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Understanding toxicant effects on epidermal
keratinocytes is critical because disturbances
in keratinocyte function are responsible for
the pathogenesis of many skin diseases such
as psoriasis and skin cancer (1,2). Skin cancer
is a common manifestation of arsenic expo-
sure, and keratinocytes are a primary target of
arsenic in vivo (3–9). Both primary and
immortalized keratinocytes have been used in
studies examining arsenic-induced skin cancer
and epidermal toxicity. However, data
derived from experiments using immortalized
keratinocytes may be complicated by clonal
variability, variations between passage, altered
antioxidant complement, immortalization-
specific gene expression, and alterations in
differentiation capacity—variables not
encountered to the same degree with primary
keratinocytes.

Mechanisms proposed to be involved in
the development of arsenic-induced cancer
in skin and other tissues include altered
DNA methylation (10–12), DNA repair/
replication disturbances (13,14), clastogenic-
ity and aneuploidy (15), dysregulated cell
proliferation (10,16), and generation of
oxidative stress (17,18). Arsenic-induced
oxidative stress or redox disturbance
(17,19–21) contributes to DNA damage
(22–24), chromosomal aberrations (25), and
protein expression alterations (22,26).
However, its role in arsenic carcinogenesis is
not completely understood. Glutathione

(GSH)-dependent enzymes are not signifi-
cantly sensitive to arsenicals (27), but these
enzymes play a significant role in attenuat-
ing the damaging effects of oxidative stress.
It is conceivable that short- and long-term
changes in GSH-dependent and stress-
related mRNA/protein expression, modu-
lated by arsenic, could abnormally affect
cellular viability, phase I/II metabolism, and
other GSH-mediated regulatory processes,
and could be important in the development
of arsenic-induced cancer.

This study was undertaken to determine
the merits of using normal human epidermal
keratinocytes (NHEK) and immortalized
human (HaCaT) and mouse (HEL30) ker-
atinocytes when examining effects of arsenite
that may contribute to the development of
cancer. Specifically, this study is designed to
evaluate the effect of short-term arsenite
exposure on keratinocyte viability under
standard culture conditions and examine the
ability of arsenite to modulate stress/redox-
related gene expression in NHEK and
HaCaT and HEL30 keratinocytes. It is pro-
posed that NHEK display increased sensitiv-
ity to the gene-modulating effects of arsenite
compared with HaCaT and HEL30 ker-
atinocytes. The resulting data indicate that
arsenite affects cellular viability in NHEK
and HaCaT and HEL30 keratinocytes to a
similar degree. However, arsenite elevates
NHEK stress-related gene expression above

that seen in HaCaT and HEL30 keratino-
cytes. This study will help define the impor-
tance of using primary or immortal
keratinocytes in experiments designed to elu-
cidate the toxic and carcinogenic mode of
action of arsenic in skin, as well as allow for
the selection of appropriate in vitro models to
evaluate dermatotoxicity.

Materials and Methods
Media and Reagents

Culture media for immortalized keratinocyte
cultures. Rich media for mammalian cell cul-
ture (RPMI-1640), fetal calf serum (FCS),
and L-glutamine were purchased from Life
Technologies (Rockville, MD, USA).

Culture media for normal human
keratinocytes. Keratinocyte basal medium
(KBM-2) and growth supplements were
obtained from BioWhittaker/Clonetics
(Walkersville, MD, USA). Trypsin–EDTA,
penicillin, streptomycin, and neutral red solu-
tion were obtained from Life Technologies.
Sodium-m-arsenite and L-buthionine-[S,R]-
sulfoximine (BSO) were obtained from Sigma
Chemical Company (St. Louis, MO, USA).

Tissue Culture
Adult NHEK (BioWhittaker/Clonetics) were
cultured (passage ≤ 6) in low calcium concen-
tration (0.15 mM) KBM-2 supplemented with
epidermal growth factor (5 ng/mL) and bovine
pituitary extract (50 mg/mL). The sponta-
neously immortalized human keratinocyte cell
line HaCaT was donated by H. Hamadeh
(National Institute of Environmental Health
Sciences, Research Triangle Park, NC, USA)
and was cultured in RPMI-1640, penicillin
50,000 UI/L, streptomycin 50 mg/L, and
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Arsenic is a carcinogen that poses a significant health risk in humans. Based on evidence that
arsenic has differential effects on human, rodent, normal, and transformed cells, these studies
addressed the relative merits of using normal human epidermal keratinocytes (NHEK) and
immortalized human (HaCaT) and mouse (HEL30) keratinocytes when examining stress-
induced gene expression that may contribute to carcinogenesis. We hypothesize that
redox–related gene expression is differentially modulated by arsenic in normal versus immortal-
ized keratinocytes. To test the hypothesis, we exposed keratinocytes to sodium arsenite for 4 or
24 hr, at which time serine threonine kinase-25 (stk25) and nicotine adenine dinucleotide phos-
phate [nad(p)h] quinone oxidoreductase gene expression were measured. The effect of glutathione
reduction on arsenite-induced cytotoxicity and gene expression in NHEK also was evaluated by
addition of L-buthionine-[S,R]-sulfoximine (BSO) to culture media. Results indicate the term
LC50 for arsenite is approximately 10–15 µM in NHEK and HEL30 keratinocytes and 30 µM in
HaCaT keratinocytes. Compared with HaCaT and HEL30 keratinocytes, a nontoxic concentra-
tion of arsenite (2.5 µM) increases stk25 and nad(p)h quinone oxidoreductase gene expression in
NHEK, an effect partially attenuated by BSO. These data indicate that NHEK and
HaCaT/HEL30 keratinocytes have similar sensitivities toward arsenite-induced cytotoxicity but
unique gene expression responses. They also suggest that arsenite modulates gene expression in
NHEK involved in cellular signaling and other aspects of intermediary metabolism that may con-
tribute to the carcinogenic process. Key words: arsenite, glutathione, keratinocyte, redox, toxicity.
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10% FCS. Immortalized HEL30 keratinocytes
were a gift from E. Corsini (Laboratory of
Toxicology, Institute of Pharmacological
Sciences, University of Milan, Milan, Italy)
and were cultured similar to HaCaT ker-
atinocytes. Cells were incubated at 37°C in a
CO2-enriched atmosphere (5%), and for all
experiments, arsenite treatment was carried
out at approximately 50–70% confluence and
during logarithmic growth.

Cytotoxicity Determination
Keratinocytes were seeded into 96-well plates
(2,500 cells/well), grown to approximately
50–70% confluence (2–3 days), and treated
with 0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3,
10, 30, or 100 µM sodium arsenite in KBM-2
without bovine pituitary extract/hydrocorti-
sone (NHEK), or RPMI-1640 (HaCaT and
HEL30) (in triplicate). Viability was assessed
24 hr later by incubation with 50 µg/mL neu-
tral red for 3 hr at 37°C. Cells were fixed in
formaldehyde/CaCl2, and dye taken up by
viable cells was extracted with ethanol/acetic
acid prior to absorbency determination at
570 nm using a Dynex microplate reader and
Revelation software (Thermo Lab Systems,
Chantilly, VA, USA). GSH-depletion experi-
ments were performed by addition of BSO
(100 µM) to culture media 24 hr prior to and
during treatment with arsenite. Two hundred
fifty micromolar BSO produces similar effects
on arsenite-induced cytotoxicity to those seen
at 100 µM.

Northern Blot Analysis
Keratinocytes were seeded into 150-mm2 tissue
culture dishes in KBM-2 (NHEK) or RPMI-
1640 (HaCaT and HEL30) and grown to
50–70% confluence, then the medium was
replaced with KBM-2 without bovine pituitary
extract/hydrocortisone (NHEK) or RPMI-
1640 (HaCaT and HEL30). Following a 1-hr
acclimation at 37°C, sodium arsenite was
added to a final concentration of 0, 0.005, or
2.5 µM for either 4 or 24 hr. Total RNA was
isolated at each time point using the Qiagen
RNeasy miniprep system (Qiagen, Valencia,
CA, USA), and 10- to 20-µg aliquots were
fractionated by formaldehyde–agarose gel elec-
trophoresis. After transfer to nylon mem-
branes, RNA was hybridized to 32P-labeled
probes for human serine/threonine kinase-25
(stk25) (GenBank accession no. AA043533)
or nicotine adenine dinucleotide phosphate
[nad(p)h] quinone oxidoreductase (GenBank
accession no. H25860), all prepared using
random primers methodology (Life
Technologies). A 32P-labeled probe for mouse
nad(p)h quinone oxidoreductase (GenBank
accession no. BC004579) was used for HEL30
nad(p)h quinone oxidoreductase detection.
Human/mouse homology is approximately
89% (stk25) at the nucleotide level. Band

intensity was quantified using a Molecular
Dynamics phosphoimaging system and Image
Quant software (Molecular Dynamics,
Piscataway, NJ, USA), and values obtained for
arsenite-treated samples were graphed as per-
cent of time-matched controls (no arsenite).
Northern blot data presented in each figure are
representative of an experiment replicated
2 times.

Data and Statistical Analysis
When appropriate, analysis of variance
(ANOVA) was performed. Significance was
determined using Dunnett’s test (p < 0.05).

Results
Arsenite-induced cytotoxicity was quantified
using neutral red uptake in NHEK and
HaCaT and HEL30 keratinocytes. Figure 1
shows the median lethal concentration (LC50)
for arsenite in NHEK and HEL30 cells to be
approximately 10–15 µM after 24-hr expo-
sure, whereas the LC50 for HaCaT keratino-
cytes is approximately 30 µM. Cytotoxicity
measured at 48 hr is similar to that at 24 hr in
NHEK and HaCaT and HEL30 keratinocytes
and indicates that arsenite concentrations
≤ 3 µM are nontoxic (data not shown).

Arsenic-induced stress has been examined
in keratinocytes; however, arsenite-modulated
stress-related gene expression is not well char-
acterized in NHEK. Our laboratory previously

determined that NHEK treated with arsenite
display alterations in stress/redox-related gene
expression (28). Two of these genes, stk25 and
nad(p)h quinone oxidoreductase, were chosen to
evaluate if physiologically relevant concentra-
tions of arsenite (low and high nontoxic con-
centrations, 0.005 or 2.5 µM, respectively)
regulate stress/redox-related gene expression
differentially between NHEK and HaCaT and
HEL30 keratinocytes. Figures 2 and 3 are rep-
resentative Northern blots examining gene
expression at time points consistent with arsen-
ite-induced immediate early gene expression,
cytokine induction, and effects on cell division.
Figure 2A indicates that NHEK nad(p)h
quinone oxidoreductase expression is elevated at
24 hr of arsenite exposure (2.5 µM) approxi-
mately 3.4-fold but remains near baseline at
4 hr (1.3-fold). Arsenite at the same concentra-
tion results in a minimal increase in nad(p)h
quinone oxidoreductase expression in HaCaT
keratinocytes (1.2-fold at 4 and 24 hr) (Figure
2B), and in HEL30 keratinocytes 1.1- and
1.5-fold changes are observed at 4 and 24 hr,
respectively (Figure 2C). Arsenite-induced
stress-related gene expression is demonstrated
further in Figure 3. Expression of stk25 in
NHEK is elevated approximately 2-fold (4 hr)
and 2.7-fold (24 hr) at 2.5 µM arsenite (Figure
3A), whereas in HaCaT keratinocytes it
remains near baseline at 4 and 24 hr (1.4- and
1.2-fold, respectively) (Figure 3B). Figure 3C
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Figure 1. Effect of sodium arsenite on cellular viability in NHEK and HaCaT and HEL30 keratinocytes. Cells
were seeded into 96-well plates (2,500 cells/well) and grown to approximately 50% confluence. The indi-
cated concentrations of sodium arsenite were added in triplicate and cells were allowed to incubate for
24 hr. Medium containing arsenite was removed and replaced with fresh medium containing neutral red
(50 µg/mL) for 3 hr. The cells were fixed, neutral red was extracted, and dye absorbency was quantified at
570 nm using a microplate reader. Each point represents the mean of three samples. Error bars denote
SEM, and asterisk (*) indicates a statistically significant difference (p < 0.05) from control (no arsenite) as
determined by ANOVA. Data are representative of an experiment replicated a minimum of 3 times.
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reveals that in HEL30 keratinocytes there is no
change in stk25 expression at 24 hr and a slight
reduction at 4 hr (0.9-fold) after exposure to
2.5 µM arsenite.

GSH attenuates the damaging effects of
arsenite in numerous biological systems
(26,29,30), and reduction in cellular GSH
exacerbates cellular responses to redox-regu-
lating agents (31,32) and arsenic (33,34).
Figure 4 demonstrates that the addition of
100 µM BSO to culture medium shifts the
LC50 of arsenite 10-fold to approximately
1 µM in NHEK, suggesting that a reduction
in GSH increases the potency of arsenite.
Similar effects were observed in HaCaT and
HEL30 keratinocytes (data not shown). BSO
has no effect on NHEK viability at arsenite
concentrations ≤ 0.3 µM, suggesting that low
concentrations of arsenite do not produce
cytotoxicity under conditions where the level
of cellular GSH is compromised. To deter-
mine if a reduction in GSH influences arsen-
ite-induced nad(p)h quinone oxidoreductase
and stk25 expression, NHEK were exposed to
0.005 or 2.5 µM arsenite and BSO as
described in “Materials and Methods.” Data
in Figure 5 indicate that BSO treatment does
not result in the induction of nad(p)h
quinone oxidoreductase or stk25 expression at
0.005 µM arsenite. However, Figure 5A
shows that the gene-inducing effect of
2.5 µM arsenite is attenuated when used in
combination with BSO, resulting in a 0.4-
and 2.6-fold change in nad(p)h quinone oxi-
doreductase expression at 4 and 24 hr, respec-
tively. (Compare with 1.3- and 3.4-fold from
control NHEK, cross-hatched bars.) Figure
5B reveals that stk25 induction at 2.5 µM
arsenite also is attenuated after BSO treat-
ment (1.4- and 1.8-fold at 4 and 24 hr,
respectively; compare with 2- and 2.7-fold
from control NHEK, cross-hatched bars).

Discussion
NHEK and HaCaT and HEL30 keratinocytes
are epidermal cells used to characterize the
effects of arsenic on proliferative gene expres-
sion (5,35), cytokine and growth factor expres-
sion (6,8,36), and the role reactive oxygen
species (ROS) play in epidermal dysfunction
and signal transduction modulation (37–39).
Although well suited with respect to target
tissue, these cells present unique phenotypes
that may display different responses to oxida-
tive stress-inducing agents like arsenic.
NHEK are resistant to transformation when
grown under normal conditions in vitro,
have a finite lifespan, and retain many
physiological characteristics observed in vivo
(e.g., differentiation response) (40). The
human HaCaT cell line displays a trans-
formed phenotype in vitro but remains non-
tumorigenic (41). Despite an unlimited
growth potential, HaCaTs, similar to normal
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Figure 2. Arsenite-modulated nad(p)h quinone oxidoreductase expression in NHEK and HaCaT and
HEL30 keratinocytes. Northern blot analysis of 20 µg total RNA from NHEK or HaCaT or HEL30 ker-
atinocytes exposed to arsenite for 4 or 24 hr and probed for nad(p)h quinone oxidoreductase. Band
intensity was digitized using Image Quant software (Molecular Dynamics). (A) NHEK. (B) HaCaT ker-
atinocytes. (C) HEL30 keratinocytes. Ribosomal ribonucleic acid (rRNA) bands (28 and 18S) from an
ethidium bromide stained–gel indicate equivalent loading of RNA. Bar graphs indicate percent increase
above time-matched control (0 µM arsenite).
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Figure 3. Arsenite-modulated stk25 expression in NHEK and HaCaT and HEL30 keratinocytes; Northern
blot analysis of 20 µg total RNA from NHEK and HaCaT and HEL30 keratinocytes exposed to arsenite for
4 or 24 hr and probed for stk25. Band intensity was digitized using Image Quant software (Molecular
Dynamics). (A) NHEK. (B) HaCaT keratinocytes. (C) HEL30 keratinocytes. rRNA bands (28 and 18S) from
an ethidium bromide–stained gel indicate equivalent loading of RNA. Bar graphs indicate percent
increase above time-matched control (0 µM arsenite).



human keratinocytes, can form a structured
and differentiated architecture when
transplanted into nude mice, and they also
express differentiation-specific keratins and
other markers (e.g., involucrin and filaggrin)
(41). The HEL30 cell line is derived from
the spontaneous transformation of murine
keratinocytes grown in vitro (42–46) and is
tumorigenic and invasive (47).

Arsenic is cytotoxic to normal human
keratinocytes (35), fibroblasts (48,49),
lymphocytes (50), hepatocytes (51), and
epidermoid carcinoma cells (52). In a majority
of these studies, short-term exposure to triva-
lent arsenicals results in significant cytotoxicity
at concentrations between 1 and 10 µM. In
our study, arsenite-induced cytotoxicity was
dose dependent and resulted in a short-term

LC50 of approximately 10–15 µM in NHEK
and HEL30 keratinocytes and 30 µM in
HaCaT keratinocytes. NHEK and HEL30
keratinocytes present a similar sensitivity
toward arsenite-induced cytotoxicity that is
hard to resolve because rodent cells generally
have increased antioxidant capabilities com-
pared with human cells (49,53). HaCaT ker-
atinocytes display alterations in antioxidant
enzyme levels (54), and this may partially
explain the increased LC50 for arsenite in this
cell type.

We chose to examine the expression of
two genes regulated by extra and intracellular
stress (e.g., stk25 and nad(p)h quinone oxi-
doreductase) at two nontoxic concentrations
of arsenite (0.005 and 2.5 µM). Ste20-
homologous proteins (e.g., STK25) are impli-
cated as important transducers of signals from
the p21 family of GTPases (55,56), can be
activated by cellular stress, and are important
mediators of oxidant-mediated signal trans-
duction (57,58). In this study arsenite
robustly induced NHEK stk25 expression, an
effect more profound in primary cells, and an
effect attenuated by reducing GSH level with
BSO. Whether the ability of NHEK to
respond so robustly compared with HaCaT
or HEL30 keratinocytes is a detoxification
mechanism preserved in primary cells or a
prelude to immortalization is unknown at
present. However, the elevated baseline stk25
expresssion observed in HaCaT and HEL30
keratinocytes would support the notion that
this alteration is associated with immortaliza-
tion. Along with previously defined effects of
arsenic on mitogen and stress-related signal
transduction (7,10,16,33,59), these data
implicate STK25 in the transduction of
arsenite-mediated stress signals.

NAD(P)H quinone oxidoreductase is a
flavoprotein that catalyzes the reduction of
quinones, quinone imines, and azo dyes,
thereby protecting cells against free radical
and ROS-mediated mutagenicity and car-
cinogenicity (60–62). Elevated NAD(P)H
quinone oxidoreductase activity and gene
expression are observed in both preneoplastic
tissues and established tumors (63,64) and
are induced by a variety of compounds
including planar aromatic hydrocarbons, phe-
nolic antioxidants, tumor promoters, and
hydrogen peroxide (61). In our study,
nad(p)h quinone oxidoreductase expression was
dramatically increased in NHEK after expo-
sure to a nontoxic concentration of arsenite
(approximately 4-fold at 2.5 µM) compared
with HaCaT and HEL30 keratinocytes.
Interestingly, a similar trend in baseline and
arsenite-induced nad(p)h quinone oxidoreduc-
tase expression in both HaCaT and HEL30
keratinocytes was observed, suggesting an
immortalization/preneoplastic effect on gene
expression. The mechanism(s) involved in
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Figure 4. Effect of BSO on arsenite-induced cytotoxicity in NHEK. Cells were prepared as in Figure 1 with the
exception that BSO (100 µM) in fresh culture medium was added to cells 24 hr prior to arsenite treatment.
After removal of medium, the indicated concentrations of arsenite in fresh medium containing BSO (100 µM)
were added to triplicate wells, and cells were allowed to incubate for an additional 24 hr. Cellular viability
was determined as in Figure 1. Each point represents the mean of three samples. Error bars denote SEM, and
asterisk (*) indicates a statistically significant difference (p < 0.05) from control (no arsenite) as determined
by ANOVA. Data are representative of an experiment replicated a minimum of 3 times.
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arsenite-mediated nad(p)h quinone oxidore-
ductase induction in NHEK is currently
unknown. However, oxidative stress activates
activator protein-1 (AP-1) in human ker-
atinocytes and other cells (65,66) and may
contribute to elevated nad(p)h quinone oxi-
doreductase (known to be regulated by AP-1
and nuclear factor kappa B [NF-κB]) expres-
sion after arsenite exposure. This notion is
further supported by arsenic-induced modu-
lation of c-jun and c-fos in vitro and in vivo
(67–69) and NF-κB activity in vitro (70,71).

We proposed that reducing cellular GSH
levels with a specific inhibitor of GSH synthe-
sis (BSO) could exacerbate the gene expres-
sion–modifying effects of arsenite on NHEK.
However, in our experiments, treatment of
NHEK with BSO attenuated the effect of
arsenite on nad(p)h quinone oxidoreductase and
stk25 expression. The mechanism(s) that
resulted in this effect is unknown but could be
due in part to general cellular toxicity (after
concurrent arsenite and BSO exposure) that
disallows a normal gene expression response.
In support of this, arsenite in combination
with BSO increased cytotoxicity in the cell line
HepG2, yet cellular GSH remained at the
same level after BSO treatment alone (72).
This supports the contention that general
cellular toxicity may attenuate gene expression
responses independent of GSH level.

In summary, the results of this study
indicate that NHEK stress/redox-related
gene expression is induced after nontoxic
arsenite exposure. The ability of arsenite to
modulate stress/redox-related gene expres-
sion will need to be incorporated into mech-
anism-based models for arsenic risk
assessment. This will be important when
assessing the potential health effects of
arsenic exposure and in formulating regula-
tory guidelines regarding human exposure to
this toxicant and carcinogen.
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