32–40); other studies, however, have shown
that peroxynitrite leads to necrosis (41) or to
both modes of cell death (42,43). These dis-
crepancies are a possible consequence of dif-
ferences in the peroxynitrite concentrations
used and/or mode of peroxynitrite adminis-
tration (e.g., as a precursor or as a bolus).
Additional factors that might affect the lethal
response evoked by peroxynitrite are the com-
position and the pH of the solutions in which
the cells are treated. Indeed, although specific
components of the extracellular milieu can
interact with peroxynitrite, changes in the pH
from physiological to alkaline values can
increase the half-life of the oxidant, thus pro-
longing its activity toward target cells
(44,45). Several studies have used treatment
conditions at pH values ranging between 8.6
and 9 (32,37,40). Finally, an important fac-
tor to consider is the cell type. Astrocytes
were reported to be more resistant than neu-
rons to the toxic effects mediated by peroxy-
nitrite (5,16), and it is generally believed that
cells that produce large amounts of NO after
stimulation may have some resistance mecha-
nism against their own peroxynitrite. Thus, it
appears that the toxic response and mode of
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cell death mediated by peroxynitrite vary
in different cell types and under different
treatment conditions.

We recently reported experimental evi-
dence consistent with the notion that increas-
ing concentrations of peroxynitrite fail to
induce apoptosis in U937 cells (46). A pro-
portion of these cells, however, were found to
die by necrosis via a mitochondrial perme-
ability transition–dependent mechanism.
This response, and the ensuing cell lysis, was
extremely rapid, and the cells that survived
this treatment did not undergo delayed apop-
tosis (or necrosis) but rather proliferated with
kinetics superimposable on those observed in
untreated cells. Thus, an all-or-nothing
mechanism appears to regulate the fate of
U937 cells challenged with peroxynitrite:
some cells undergo an extremely fast necrotic
response, whereas the remaining cells are fully
viable and capable of performing energy-
demanding functions such as proliferation.

Similar results were obtained in recent
studies from our laboratory using PC12 cells
exposed to a short-chain lipid hydroperoxide
analog, tert-butyl hydroperoxide. Under these
conditions, endogenous peroxynitrite was
found to mediate various effects, including
DNA single-strand breakage (47). Cell death
induced by the hydroperoxide also appeared
to be mediated by peroxynitrite because it
was markedly reduced by NOS inhibitors as
well as by NO and peroxynitrite scavengers
(48). Furthermore, morphological and bio-
chemical analyses revealed that the mode of
cell death was necrosis and that this response
was causally linked to peroxidation of mem-
brane lipids and mitochondrial permeability
transition (48). 

Direct versus Indirect Effects 
of Peroxynitrite
Peroxynitrite is a highly reactive species and is
commonly thought to interact with, and
damage, various biomolecules. It is also well
established that peroxynitrite is extremely
short-lived at physiological pH values, and
the formation of 3-nitrotyrosine by peroxyni-
trite reaction with tyrosyl residues is often
used as a stable marker. An additional
approach to indirectly measure peroxynitrite
formation involves the use of the fluorescent
probe dihydrorhodamine 123 (DHR), which
accumulates in mitochondria when oxidized
by various reactive species, including perox-
ynitrite. The ability of peroxynitrite to oxi-
dize DHR is very well established, and
inhibition of the DHR fluorescence response
by NOS inhibitors or NO or peroxynitrite
scavengers is commonly interpreted as a clear-
cut indication of peroxynitrite formation. We
recently reported (49), however, that this was
not the case in PC12 cells treated with either
exogenous peroxynitrite or tert-butyl

hydroperoxide, an agent resulting in the for-
mation of endogenous peroxynitrite, as
described above. Under these conditions,
DHR was not directly oxidized by peroxyni-
trite; rather, this response appeared to be medi-
ated by peroxynitrite-dependent activation of
PLA2. The following lines of evidence sup-
ported this inference: a) the DHR fluorescence
response elicited by tert-butyl hydroperoxide
was blunted by low concentrations of two
structurally unrelated PLA2 inhibitors; b) low
levels of authentic peroxynitrite restored the
DHR fluorescence response in NOS-inhibited
cells but not in PLA2-inhibited cells, whereas
reagent arachidonic acid was effective under
both conditions; c) the DHR fluorescence
response induced by authentic peroxynitrite
was also blunted by PLA2 inhibitors and
restored upon addition of reagent arachidonic
acid. We therefore conclude that endogenous,
or exogenous, peroxynitrite does not directly
oxidize DHR in intact cells. Rather, peroxy-
nitrite appears to act as a signaling molecule
promoting release of arachidonic acid, which
in turn leads to formation of species causing
oxidation of DHR.

Thus, a messenger function of peroxyni-
trite may not be responsible only for DHR
oxidation because it can be expected that
downstream products of the PLA2 pathway
such as arachidonic acid metabolites, including
an array of eicosanoids as well as reactive oxy-
gen species, mediate deleterious effects with a
potential role in the ensuing lethal response.

The results of a study currently in
progress demonstrate that activation of the
PLA2 pathway mediated by endogenous per-
oxynitrite is a critical event leading to mito-
chondrial dysfunction that is causally linked
to necrotic PC12 cell death. Indeed, we
found that the peroxynitrite-dependent
lethal response was blunted by low concen-
trations of two structurally unrelated PLA2
inhibitors. These effects were downstream to
NO and peroxynitrite formation because
each of these inhibitors failed to inhibit NO
formation and nitration of tyrosine. In addi-
tion, nanomolar levels of arachidonic acid
restored the lethal response in NOS- or
PLA2-inhibited cells. Finally, the decline in
cellular ATP mediated by endogenous per-
oxynitrite was prevented by PLA2 inhibitors,
and the concomitant addition of arachidonic
acid reversed this effect. Thus, these results
lead to the identification of a cytoprotective
strategy to counteract the deleterious effects
mediated by peroxynitrite. This conclusion
has a number of important implications
because it may provide the basis for a novel
therapeutic approach for an array of
pathologies in which peroxynitrite cytotoxic-
ity plays a critical role. The conventional
strategies to counteract the deleterious
effects mediated by peroxynitrite, based on

scavenging or preventing its formation (20),
could be supplemented by the use of phar-
macologic inhibitors of the signaling path-
way involved in the peroxynitrite-dependent
lethal response.

It is important, however, to emphasize
that our findings were obtained using a spe-
cific toxicity paradigm, and further studies are
necessary to determine the generality of the
observed effects. It is likely that highly reactive
molecules such as peroxynitrite and other
reactive oxygen species have the ability to pro-
mote cell death by multiple and eventually
synergistic mechanisms. For obvious reasons,
the deleterious effects mediated by these
species will be largely influenced by both their
concentration and the site of formation. This
implies that different mechanisms may lead to
toxicity after exposure to a given toxic agent in
various cell types expressing constitutive NOS
activity in different amounts and locations.

Thus, although our results identify an
important toxicological role for the PLA2
pathway stimulated by endogenous peroxyni-
trite, future studies should investigate whether
the same mechanism operates in additional
biological settings, including cells in primary
culture as well as experimental animals.
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