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Metals comprise three-fourths of the elements
in the periodic table, but only a few of the
metals are essential for life. Most of the
known metals are quite toxic to living organ-
isms. Because even the essential metals can be
toxic when present in excess, their cellular
concentrations are tightly regulated. Recent
studies have identified some of the human
genes that control essential metal concentra-
tions and have described how toxic metals
interact with these gene products. The pre-
sent report highlights these metal-transport
and metal-regulatory pathways. Additional
information on specific metals and their
metabolic pathways is available in several
recent reviews (1–11).

Metal Transport across Cell Membranes
Occurs by Three General Mechanisms
Transport via membrane recycling: roles of
transferrin, ceruloplasmin, and the gene
products defective in Wilson disease (ATP7B)
and Menkes syndrome (ATP7A). For certain
essential metals such as copper and iron,
receptor-mediated endocytotic and exocytotic

mechanisms play a critical role in their home-
ostasis (1). Many of the individual steps in
this process have now been characterized at
the molecular level; however, the relative con-
tribution of this process to the transport of
other metals has not been examined in detail.
Because the extent of vesicle trafficking is
quite large in many cell types, this process
may be important in facilitating movement of
metals either that have a high affinity for
plasma membrane binding sites or that are
bound to ligands that are selectively cleared
via membrane receptors (12). Vesicle inser-
tion and retrieval occur by at least three
mechanisms, receptor-mediated, fluid-phase,
or adsorptive endocytosis, and each of these
may mediate metal transport into and out of
cells as well as transport into and out of intra-
cellular organelles.

The predominant mechanism of iron
transport from blood plasma into hepato-
cytes and certain other cell types is believed
to be the transferrin receptors (Figure 1).
Nearly all the iron in plasma (~99%) is nor-
mally associated with transferrin, a protein

that binds iron in the Fe(III) oxidation state.
Oxidation of Fe(II) to Fe(III) is catalyzed by
the copper-containing enzyme ceruloplasmin
(Figure 1).

Transferrin receptor–mediated endocyto-
sis leads to the internalization of diferric
transferrin, followed by release of iron within
acidic vesicles and extrusion of iron-depleted
transferrin (apotransferrin). The mechanism
by which the released iron is subsequently
transferred from the endosome/lysosome to
the cytosol is not known, although recent
studies implicate a role of DCT1 (divalent
cation transporter-1; also known as
NRAMP2 or DMT1) (13). A second and
more speculative mechanism for iron uptake
from blood plasma into the cell involves the
possibility that iron is released at the plasma
membrane without internalization of the
transferrin–receptor complex (1). In this
model transferrin-bound ferric iron is
reduced to ferrous iron extracellularly,
removed from the transferrin molecule, and
transported into the cell, possibly by the
recently identified DCT1 protein (Figure 1).

In addition to TfR1 and TfR2 (transferrin
receptors 1 and 2), lactoferrin, melanotrans-
ferrin, and ferritin receptors also contribute to
iron uptake (4,14,15). In the liver, Kupffer
cells release a substantial fraction of the iron
acquired by erythrophagocytosis in the form
of ferritin, which is efficiently internalized by
hepatocytes, via their ferritin receptors.
Because these iron-binding proteins can bind
other metal cations such as manganese, zinc,
and vanadium, they may also contribute to
their cellular transport. For example, most of
the manganese in plasma is bound to transfer-
rin, a finding that may explain the rapid
hepatic clearance of manganese from plasma.
Similarly, a substantial fraction of vanadium
in rat plasma is associated with transferrin,
and vanadium accumulates preferentially in
tissues that are also abundant in iron (liver,
spleen, and kidney). Metals also bind to
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Intracellular concentrations of essential metals are normally maintained within a narrow range,
whereas the nonessential metals generally lack homeostatic controls. Some of the factors that con-
tribute to metal homeostasis have recently been identified at the molecular level and include pro-
teins that mediate import of essential metals from the extracellular environment, those that
regulate delivery to specific intracellular proteins or compartments, and those that mediate metal
export from the cell. Some of these proteins appear highly selective for a given essential metal;
however, others are less specific and interact with multiple metals, including toxic metals. For
example, DCT1 (divalent cation transporter-1; also known as NRAMP2 or DMT1) is considered
to be a major cellular uptake mechanism for Fe2+ and other essential divalent metals, but this pro-
tein also mediates uptake of Cd2+, Pb2+, and possibly of other toxic divalent metals. The ability of
nonessential metals to interact with binding sites for essential metals is critical for their ability to
gain access to specific cellular compartments and for their ability to disrupt normal biochemical or
physiological functions. Another major mechanism by which metals traverse cell membranes and
produce cell injury is by forming complexes whose overall structures mimic those of endogenous
molecules. For example, it has long been known that arsenate and vanadate can compete with
phosphate for transport and metabolism, thereby disrupting normal cellular functions. Similarly,
cromate and molybdate can mimic sulfate in biological systems. Studies in our laboratory have
focused on the transport and toxicity of methylmercury (MeHg) and inorganic mercury. Mercury
has a high affinity for reduced sulfhydryl groups, including those of cysteine and glutathione
(GSH). MeHg–L-cysteine is structurally similar to the amino acid methionine, and this complex is
a substrate for transport systems that carry methionine across cell membranes. Once MeHg has
entered the cell, some of it binds to GSH, and the resulting MeHg–glutathione complex appears
to be a substrate for proteins that mediate cellular export of glutathione S-conjugates, including
the apically located MRP2 (multidrug resistance-associated protein 2) transporter, a member of
the adenosine triphosphate–binding cassette protein superfamily. Because other toxic metals also
form complexes with endogenous molecules, comparable mechanisms may be involved in their
membrane transport and disposition. Key words: divalent metal transporters, glutathione, mem-
brane transport, metals, molecular mimicry. Environ Health Perspect 110(suppl 5):689–694
(2002).
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albumin and other plasma proteins, and these
complexes may also be transported by vesicle-
mediated processes.

As indicated above, membrane vesicles
are important not only for metal uptake
into cells but also for export into the extra-
cellular space. For example, the copper-
transporting Wilson and Menkes disease
proteins are P-type adenosine triphos-
phatases (ATPases) that are required for
copper export from the cell, but these pro-
teins are localized largely to intracellular
vesicles, indicating that copper (and possi-
bly other metals) is first compartmentalized
within intracellular vesicles and that export
is accomplished by vesicle fusion with the
plasma membrane.

In hepatocytes, copper is transported into
the trans-Golgi network using the ATP-
dependent transporter ATP7B, the protein
that is defective in Wilson disease (Figure 2).
Within this intracellular compartment, cop-
per is then used for the synthesis of copper-
containing proteins such as ceruloplasmin, or
it is stored for subsequent excretion. Some of
the intravesicular copper is presumably
sorted into vesicles destined for the lysoso-
mal-biliary excretory pathway. According to
this model, fusion of exocytic vesicles with
the canalicular membrane delivers copper
into bile (Figure 3); however, neither the site
nor the mechanism by which this vesicular
sorting occurs is known. It has been sug-
gested that ATP7B-containing vesicles may
actually fuse with the canalicular plasma
membrane and thereby deliver the functional
transport protein to the liver cell apical
membrane (16–18). However, additional
studies are needed to address this possibility.

In tissues other than the liver, a compara-
ble P-type ATPase (ATP7A, or the Menkes
disease gene product) pumps copper into
endosomal/lysosomal compartments. The
Wilson and Menkes diseases genes have 56%
overall identity. The Menkes gene is ubiqui-
tously expressed in adult tissues, with little or
no expression in the liver (19), whereas the
Wilson disease gene is expressed in only a
few cell types, notably liver and certain neu-
ronal cells. Mutations in ATP7A lead to sig-
nificant copper accumulation in intestinal
mucosa, kidney, and selected other tissues.
This inability to deliver copper from sites of
its absorption and storage results in a sys-
temic copper insufficiency in Menkes
patients. In contrast with the copper insuffi-
ciency of Menkes patients, Wilson disease
patients accumulate excess copper in many
tissues (e.g., liver, brain, kidney, cornea) due
to the inability to excrete copper into bile,
the main route of its elimination. At the cel-
lular level, copper accumulates in the liver
cell cytosol, and the cell eventually succumbs
to copper toxicity.
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Figure 1. Plasma membrane transport mechanisms that mediate uptake of metals from blood plasma into
hepatocytes and those that mediate efflux from the cell back into the bloodstream. Adapted from Ballatori (2).
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Vesicular exocytosis may also be involved
in cellular export of iron and possibly other
metals (20,21). Regoeczi and Chindemi (21)
measured the translocation of different forms
of transferrin from blood to bile in the rat but
found that only a small fraction of the metal-
containing protein is excreted in bile.

Transport of metal cations and inorganic
metal complexes on metal-selective proteins.
Recent studies have identified and character-
ized several metal-selective transporters,
including hCTR1 (the human equivalent of
the yeast high-affinity copper transporter),
members of the NRAMP (natural resis-
tance–associated macrophage protein) family
of membrane proteins (e.g., the divalent
cation transporter DCT1), several putative
zinc transporters (ZIP and ZNT families),
and the recently described IREG1 (iron-reg-
ulatory protein-1; also called MTP1 or ferro-
portin) and hephaestin iron export complex,
as described in more detail below. The iden-
tification of these metal transporters was
made possible by the application of powerful
molecular biology approaches, including
complementation strategies in bacteria and
yeast and the use of the Xenopus laevis oocyte
expression system.

Uptake on phosphate or sulfate
transporters. It has long been known that
metal oxyanions are excellent substrates for
phosphate and sulfate carriers (22–24). For
example, vanadate and arsenate are struc-
turally similar to phosphate and can compete
with phosphate for transport as well as for
intracellular binding sites. Similarly, chro-
mate, selenate, and molybdate are struc-
turally similar to sulfate and are substrates for
sulfate transporters.

Some of the phosphate and sulfate trans-
porters have now been identified at the mole-
cular level, including NaP(i)1, NPT1, PiT1,
PiT2, NaSi-1, and Sat-1 (25–31). NaSi-1
belongs to an Na+-coupled transporter family
comprising the Na+-dicarboxylate trans-
porters and is localized to the brush border
membrane of renal proximal tubular and ileal
cells. Sat-1 is an Na+-independent transporter
that mediates sulfate/bicarbonate–oxalate
exchange. It is located at the basolateral mem-
brane of proximal tubular epithelial cells and
canalicular surface of hepatocytes.

hCTR1 and hCTR2, putative copper
uptake transporters. Important insight into
the molecular basis for copper uptake from
blood plasma was provided by recent studies
that took advantage of the remarkable simi-
larities between yeast and mammalian cells in
terms of their copper and iron metabolism
(32–36). The similarities between yeast and
mammalian copper and iron homeostasis are
numerous and extend to the membrane trans-
porters, the cytoplasmic chaperones, and the
terminal copper acceptors (2,37,38).

Zhou and Gitschier (39) isolated a
human gene involved in copper uptake by
complementation of the yeast high-affinity
copper uptake mutant ctr1. The human gene
product (hCTR1; Figure 1) exhibits 29%
amino acid identity with the yeast copper
transporter CTR1. A database search by
Zhou and Gitschier (39) revealed an addi-
tional human gene that was named hCTR2.
By Northern blot analysis, hCTR1 and
hCTR2 were expressed in all tissues exam-
ined, but the liver exhibited the highest level
of expression.

Insight into the cellular localization of
CTR1, its function, and its mechanism of
action has been provided by studies in cells
transfected with this gene (40) and in
Ctr1(–/–) mice (41,42). Moller and co-work-
ers (40) found that fibroblasts transfected
with hCTR1 cDNA had dramatically
increased capacity for 64Cu uptake, indicating
that the hCTR1 protein is functional in cop-
per uptake in human cells, whereas hCTR2-
transfected cells did not display enhanced
copper uptake. Ctr1(–/–) mice demonstrated
early embryonic lethality, indicating that this
gene is required for normal development and
survival (41,42). Heterozygous mice survived
and appeared phenotypically normal, but
brain copper levels were only 50% of those
of control littermates, indicating that Ctr1
is particularly critical for copper entry
into brain.

DCT1, a multispecific metal transporter
of the NRAMP family. A major mechanism
for cellular uptake of Fe2+ and other divalent
metals was recently described by Gunshin et
al. (43). These investigators cloned and char-
acterized a mammalian iron and divalent
cation transporter (DCT1; also known as
NRAMP2 or DMT1) that is expressed in a
number of tissues, including kidney and liver.
DCT1 is able to transport a variety of diva-
lent metal cations (Fe, Zn, Mn, Co, Cd, Cu,
Ni, and Pb) by a proton-coupled and mem-
brane potential–dependent mechanism. Note
that this list of possible substrates includes
both essential metals and toxic metals. Direct
evidence for a role of DCT1 in cadmium
uptake by Madin-Derby canine kidney
(MDCK) cells (44) and human absorptive
enterocytes (45) has now been provided. In
the intestine this protein probably mediates
metal uptake at the lumenal surface by co-
transport with protons (with stoichiometry of
1H+:1M2+). This gene is defective in mice
with microcytic hypochromic anemia, a dis-
ease associated with defects in intestinal iron
absorption and erythroid iron utilization
(46). Although Figure 1 shows DCT1 medi-
ating metal uptake into liver from sinusoidal
blood, this is only speculative because the
localization, orientation, and energy coupling
of DCT1 in liver cell membranes have not

yet been established. In the kidney, DCT1 is
localized to principal and intercalated cells of
the collecting ducts, the ascending limbs of
Henle’s loop, and distal convoluted tubules
(47). DCT1 appears to be localized to the
apical surface at these sites, suggesting that it
mediates reabsorption of divalent metal ion
in the distal nephron but not in the proximal
tubule (47).

DCT1 is a member of the NRAMP
family of membrane-associated proteins
(43,46,48–50). The NRAMP family displays
a high sequence conservation from yeast to
humans, with many species expressing at least
two discrete gene copies [e.g., rodent Nramp1
and Nramp2 (48)]. Iron uptake in Xenopus
oocytes expressing mouse Nramp1 is also
stimulated relative to control oocytes (43),
indicating that this protein is also a metal
transporter. However, its cellular localization
and mechanism of action are not defined.
Atkinson and co-workers (48) reported that
murine macrophage Nramp1 is localized to a
subcellular organelle that displays the struc-
tural and functional characteristics of a
phagolysosome. Nramp1 is expressed only in
reticuloendothelial cells, whereas Nramp2
(Dct1) is expressed in most tissues.

ZNT and ZIP, putative zinc efflux and
uptake transporters, respectively. Palmiter
and Findley (51) isolated a cDNA strand
encoding a zinc transporter (ZNT1) from a
rat kidney expression library by complemen-
tation of a mutated, zinc-sensitive BHK
(baby hamster kidney) cell line. The trans-
porter was localized to the plasma mem-
brane of these cells and was found to
mediate both uptake and efflux of zinc,
although efflux was considered the physio-
logical direction of transport. The energetics
of transport were not identified: zinc trans-
port was unaffected by metabolic poisons or
by changes in the ionic composition of the
culture medium (51). The metal ion speci-
ficity of ZNT1 is also not clear. Palmiter
and co-workers (52,53) subsequently identi-
fied two other members of this family,
ZNT2 and ZNT3. ZNT2 is localized to
intracellular endosomal/lysosomal vesicles
and appears to be relatively selective for zinc
(52), whereas ZNT3 is expressed predomi-
nantly in brain and testes (53). Immuno-
histochemical analysis of murine brain
suggests localization of ZNT3 to synaptic
vesicles (53). Huang and Gitschier (54)
identified the fourth member of this family
of transporters, ZNT4, as the protein that is
defective in the inherited zinc deficiency in
the lethal milk mouse. ZNT4 was shown to
confer zinc resistance to a zinc-sensitive yeast
strain and was abundantly expressed in
mammary epithelia and brain (54). The
regulation of ZNT genes is now being
examined (55).
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Recent studies by Gaither and Eide
(56,57) have described another family of
putative zinc transporters, the ZIP family,
that may function for uptake of zinc and pos-
sibly other divalent metals from the extracel-
lular medium into the cytoplasm. There are
at least 12 ZIP-encoding genes in humans,
and three of them (ZIP1, ZIP2, and ZIP3)
are closely related to fungal and plant pro-
teins that are known to be zinc uptake trans-
porters (6,57). Human ZIP1 and ZIP2
mediate a time-, temperature-, and concen-
tration-dependent zinc uptake. Transport is
saturable, with an apparent Km of 3 µM.
Human ZIP2 uptake activity is inhibited by
several other transition metals, suggesting that
this protein may transport other metals.
Transport activity is independent of ATP
content and of Na+ or K+ gradients but is
stimulated by HCO3

– treatment, suggesting a
zinc–bicarbonate co-transport mechanism.

Export of metals mediated by the IREG1
and hephaestin proteins. Release of iron and
possibly of other metals from cells into blood
plasma is mediated by two proteins, IREG1
and hephaestin, that apparently work
together to facilitate iron export across the
basolateral membrane of cells (35,58–61).
IREG1 is also called MTP1 or ferroportin
(Figure 1). This transmembrane protein is
expressed in tissues involved in body iron
homeostasis, including the developing and
mature reticuloendothelial system, the duode-
num, and the pregnant uterus (58). It is local-
ized to the basolateral membrane of the
duodenal epithelial cells, and its overexpres-
sion in tissue culture cells results in intracellu-
lar iron depletion. In the adult mouse,
IREG1 expression in the liver and duodenum
is reciprocally regulated (58). The comple-
mentary protein hephaestin is a transmem-
brane-bound ceruloplasmin homologue that
functions as a multicopper ferroxidase. This
protein is mutated in the sex-linked anemic
(sla) mouse, is highly expressed in intestine,
and is necessary for iron egress from intestinal
enterocytes into the circulation (35).

Uptake and efflux on membrane channels
and pumps. The role of ion channels and pri-
mary active pumps in facilitating transport of
heavy metals appears to be relatively minor
overall, although there may be some excep-
tions. For example, in excitable tissues Cd2+

and Pb2+ may enter cells via voltage-sensitive
channels (62,63). Studies by Hinkle and co-
workers (62) in a pituitary cell line demon-
strate that one route of cadmium uptake in
these cells is via voltage-gated dihydropyridine-
sensitive calcium channels. The voltage-gated
calcium channels also admit Ba2+ and Sr2+ and
are inhibited by a number of divalent metal
cations. Receptor-activated calcium channels
may also allow other divalent cations to enter
the cell, as suggested by the observation that

receptor-activated calcium channels are inhib-
ited by Zn, Cd, Ni, Co, and Mn (64); how-
ever, the nature of the inhibition by the metals
is unknown. Crofts and Barritt (65) indicate
that Mn2+ can move into hepatocytes through
the receptor-activated Ca2+ inflow system,
identifying a potential regulated mechanism
for hepatic manganese uptake. Metals also
interact with plasma membrane Ca2+-ATPases,
the predominant proteins for Ca2+ efflux, rais-
ing the possibility that other metals may use
these ATPases to exit cells and enter blood
plasma (Figure 1).

Transport of metal complexes on organic
solute transporters. In biological fluids and
tissues, most metals are present largely as
complexes with amino acids, peptides, pro-
teins, phospholipids, and other tissue con-
stituents rather than as the free metal cations.
Binding of reactive heavy metals to metal-
lothioneins, ferritin, transferrin, lactoferrin,
melanotransferrin, hemosiderin, ceruloplas-
min, citrate, ascorbate, glutathione (GSH),
cysteine, or other amino acids is a major pro-
tective mechanism. Likewise, the biological
reactivity of essential metals is regulated by
interaction with specific ligands, and in par-
ticular with prosthetic groups on proteins.
Thus, the disposition of both essential and
toxic metals is regulated to a large extent by
the availability and relative concentrations of
the biological ligands as well as by the ability
of the resulting metal complexes to serve as
substrates for the various organic solute trans-
porters (2,12,66). Because most organic
solute carriers have a broad substrate speci-
ficity, it is likely that they would readily
accept substrates whose only modification is
the presence of a metal ion.

Several families of multispecific organic
solute transporters have now been identified,
and the possible contribution of these pro-
teins to metal homeostasis is being examined
(2). Transporters that facilitate uptake from
blood plasma into the cell include OATPs
(organic anion-transporting polypeptides),
OATs (organic anion transporters), OCTs
(organic cation transporters), and NTCP
(Na+-taurocholate [bile acid]–cotransporting
polypeptide) (Figure 2). Amino acid trans-
porters and peptide transporters have also
been identified that mediate cellular uptake
and export. Theoretically, these plasma mem-
brane carriers may facilitate cellular uptake of
metals that are bound to their endogenous
substrates (Figure 2). Indeed, several groups
have provided evidence for cellular copper or
zinc uptake as histidine complexes on amino
acid carriers (67,68). In erythrocytes, zinc
may also be taken us as an anionic complex
([Zn(HCO3)2 Cl]–) through the anion
exchanger (69). Studies in our laboratory and
in other laboratories have demonstrated
transport of methylmercury as a cysteine

complex on the L-type neutral amino acid
carriers (2,12,70–72).

Although considerable information has
recently been obtained on proteins that medi-
ate organic solute uptake into cells, less is
known about organic solute export. One
major class of proteins that may contribute to
cellular export of metal complexes is the
ATP-binding cassette (ABC) superfamily of
proteins and, in particular, the MDR (multi-
drug resistance) and MRP (multidrug resis-
tance protein) families within the ABC
superfamily (2) (Figure 3). MDR and MRP
transport proteins are generally multispecific,
transporting a variety of structurally unrelated
molecules, including organometallic com-
plexes. Evidence has been presented that
MRP2 mediates biliary transport of metals
complexed with GSH, including arsenic and
cisplatin, and possibly copper, cadmium, and
mercury, whereas cells overexpressing MDR1
are more resistant to cationic lipophilic metal
complexes, indicating transport of the metal
complexes on MDR1 (2,73–84). Whether
other multispecific transporters also mediate
transport of organometallic complexes has
not yet been examined.

Summary
Several metal transport mechanisms have
recently been identified at the molecular level,
and investigators are beginning to examine
their structure, function, and regulation.
Many of these transporters have thus far been
identified only at the cDNA level, and there is
comparatively little information on their cellu-
lar and subcellular localization, their func-
tional orientation in the membrane (uptake or
efflux), driving force, substrate selectivity, or
regulation under physiological and pathophys-
iological conditions. It is likely that additional
families of metal-specific transporters will be
identified in the near future and that many
new members of existing families will
be described.
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