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Cisplatin is an effective anticancer drug
widely used in the treatment of several
human carcinomas (1–4). The mechanism of
anticancer activity involves formation of plat-
inum–DNA adducts that are capable of
inhibiting DNA and RNA synthesis (5–16)
and inducing programmed cell death
(17,18). Cisplatin binds preferentially to the
N7 position of purine residues. The mono-
functional adduct subsequently closes to a
bifunctional adduct by linking a second
purine that can be either of the same strand
or of the opposite strand (19). There is gen-
eral consensus that the antitumor efficacy of
cisplatin is associated with the formation of
DNA 1,2-intrastrand d(GpG) or d(ApG)
cross-links (5–16). The 1,2-intrastrand cross-
links locally unwind and bend double-
stranded DNA toward the major groove
(14,20,21), and the disturbance of DNA sec-
ondary structure seems to be the ultimate
reason for inhibition of DNA replication
and/or transcription and for triggering
apoptotic cell death (22,23).

While the anionic-leaving ligands are
likely to play a role in determining the trans-
port of the complex throughout the living
organism, the nonexchangeable aminic
ligands play an important role in the
drug–DNA adduct formation and stereo-
chemistry. Thus, it is of great interest to see
how different configurations of these non-
leaving ligands can influence the DNA-bind-
ing properties and consequently the biological
activity of platinum complexes.

In this review we focus on platinum com-
plexes with enantiomeric amine ligands.
Because double-helical DNA has a chiral
structure, complexes with enantiomeric ancil-
lary ligands should form diastereomeric
adducts with DNA.

Platinum Complexes with
Chiral Monoamines
The activity of cis-PtA2X2 compounds
(A = aminic ligand, X = anionic ligand)
decreases in the order A = NH3 > RNH2 >
R2NH (24). Therefore, most investigations
were restricted to platinum complexes with
chiral primary amines. Platinum complexes
with monodentate enantiomeric primary
amines do not show significant differences in
their biological activity (25). One compound
of this class, the platinum complex with
phenethylamine, is shown in Figure 1.

A possible explanation for this result is
that the free rotations of the chiral substituent
around the carbon–nitrogen (C—N) bond
and of the amine around the platinum–nitro-
gen (Pt—N) bond average the steric effect
due to the ligand asymmetry and offset any
stereospecificity in the interaction with
biological substrates.

Platinum Complexes with
Chiral N-Substituted
Ethylenediamines
The degree of rotational freedom in a complex
of the type described in the previous section
can be reduced by bridging together the two
nitrogens of the cis amines. A ligand that ful-
fills these requisites is ethambutol. This mole-
cule was already used in medicine as an
anti-tuberculosis, and very interestingly, only
the S,S isomer was found very active; the R,R
enantiomer was completely inactive (26,27).
Starting with an isomerically pure ligand,
coordination to platinum leads to formation
of different isomers. The reason for this is
that, upon coordination to platinum, the
nitrogens also become stable chiral centers and
can have either R or S configuration. The two
enantiomers shown in Figure 2 were isolated

in the pure form, with biological activities that
could be compared.

It is interesting to note that the bridging of
the two nitrogens with the ethylene chain not
only blocks the rotation around the Pt—N
bonds but also hinders, to some extent, the
rotation of the asymmetric 1-butanol-2-yl radi-
cal with respect to the C—N bond. This was
revealed by the 1H nuclear magnetic resonance
showing a remarkable diastereotopic splitting
of the methylene protons of the CH2Me
groups adjacent to the asymmetric carbons.
Therefore, the average orientation of the 1-
butanol-2-yl radicals is such that the ethyl
residues are hindered in their rotation around
the carbon–ethyl bond (28).

The much less rotational freedom of the
asymmetric substituents in these complexes
leads to a different biological activity for the
two enantiomers. Indeed, enantiomer a is less
mutagenic and less toxic than enantiomer b
but, in contrast, exhibits good antitumor
activity toward P388 sarcoma and Lewis lung
carcinoma (29). Evidently, a can couple
reduced mutagenic activity with good antitu-
mor activity, and this appears to be a rather
noteworthy result.

In the compound just described, the con-
figuration at the nitrogen atoms was stable at
neutral pH for days at room temperature;
however, at higher temperatures and/or more
basic pH, isomerization can take place. This
phenomenon has prevented further studies
on complexes of this class.

Platinum Complexes with
Chiral C-Substituted
Ethylenediamines
The complication arising from isomerization
at the nitrogen atoms could be avoided by
using chiral diamines in which the chiral car-
bon(s) are inserted in the organic chain bridg-
ing the two nitrogens. In this way the steric
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rigidity of the nonleaving ligands is further
increased because the chiral groups are no
longer free to rotate around the C—N bonds,
as is the case of the compound considered in
the preceding section.

Kidani and co-workers have reported that
platinum complexes with l,2-diaminocyclo-
hexane, having different configurations at the
two chiral carbons bridging the two nitrogens,
had biological activities dependent on the chi-
rality of the diamine ligand (30–33). Although
the isomers with R,R and S,S configurations at
the asymmetric carbons produce the same type
of intra- and interstrand cross-links (34), the
biological activity of the two enantiomers is
different, and the R,R enantiomer exhibits
higher antitumor activity and lower muta-
genicity than the S,S isomer (35). Chiral
diamines other than 1,2-diaminocyclohexane
have also been investigated (36–40). 

A comparative study of three strictly related
platinum complexes with chiral diamines
[PtCl2(N—N), where N—N = 1,2-diamino-
propane (1,2-DAP), 2,3-diaminobutane
(2,3-DAB), or 1,2-diaminocyclohexane (1,2-
DACH)] has been also carried out by some of
us (Figure 3). The biological tests, in vitro, have
revealed a marked difference among isomers.
For instance, the mutagenic activity, which is
strictly related to the interaction of the drug
with DNA, is even 10 times greater in one iso-
mer relative to the corresponding enantiomer.
In all cases examined the S,S isomer was by far
the most mutagenic, indicating that the differ-
ent isomers give adducts with DNA that can be
discriminated by the enzymatic systems
involved in mutagenesis (41).

The conclusions based on mutagenic data
concerning the relevance of the configuration
of nonleaving ligands in platinated DNA

have been confirmed by the studies of inhibi-
tion of restriction enzyme activity. The extent
of inhibition of the enzymes cutting at gua-
nine (G)-rich sites is significantly different for
the different isomers, the R,R form being
more active than the others.

As a result of the markedly different
behavior of the two enantiomeric forms, only
the R,R enantiomer of [Pt(DACH)(oxalato)]
(oxaliplatin) has been approved for clinical
use (42). Hence, studies have mainly focused
on DNA modifications and biological prop-
erties of enantiomeric DACH and closely
related DAB complexes (43–47).

In the next section we concentrate mainly
on a deeper insight into the biological behavior
of the latter two types of complexes. However,
before concluding this section, we consider
nonleaving ligands of the type just described
but having also an alkyl substituent on each
coordinated nitrogen [e.g., N,N´-Me2DAB
and bipiperidine; Figure 4). Although these
compounds are less effective as antitumor
drugs because the coordinated nitrogens are no
longer primary amine groups (24), they are
able to exert steric control on the coordination
of nucleotides with platinum. This phenome-
non has allowed us to unravel details of the
dynamics and conformations of the 1,2-
intrastrand cross-links that, as already pointed
out, are the major lesions formed by cisplatin-
type complexes on DNA (48–52).

Biochemistry of Platinum
Complexes with
Enantiomeric DACH and
DAB Ligands

The recently reported crystal structure of 1,2-
GG intrastrand cross-link formed by oxaliplatin
on a DNA dodecanucleotide duplex has shown
that the overall geometry is similar to that of cis-
platin. However, a novel feature of this structure
is the presence of a hydrogen bond between the
pseudoequatorial N—H hydrogen atom of the
R,R-DACH ligand and the O6 atom of the
cross-linked G in 3´ position (43,44). This
finding has confirmed the importance of chiral-
ity in mediating the interaction between cis-
platin analogs containing enantiomeric amine
ligands and double-helical DNA.

We have shown in a recent work (46) that
1,2-GG intrastrand cross-links of R,R- and
S,S-DAB platinum complexes (Figure 3) not
only destabilize DNA differently but also bend
and unwind DNA to a different extent. 

DNA containing platinum adducts that
induce stable directional bending and unwind-
ing attracts various damaged-DNA–binding
proteins such as those containing the high-
mobility group (HMG) domain (53–56). A
recent report (45) has demonstrated that
HMGB1 and TATA binding proteins recog-
nize 1,2-GG intrastrand cross-links formed by
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R,R-DACH–platinum(II) species. The affinity
of these proteins to 1,2-GG intrastrand
cross-links of cisplatin depends on several fac-
tors, and the efficiency with which the adducts
thermodynamically destabilize DNA is among
the most important. The binding of these pro-
teins has been postulated to mediate the antitu-
mor properties of the platinum drugs (55,56).
In addition, several reports (57–59) have
demonstrated that intrastrand cross-links of cis-
platin and its direct analogs are removed from
DNA during nucleotide excision repair (NER)
reactions and that NER is also an important
mechanism contributing to cisplatin resistance.

To shed light on how chirality at the car-
bon atoms of the carrier ligand in cisplatin
analogs can affect processing its major adducts
in cells, the studies have been performed to
demonstrate how HMGB1 box proteins and
the NER differentiate between major DNA
adducts of cisplatin analogs having enan-
tiomeric nonleaving ligands during in vitro
reactions (47). For these studies the R,R- and
S,S-DAB derivatives were chosen because the
effect of chirality at the carbon atoms on the
biological activity of these compounds was
most pronounced (41). Electrophoretic mobil-
ity shift assays have shown that domains A and
B of HMGB1 protein bind to the cross-links
generated by R,R-DAB–platinum(II) with a
higher affinity than to those generated by the
S,S-DAB–platinum(II) enantiomer (Figure 5).
The cross-links of both enantiomers are
removed by NER with a similar efficiency; how-
ever, HMGB1 protein significantly inhibits
removal of R,R-DAB–platinum(II) adducts, but
not those of the S,S-DAB–platinum(II) enan-
tiomer (Figure 6). Therefore, HMG domain
proteins discriminate among different confor-
mations of the 1,2-GG intrastrand cross-links of
the two enantiomeric analogs of cisplatin, which
results in different NER of these cross-links.

The results obtained with DAB–
platinum(II) complexes apply also to the
DACH–platinum(II) species (60). They imply
that the higher affinity of HMGB1 proteins to
an R,R-DACH–platinum(II) cross-link than to
an S,S-DACH–platinum(II) cross-link cou-
pled with a greater error-prone NER repair of
the S,S-DACH–platinum(II) cross-links could
explain both the better antitumor activity of
the R,R form of oxaliplatin and the greater
mutagenic activity of the S,S-enantiomer.

Conclusions
Platinum complexes containing enantiomeric
ligands pose an interesting theme to investigate
structure–pharmacological activity relationship
of platinum compounds. The pharmacologi-
cally relevant target of platinum compounds is
DNA. The major adducts are the 1,2-GG and
1,2-AG intrastrand cross-links. Recognition
and repair of these lesions by DNA binding
proteins are crucial steps in the cellular response

to the drug treatment. The bulk of the results
demonstrate that the different stereochemistry
of these cross-links is responsible for their dif-
ferent affinities for HMG box proteins and,
consequently, for the different NER of these
lesions. It is possible to conclude that DNA
cross-links of platinum complexes with enan-
tiomeric carrier ligands not only can exhibit dif-
ferent conformational features but also can be
processed differently by the cellular machinery
as a consequence of these conformational

differences. However, the conformational free-
dom of the enantiomeric platinum compounds
has to be limited, so a relevant chiral discrimi-
nation might play a role in the biological activ-
ity. This was the case for chiral centers inserted
in the chelating chain of a diamine.

The results reviewed in this article expand
the general knowledge of how the stereochem-
istry of the carrier amine ligands of antitumor
platinum compounds can influence some cru-
cial processes underlying their toxicity toward
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cancer cells and can provide a rational basis for
the design of new platinum antitumor drugs.
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