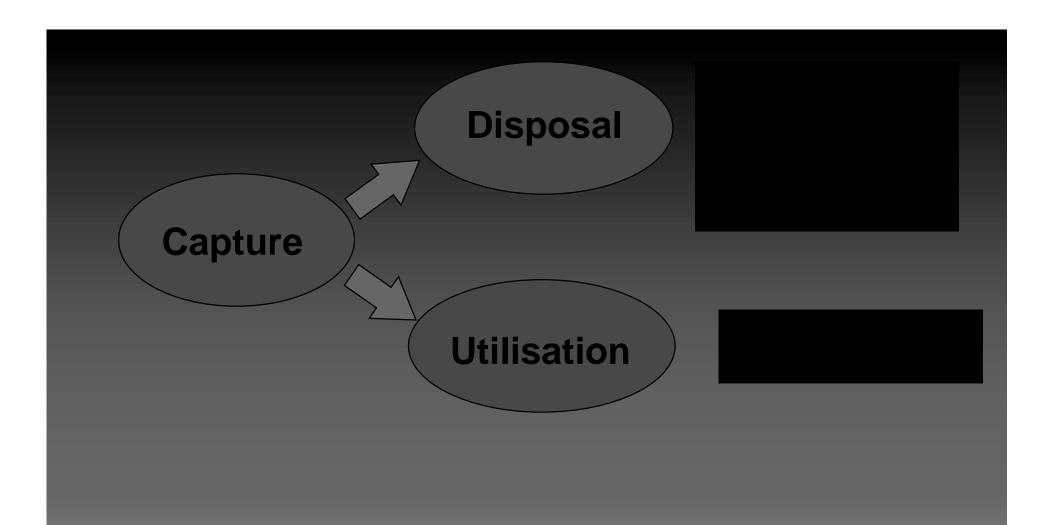
An Industry Perspective on Geologic Storage & Sequestration

Gardiner Hill, BP Craig Lewis, Chevron

May 15, 2001, NETL's 1st National Conference on Carbon Sequestration

Disclaimer


- The following may not be the only Industry Perspective on Storage & Sequestration
- It represents the opinions of BP and Chevron and some other energy companies that we have talked to

Overview

- i otonitai ivow Dusniess inipact
- Business Drivers for R&D
- Technology Objectives
- Definitions of Storage & Sequestration
- Break-down of Geologic Storage R&D Categories
- Where We Think Industry (and others) are already strong
- Where We Think Additional R&D Gaps Still Exist
- Conclusions

15th May'01

Capture and Storage of CO₂

15th May'01

1st National Conference on Carbon Sequestration

Potential New Business Impact

In order to reduce the atmospheric concentration of carbon dioxide to 550ppm we need to capture

Potential Global Storage Capacity

Global storage Capacity (GtCO₂)

Exhausted Oil & Gas Reservoirs^a 920

Saline Formations^b

3000

a, IEA report PH3/22 Feb 2000 b McMullan : Carbon Dioxide Collection & Disposal 1995 1st National Conference on Carbon Sequestration

15th May'01

5

Potential Business Drivers

- Concern by the public and stakeholders
- Mandates or incentives, particularly overseas
- Potential future incentives in U.S.
- Jay Edmonds Study (PWNL) concluded
 Sequestration and Geologic Storage would be most important of options to achieve deep reductions through 2100
- E&P industry <u>already</u> has the downhole competencies to perform CO2 storage

Potential Business Drivers

- Separation of hydrogen from fossil fuels offers rapid availability of carbon free energy carrier
- Centralised capture and storage of CO₂ is viable option to minimise emissions
 - Potential storage capacity for 50 100% of global emissions to 2050
- Offers option to kick-start transition while providing breathing space for adaptation and development of long-term solutions
- Some R&D gaps still exist, however

15th May'01

1st National Conference on Carbon Sequestration

Objective for R&D Gaps

- Industry has much of the core competencies
- Outside of EOR & Natural Analogs, storage experience is fairly time scale limited
- To store significant volumes of CO2 will require:

- "Convince governments, the public and the environmental NGOs this alternative is safe and effective"

Definitions of Storage &

Coquestrotion

• 3 trapping mechanisms

- Solubility Trapping probably volume limited
- Mineral Trapping but time scales may be excessive but most "permanent" of the options except in unique minerologies
- Hydrodynamic Trapping In many cases most of the CO2 volume, but potential for vertical and horizontal migration exist

Storage Definition

 Not necessarily permanent, may have some leakage risk, could be produced back if deemed necessary later

Sequestration Definition

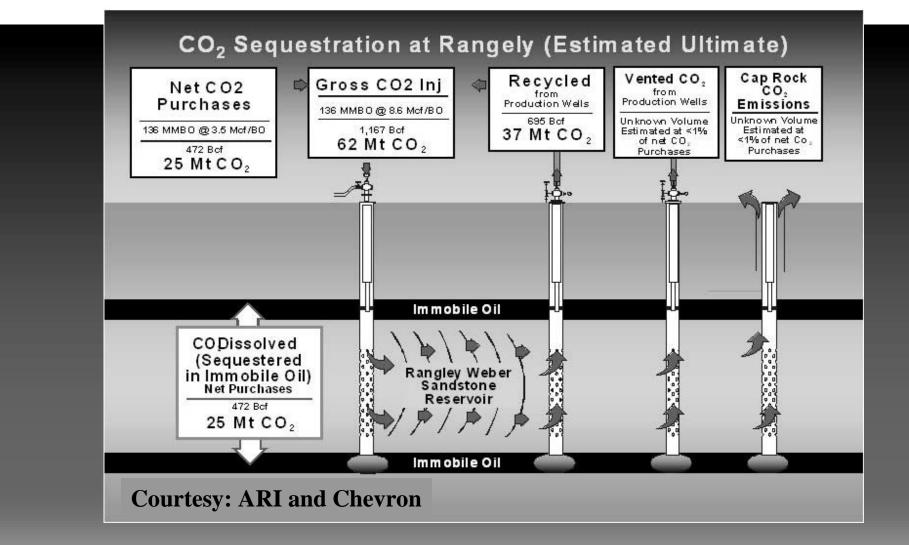
- "Permanent" with very little chance of leaks

Geologic R&D Categories

(& examples of what they mean)

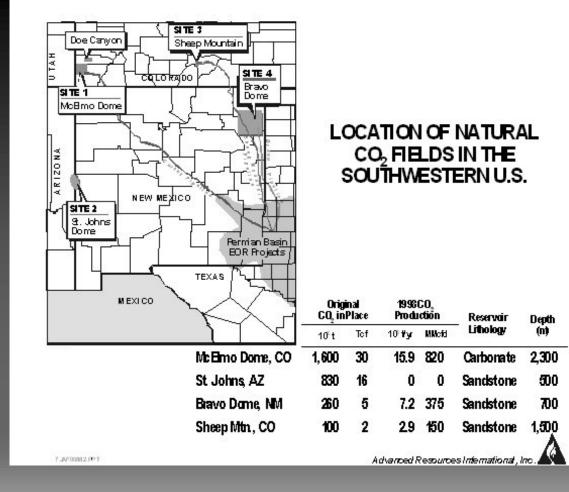
- Understanding Geologic Storage
 - Types of trapping, seals & caprocks, etc.
- Maximizing Sequestration Potential
 - How to maximize sweep potential, minimize leakage, and maximize volume (e.g. EOR drivers different than CO2 storage)
- Short Term Monitoring & Verification
 - How to use existing tools such as seismic, tracers, etc.
- HSE Risk Assessment Methodology
 - How to assess risk, mitigate & remediate risk
- Long-Term Monitoring & Verification
 - What cheaper, wider use tools might be developed later

15th May'01


The Good News, & a few Examples

Understanding Geologic Storage

- Already being addressed by National Labs, JIPs, academia, etc.
- Maximizing Sequestration Potential
 - Already being addressed by National Labs, JIPs, academia, etc.
- Short Term Monitoring & Verification
 - Already being researched by world class efforts such as Weyburn, LBL's GEOSEQ, and others
- The E&P industry already knows about EOR, Natural Analogs, & is beginning to understand Pure CO2 Storage
 - Examples are SACS, Weyburn, etc.

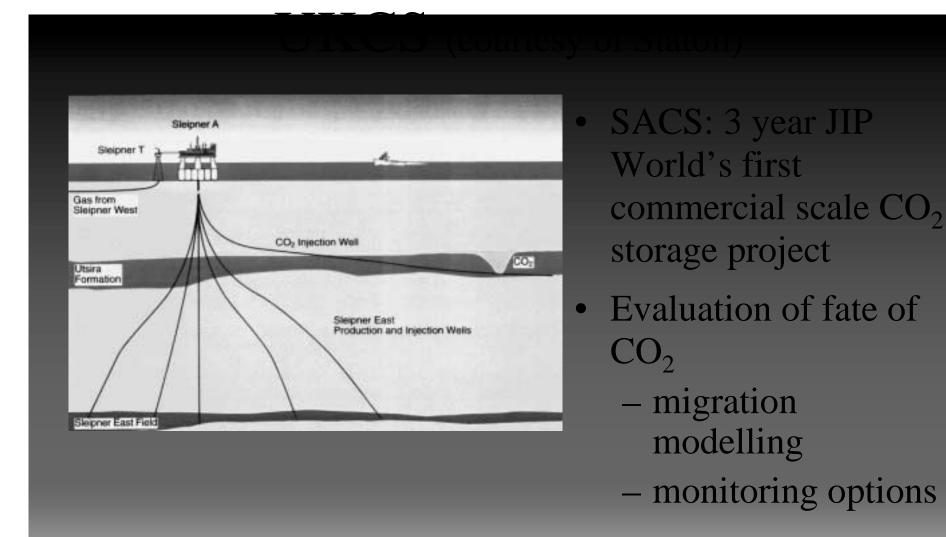

Enhanced Oil Recovery We Know

A Lot Here

Natural CO₂ Analogs A Lot Can

Be Leveraged Natural CO2 Reservoirs

1st National Conference on Carbon Sequestration


CO₂ Storage Offshore Norway

(courtesy of Statoil)

1st National Conference on Carbon Sequestration

CO₂ Re-Injection at Sleipner,

1st National Conference on Carbon Sequestration

Conclusions

- The industry already knows a fair amoun about EOR, Natural Analogs, etc.
- More R&D is necessary to overcome potential public perception problems
- Some Gaps already being addressed by world-class R&D organizations
 - Examples include understanding geologic storage, maximizing sequestration, short-term verification & monitoring (V&M)
- Some Gaps need additional significant work
 HSE risk assessments; long-term V&M