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Wilson Disease
Wilson disease is a hereditary hepatic disease
with neurological symptoms that was first
described by Kinnear Wilson in 1912 (1).
This disorder of copper metabolism is charac-
terized by the toxic accumulation of copper in
various tissues such as the liver, kidney, brain,
and placenta due to the lack of biliary excre-
tion of copper from the body (2). Elevated
urinary copper levels are observed, due to the
accumulation of copper in the kidneys, and
impaired incorporation of copper into cerulo-
plasmin leads to lowered serum copper levels.
Increased liver copper concentrations are due
to the deficient biliary excretion of copper
from the hepatocytes. Chelation and zinc
therapy are two treatments used for Wilson
disease. Chelators such as D-penicillamine
(3,4) and trientine (5,6) are used to mobilize
copper and facilitate its excretion from the
body through urine. Zinc is used to prevent
copper uptake from the intestine into portal
circulation by inducing the synthesis of metal-
lothionein (7). Metallothionein binds copper
with high affinity and is subsequently elimi-
nated in the feces as intestinal cells are
sloughed off (8,9). Liver transplantation may
be the only hope for patients with acute liver
failure, which cannot be reversed with chela-
tion or zinc therapy.

The Wilson Disease Gene 
and Its Expression
The Wilson disease gene ATP7B was local-
ized to the q14.3 band of chromosome 13
and cloned by two independent groups in
1993 (10,11). The gene consists of 22 exons
and encodes a copper-transporting P-type
ATPase (ATP7B) belonging to and sharing
many of the features of the cation-transport-
ing P-type ATPase family (12). The Wilson
disease protein is expressed mostly in the liver
(10) and has been localized to the trans-Golgi
network (TGN) by immunohistochemical
studies (13,14). Such studies have also shown
the trafficking of the ATPase from the TGN
to cytoplasmic vesicles in response to an
increase in copper concentration (13,15); this
copper-dependent cycling of ATP7B proba-
bly accounts for the biliary excretion of cop-
per from the liver and correlates well with the
Wilson disease phenotype.

The Wilson Disease Copper-
Transporting P-Type
ATPase
Sequence analysis has identified the Wilson
disease ATPase as a copper-transporting
P-type ATPase (Figure 1). More specifically,
the Wilson disease ATPase has several features
distinguishing it from other members of the

P-type ATPase family, classifying it as a
CPx-type, type I, or heavy-metal P-type
ATPase. Other members of the CPx-type
ATPases are the bacterial copper (CopA) (16)
and zinc (ZntA) (17) ATPases, and in
humans, the Menkes disease copper-transport-
ing ATPase (ATP7A) (18–20). The major dif-
ference between the CPx-type ATPases and
other P-type ATPases is the presence of an
additional pair of transmembrane helices and
a cytoplasmic metal-binding domain at the N
terminus. In addition to a pair of cysteines
flanking the conserved proline residue in the
transduction domain, the histidine and pro-
line residues of the SEHPL sequence motif are
highly conserved in heavy metal–transporting
ATPases. The mutation of the conserved
histidine residue of this motif, H1069Q, is
one of the most common mutations found in
Wilson disease (21,22). The involvement and
the role of the SEHPL motif in the copper
transport scenario are still not clear, although
its importance is reflected in its conservation
and its correspondence to a disease-causing
mutation. Site-directed mutagenesis of the
conserved histidine reveals that the motif is
somehow involved in metal-ion–stimulated
ATPase activity and phosphorylation of the
transporter (23,24).

In addition to its ATP-driven copper
transport role at the TGN where copper is
incorporated into ceruloplasmin (25,26), the
Wilson disease protein is also thought to be
involved in the excretion of copper into bile
at the canalicular membrane (27). The
copper-stimulated trafficking of the trans-
porter between the TGN and the canalicular
membrane may involve the N terminus and is
not clearly understood (28). It has been
shown that the presence of at least one cop-
per-binding domain close to the membrane
channel is necessary for copper-induced redis-
tribution of both the Wilson (29) and the
Menkes disease transporter (30). Copper-
induced conformational changes observed in
the N-terminal copper-binding domain of the
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Wilson disease is an autosomal recessive disorder of copper metabolism. The Wilson disease pro-
tein is a putative copper-transporting P-type ATPase, ATP7B, whose malfunction results in the
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[WCBD]) has been expressed, purified, and characterized using various techniques. The WCBD
binds six atoms of copper in the +1 oxidation state competitively, and with a greater affinity than
all other metals. The copper atom is coordinated by two cysteines in a distorted linear geometry.
Copper binds the WCBD in a cooperative manner and induces secondary and tertiary conforma-
tion changes. Zinc binding to the WCBD has also been characterized by circular dichroism spec-
troscopy and shown to produce conformational changes that are completely different from those
induced by copper. The phosphorylation/nucleotide-binding domain of ATP7B has also been
expressed and characterized and shown to be capable of binding ATP but lacking ATPase activity.
A peptide corresponding to the sixth transmembrane domain of ATP7B has been constructed and
shown to undergo secondary conformational changes upon binding a single atom of copper.
Finally, a chimeric protein consisting of the WCBD and truncated ZntA, a zinc-transporting
ATPase lacking the N-terminal domain, has been constructed and analyzed for metal ion selectiv-
ity. These results suggest that the core determines the metal ion specificity of P-type ATPases, and
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Wilson disease ATPase (WCBD) have been
suggested as a mechanism behind this cellular
trafficking. Protein–protein interactions or
changes in the global conformation of the
transporter may render a recognition site
accessible to the components of the mem-
brane-protein–sorting machinery and signal
the protein to traffic between the TGN and
the plasma membrane in a copper-dependent
manner. Site-directed mutagenesis of residues
in transmembrane helices 4 and 6 has impli-
cated their involvement in the copper-depen-
dent trafficking of the transporter. Tyrosine
and dileucine motifs (31,32) in the Menkes
disease transporter C terminus have also been
suggested as recognition and trans-Golgi
retention signals recognized by the vesicular
trafficking machinery.

Characterization of Copper
Binding to the WCBD
The WCBD has been the subject of intense
study in our laboratory. This 70 kDa N-ter-
minal domain encompassing all six metal-
binding motifs has been expressed, purified,
and shown to bind six atoms of copper in the
+1 oxidation state. Using immobilized metal
affinity chromatography, we have shown that
the WCBD is able to bind different transition
metals with varying affinities: Cu(II) > >
Zn(II) > Ni(II) > Co(II) (33).

We employed competition 65Zn blotting
analysis to investigate the ability of the
WCBD to bind copper and other transition
metals (33). Of the transition metals tested,
Cd(II), Au(III), and Hg(II) were able to suc-
cessfully compete with zinc for binding to the
domain. Copper was the strongest competitor
and displayed a distinct cooperative binding
mechanism not observed with the other
transition metals.

Our X-ray absorption spectroscopy (XAS)
studies of the WCBD containing substoichio-

metric amounts of copper have provided a
wealth of detailed structural information
regarding this domain (34). The X-ray
absorption near edge structure spectra display
a characteristic feature of the 1s to 4p transi-
tion of Cu(I) at 8,983 eV, verifying that cop-
per bound to the WCBD is in the +1 state.
The intensity of the transition at 8,983 eV,
which is indicative of the geometry around the
copper atom, is weaker than that of linear
copper thiolate complexes but stronger than
that of trigonal compounds. Extended X-ray
absorption fine structure data show that the
first coordination sphere consists of two sulfur
atoms with a Cu–S distance of 2.17–2.19 Å.
This is similar to the Cu–S bond distance
observed in Menkes disease protein and falls
between the distances observed for trigonal
and linear Cu(I)–thiolate complexes (35).
These observations suggest that the copper
atom is coordinated by two cysteines in a
distorted linear geometry.

Circular dichroism (CD) spectroscopy
results show that copper binding induces con-
formational changes in the WCBD (34). The
secondary structure region (200–270 nm)
shows an increase in ellipticity upon binding of
increasing amounts of copper, suggesting a sta-
bilization of secondary structures relative to the
apo state. The changes observed in the aromatic
region (250–350 nm) were in agreement with
those in the secondary structure region. The
greatest changes in the spectra occur between
the 2:1 and 4:1 copper-bound forms. The 2:1
and 4:1 copper-bound forms have very similar
secondary structure but significantly different
tertiary structure, which may reflect the cooper-
ative nature of copper binding.

Characterization of Zinc
Binding to the WCBD
Studies in this laboratory have also
characterized the binding of zinc to the

WCBD (36). The WCBD is able to bind six
molar equivalents of zinc and undergo
conformational changes that are completely
different from those induced by copper bind-
ing. Our CD spectral analyses show that zinc
binding is accompanied by an overall loss of
secondary structure. This is further supported
by our XAS data that indicate that the zinc-
binding sites are occupied mostly by nitrogen
and not sulfur atoms. Therefore, although the
WCBD has the ability to bind several differ-
ent metals, the different conformations
induced by different metals may allow the
transporter to differentiate between copper
and other metals in vivo. To delineate the
metal ion selectivity and to investigate
whether this domain contributes to metal ion
recognition by the transporter, a collaborative
effort was undertaken to construct an
ATP7B/ZntA chimeric protein (37).

Characterization of Metal 
Ion Selectivity of the 
Chimeric ATPase

ZntA is a CPx-type ATPase from Escherichia
coli, which confers resistance to Pb(II), Cd(II),
and Zn(II) (38). This protein has a single copy
of the metal-binding motif, whereas ATP7B
has six copies. Two chimeric proteins have
been constructed in which the N-terminal of
ZntA is replaced with either the entire N-ter-
minal domain of ATP7B or just the sixth
metal-binding motif of ATP7B (37). Both
chimeras confer resistance to and display activ-
ity with Pb(II), Cd(II), and Zn(II), all of
which are substrates of ZntA. There is no resis-
tance or activity toward copper and silver,
which are the substrates of ATP7B. Although
the N-terminal domain of ZntA is not essen-
tial for its activity or selectivity toward a partic-
ular metal, it is required for full catalytic
activity and cannot be replaced by the N-ter-
minal domain of ATP7B. The results of this
study suggest that the core of the P-type
ATPase determines metal ion specificity and
that the N-terminal plays a regulatory role,
perhaps by interacting in a metal-ion–specific
manner with the other parts of the transporter.
Copper binding to the WCBD appears to
elicit the conformational changes required to
regulate the activity of ATP7B.

Core Elements within the
Transduction Channel May
Determine Substrate
Specificity
Ca-ATPase (39), Na,K-ATPase (40), and
H-ATPase (41) are three P-type ATPases for
which a great deal of structural information is
available. In these P-type ATPases, transmem-
brane domains M4, M5, and M6 form part of
the channel and contain residues critical to
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Figure 1. The Wilson disease protein is a copper-transporting CPx-type ATPase. The transporter consists
of transmembrane, phosphorylation, nucleotide-binding, and actuator domains common to other P-type
ATPases. Features unique to CPx-type ATPases include a large cytoplasmic metal-binding domain con-
taining between one and six metal-binding motifs, a pair of N-terminal transmembrane helices, CPC, and
the SEHPL motifs.
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cation binding. In ATP7B, transmembrane
domains TM6 and TM7 are predicted to
correspond to M4 and M5 of P-type ATPases
and form part of the channel (42). In a clever
experiment that highlighted the central role of
M4, Na,K-ATPase’s cation-binding specificity
was altered to that of H,K-ATPase by mutat-
ing residues within the channel (43). TM6 of
ATP7B corresponds to M4 of Ca-ATPase, and
both transmembrane domains contain a con-
served proline residue found in all P-type
ATPases. In the heavy metal ATPases, highly
conserved cysteine residues flank this proline
residue to form a CPC motif. Mammalian
copper-transporting ATPases have an addi-
tional conserved cysteine, forming a CXXCPC
motif. Site-directed mutagenesis studies of the
cysteine residues in the CPC motif have
revealed it to be essential for the copper trans-
port function of the ATPase (24,44). The
CPC motif is predicted to be one of the
copper-binding sites in the channel.

Identification of Core
Residues Involved in Metal
Ion Binding and Specificity

To further characterize copper binding to the
CPC motif, we constructed a peptide corre-
sponding to residues from TM6 of ATP7B .
Single C/S mutants of this peptide have also
been synthesized. Preliminary CD results
show that the peptide binds a single atom of
copper and that copper binding induces sec-
ondary conformational changes in the pep-
tide (45). Further studies in this area are
aimed at the identification of other residues
within the transduction channel that confer
copper selectivity to ATP7B.

Characterization of the
Phosphorylation/Nucleotide
-Binding Domain

The second largest cytosolic domain of
ATP7B, which encompasses the phosphoryla-
tion (P) subdomain, nucleotide-binding (N)
subdomain, and the hinge region, has been
expressed and purified in our laboratory and
by others. In our laboratory, it has the ability
to bind the fluorescent ATP analog TNP-
ATP, but it has no ATPase activity (46). We
speculate that this is may be due to the
absence of other domains required for ATPase
activity, in particular the actuator (A) domain.
Mutational as well as structural analyses of
other P-type ATPases suggest the involvement
of the A domain in energy transduction and
hydrolysis of the phosphoenzyme intermedi-
ate, formed during the catalytic cycle (39).

Gapped BLAST (basic local alignment
search tool) alignment of Cu-ATPase and Ca-
ATPase (42), together with the presence of
highly conserved residues, suggests that the

general mechanism and cation transport pro-
posed for P-type ATPases likely apply to
CPx-type heavy metal–transporting ATPases
as well (39,47).

The sequence alignment of P-type and
CPx-type ATPases reveals that ATP7B has
large deletions in its A domain and also in its
N domain. The P domain, however, is highly
conserved. These observations give rise to a
number of questions regarding how these dif-
ferences in corresponding domains affect the
mechanism of copper transport by ATP7B
compared with the general mechanism
proposed for P-type ATPases.

Proposed Mechanism for
Copper Transport by the
Wilson Cu-ATPase

Atox1, implicated as the metallochaperone for
ATP7B, probably delivers copper ions to the
WCBD (48–50). Atox1 itself has a copper-
binding motif and is thought to specifically
interact through complementary electrostatic
surfaces with the copper-binding motifs and
exchange copper (3). However, this may not
be the only way by which the WCBD obtains
its copper. Not all the copper-binding motifs
found in the WCBD possess the complemen-
tary electrostatic patches necessary for interac-
tion with Atox1 (51), and the list of other
possible copper-binding proteins is growing.
Preliminary metalloproteomic studies in our
laboratory have identified a number of pro-
teins, previously not classified as possessing any
copper-binding activity. Many of these pro-
teins themselves contain the CXXC motif or
are associated in complexes with proteins that
contain the CXXC motif (52). Interestingly,
some of these proteins are also involved in the
protein folding and disulfide bond isomeriza-
tion pathways. Further investigation is
required before any of these other candidates
can be ruled out for delivery of copper
to ATP7B.

On the basis of the degree of similarity
between ATP7B and other P-type ATPases
and structural/functional studies of this trans-
porter, we can begin to form a model for the
mechanism of copper transport by ATP7B
based on the model proposed for classical
P-type ATPases (39,53). The WCBD proba-
bly serves as the initial site for metal ion bind-
ing to the transporter. Specific interaction
between the WCBD and its nucleotide bind-
ing/phosphorylation domain has been
demonstrated, and binding of copper to the
WCBD has been shown to dissociate this
interaction (54). Although the WCBD has
the ability to bind different metals, zinc bind-
ing studies seem to suggest that only the
binding of copper induces the correct confor-
mational changes necessary for the WCBD to
dissociate from the other domain. This con-

formational change is tied to cytoplasmic
copper concentrations, so it is possible for the
copper-bound state of the WCBD to regulate
the activity of the transporter. Copper bind-
ing to the WCBD may be what drives the
transporter from an inactive or low activity
state, where the cytoplasmic domains are all
bound by low-copper WCBD, to an active
state where the high-copper WCBD has
released the other cytoplasmic domains.

Although the cytoplasmic domains of
ATP7B and Ca-ATPase are very similar,
there are large deletions and sequence alter-
ations observed in the actuator domain and
nucleotide-binding domains of ATP7B,
which may allow for the specific interaction
of the WCBD with these domains. After the
dissociation of the domains, the mechanism
of copper transport most likely progresses
through the same E1–E2 intermediates that
are proposed for other P-type ATPases (39).
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