

The New Company

What is ALSTOM?

1999/00 ProForma Sales, Estimate

- Over \$22 billion sales
- ~ 80% of sales directly energy or transport related
- Strong global presence
 - USA/Americas
 - Eastern Europe
 - S.E. Asia
- 150,000 employees

Combined Orders by Region

The Starting Point

$CO_2 = separation + compression + sink$

- Base cost of compression = \$450/kW export +
 11% Qin
- Measaubbing = \$1130/kW export + 28% Qin
- Cryogenic O₂ with cold gas recyde = \$820 kW
 export + 26% Qin

CO₂ Separation Options

Conclusion thus far (1)

- Existing technology of MEA or O₂ w/gas recycle to existing plants is not a solution.
- Higher potential exist for <u>solid fuels</u> high temp chemical looping for:
 - Decarbsyn fuel
 - O₂ separation
 - Direct capture of CO₂
- Higher potential exist for <u>methane</u> with:
 - O₂ transport membrane

Conclusion thus far (2)

- Ability to put multi pollutants "down hole" will have a major impact on cost.
- Ability to put <u>all</u> products of combustion "down hole" should be the long term goal.
 - One control for all pollutants known and not known

- Down hole specs for all products of solid fuel combustion.
- Process design on high temp chem looping
- Process work on combustion at supercritical conditions.
- Cost and scale up potential of Membrane tech
- Target time frame toward demonstration

