

# Sequestration's Role in Carbon Management - a global perspective

## by Paul Freund IEA Greenhouse Gas R&D Programme

www.ieagreen.org.uk



## **IEA Greenhouse Gas Programme**

### Participants



Australia Belgium Canada CEC Denmark Finland Japan Korea



**Netherlands New Zealand** Norway **Poland** Sweden Switzerland **United Kingdom United States** Venezuela

Sponsors: BP, Chevron, EniTecnologie, EPRI, ExxonMobil, RWE AG, Shell International

## **IEA Greenhouse Gas Programme**

### **Objectives**

- Evaluate abatement technologies
- Disseminate the results
- Identify targets for appropriate R&D and promote action

## **Global Perspective**

### Overview

- The need for deep reductions in emissions
- CO<sub>2</sub> capture and storage can contribute
- Where this could be used and how many options
- Capture of CO<sub>2</sub> cost implications
- Storage of CO<sub>2</sub> demonstrations are essential

#### **Deep reductions will be needed Emissions (GtC/yr)** 20.0 550 Ceiling is92a 15.0 10.0 5.0 0.0 -5.0 1990 2015 2065 2090 2115 2190 2290 2040 2140 2165 2215 2240 2265

Battelle Memorial Institute

Pacific Northwest National Laboratory

## Achieving deep reductions

### **Technology Options**

- Reduce energy use
- Switch to different fuels
- Sequester CO<sub>2</sub>

# Achieving deep reductions

### **Technology Options**

- Reduce energy use
  - Important but not sufficient
- Switch to different fuels
  - Gas: cost-effective where supplies available
  - Renewable supplies or nuclear can contribute
- Sequester CO<sub>2</sub>
  - Enables continued use of existing energy supply
  - Enhancing natural sinks: limited potential
  - $\succ$  Capture and storage of CO<sub>2</sub>: substantial capacity

# Several options will contribute

### Model results of J Edmonds (PNNL)



Battelle Memorial Institute

Pacific Northwest National Laboratory

## Is there sufficient capacity?

### PNNL simulation:

- Total amount of CO<sub>2</sub> to be captured 1990 2095
  > CBF Case: 1230 Gt CO<sub>2</sub>
- IEA GHG estimates of reservoir capacities:
  - Disused oil and gas fields
  - Unminable coal measures
  - Deep saline reservoirs 400 10000 Gt CO<sub>2</sub>
  - Deep ocean

900 Gt  $CO_2$ >15 Gt  $CO_2$ 00 - 10000 Gt  $CO_2$ >4000 Gt  $CO_2$ 

# **Potential Applications**

### **Capture and storage of CO<sub>2</sub>**

- Power generation
  - The "conventional" application
- Major energy using industry
  - e.g. Oil refining
- Manufacture of decarbonised fuel for transport
  - $\geq$  e.g. H<sub>2</sub> from natural gas

# CO<sub>2</sub> Capture - process schemes

### Application in power generation

- Existing capture technology:
  - Post combustion scrubbing of flue gases
- New processes using existing technology
  Precombustion decarbonisation
- Processes under development:
  Combustion in O<sub>2</sub>/recycled-CO<sub>2</sub>

## **Cost of Capture**

#### (relative to base case of CCGT for gas, PF for coal)





#### **Cost of Generation** c/kWh 1 6 Without capture 5 With 4 capture 3 Capture penalty 2 1 0 **Gas CCGT Coal PF Coal IGCC** Gas cost \$2/GJ Coal cost \$1.5/GJ 10% dcf

# **Penalty for capturing CO<sub>2</sub>**



### Several factors contribute to extra cost:

- Compensation for reduction in nominal output
- Capital and operating cost of CO<sub>2</sub> capture plant
- CO<sub>2</sub> compression

## What needs to be done?

### CO<sub>2</sub> capture

- Reduce cost to encourage early application
- Demonstrate capture in full-scale plant



# CO<sub>2</sub> Capture

### Some developments

- Solvent-assisted membrane pilot (Norway)
- Improved amine solvents (Japan)
- Novel membranes (Netherlands)
- CO<sub>2</sub> Capture Project (9 industrial partners)
- CO<sub>2</sub> Capture test network (International)
- As yet, no full-scale demonstration

# **Options for CO<sub>2</sub> Storage**

### Storage in:

- Depleted oil and gas fields
- Unminable coal measures
- Deep saline reservoirs
- Deep ocean

### Storage as:

- CO<sub>2</sub> hydrate, Mineral carbonate, Solid CO<sub>2</sub>
- Conversion to chemicals
- Solid carbon



## CO<sub>2</sub> Storage in depleted oil fields

# Global potential





## What needs to be done?

## CO<sub>2</sub> capture and storage

- Reduce cost to encourage early application
- Demonstrate capture in full-scale plant
- Demonstrate that storage is safe and secure
- Ensure minimal environmental impact
- Verify amount of CO<sub>2</sub> stored



### **Monitoring CO<sub>2</sub> storage - Sleipner**



# Weyburn CO<sub>2</sub>-EOR project



CO<sub>2</sub> supplied by Dakota Gasification in Beulah, North Dakota

## What needs to be done?

## CO<sub>2</sub> capture and storage

- Reduce cost to encourage early application
- Demonstrate capture in full-scale plant
- Demonstrate that storage is safe and secure
- Ensure minimal environmental impact
- Verify amount of CO<sub>2</sub> stored
- Win acceptance in international policy
- Win acceptance by the public

