
guest editor  Fred Johnson

1 Introduction 
Fred Johnson, DOE Office of Science

32 DOE’s SciDAC Visualization and Analytics 
Center for Enabling Technologies – Strategy for 
Petascale Visual Data Analysis Success
E. Wes Bethel, Chris Johnson  et al.   

4 Failure Tolerance in Petascale Computers
Garth Gibson, Bianca Schroeder, and Joan Digney

41 Emerging Visualization Technologies for 
Ultra-Scale Simulations  Kwan-Liu Ma  

11 Enabling Advanced Scientific Computing 
Software Steven Parker, Rob Armstrong,
David Bernholdt, Tamara Dahlgren  et al. 

47 End-to-End Data Solutions for Distributed 
Petascale Science
Jennifer M. Schopf, Ann Chervenak, Ian Foster, Dan 
Fraser et al.  

18 Performance Engineering: Understanding 
and Improving the Performance of Large-
Scale Codes
David H. Bailey, Robert Lucas, Paul Hovland, Boyana 
Norris et al. 

55 Scientific Data Management: Essential 
Technology for Accelerating Scientific 
Discoveries Arie Shoshani, Ilkay Altintas, Alok 
Choudhary, Terence Critchlow et al.

24 Creating Software Tools and Libraries for 
Leadership Computing
John Mellor-Crummey, Peter Beckman, Keith Cooper, 
Jack Dongarra et al. 

63 The Earth System Grid Center for Enabling 
Technologies: Enabling Community Access to 
Petascale Climate Datasets 
Dean N. Williams, David E. Bernholdt, Ian T. Foster, and 
Don E. Middleton

Software Enabling 
Technologies for  
Petascale Science

http://www.ctwatch.org/

ISSN 1555-9874 Volume 3 Number 4 November 2007available on-line at http://www.ctwatch.org/quarterly/



Volume 3 Number 4 November 2007ISSN 1555-9874

guest editor  Fred Johnson

Software Enabling  
Technologies for  
Petascale Science



November 2007 1

Fred Johnson
Acting Director, Computational Science 
Research & Partnerships (SciDAC) Division
Office of Advanced Scientific Computing 

Research
DOE Office of Science

Introduction
The critical importance of enabling software technology for leading edge research 

is being thrown into sharp relief by the remarkable escalation in the application com-
plexity, quantities of data that scientists must now grapple with, and the scale of the 
computing platforms that they must use to do it. The effects of this ongoing complexity 
and data tsunami as well as the drive toward petascale computing are reverberating 
throughout every level of the software environment on which today’s vanguard appli-
cations depend – through the algorithms, the libraries, the system components, and the 
diverse collection of tools and methodologies for software development, performance 
optimization, data management, and data visualization. It is increasingly clear that our 
ability today to adapt and scale up the elements of this common software foundation 
will largely determine our ability tomorrow to attack the questions emerging at the 
frontiers of science. 

Nowhere is this connection between scalable software technology and breakthrough 
science more evident than in the articles of this issue of CTWatch Quarterly.  Each 
one offers an informative and stimulating discussion of some of the major work being 
carried out by one of the Centers for Enabling Technologies (CET) of the Department of 
Energy’s wide ranging and influential SciDAC program. The joint mission of the CETs 
is to assure that the scientific computing software infrastructure addresses the needs of 
SciDAC applications, data sets and parallel computing platforms, and to help prepare 
the scientific community for an environment where distributed, interdisciplinary 
collaboration is the norm. Each CET is a multidisciplinary team that works closely 
with one or more of SciDAC’s major application teams. Each one focuses its attention 
on the mathematical and computing problems confronting some major aspect of 
software functionality, such as distributed data management, application development, 
performance tuning, or scientific visualization.  Making necessary progress in any of 
these areas requires the collective effort from the national (and international) research 
community, yet as these articles show, working in the context of SciDAC research has 
enabled these CETs to make leadership contributions. 

The articles here reflect the rich diversity of components, layers and perspectives 
encompassed by SciDAC’s software ecosystem. They are grouped together according 
to the aspect of the problem of scalability they address. One group of articles focuses 
on the software innovations that will be necessary to cope with multiple order of mag-
nitude increases in the number of processors and processor cores on petascale systems 
and beyond; another set focuses on the data management challenges spawned by the 
exponential growth in the size of tomorrow’s routine data sets; and finally, CETs dedi-
cated to scientific visualization address the need to understand increasingly large and 
complex data sets generated either experimentally or computationally. The articles in 
this issue of CTWatch Quarterly follow these groupings. 

We begin with a discussion (Gibson et al.) of the future requirements for fault 
tolerant computing from the leaders of the Petascale Data Storage Institute (PDSI). 
Given the surprising consequences that scaling up often introduces, it seems to strike 
an appropriate note – sobriety based on experience. The PDSI team has been collecting 
and analyzing data on failure rates from contemporary HPC systems in an effort to 
understand the impact that scaling up to systems with millions of hardware elements 
will have on successful application execution in general, and on the requirements 
for next generation storage systems, in particular. The results of their timely analysis 
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are thought provoking. They show generally that as systems scale up, conventional 
approaches to fault tolerance based on familiar check-point and restart may break 
down along various fronts because the size and frequency of the checkpoints that must 
be taken on massive systems makes the process unsustainable. Their analysis makes it 
clear that systems research in this area is destined to become more and more critical. 

Three of the CETs focus on issues of software development and maintenance that are 
raised by the extreme demands of next generation applications and the requirements of 
the HPC systems on which they must run. The scope of the Center for Technology for 
Advanced Scientific Computing Software (TASCS), presented in Parker et al., is the most 
general.  For the TASCS group, the increasing scale and complexity of SciDAC applica-
tions and systems software is itself a critical problem. They argue that a far higher 
degree of modularity is required in the software that describes the multi-physics, multi-
scale simulations that are now being developed. The more stove-piped these applica-
tions are, the less smoothly and intelligently they will be able to adapt and innovate to 
meet the conditions that we know are coming – more parallelism, more data intensity, 
shorter mean time to failure, and so on. The core techniques, tools, components and 
best practices of the Common Component Architecture (CCA) that they survey in 
their article are designed to help solve this aspect of the scalability problem for the 
broad SciDAC community.

The other two code-oriented CETs – the Performance Engineering Research Institute 
(PERI) and the Center for Scalable Application Development Software (CScADS) – focus 
on application performance and programmer productivity in the context of systems 
designed with thousands or millions of multicore and/or heterogeneous processors. 
They share the common goal of providing a tool set for achieving high performance 
that is as automated and easy to use as possible, allowing researchers to keep their 
attention focused on the domain science questions at hand. Both have made concerted 
efforts, through sponsored workshops and direct contact, to engage with and leverage 
the experience of the SciDAC developer community, with initial emphasis in the areas 
of Fusion Energy and Combustion. Yet their work emphasizes different, but comple-
mentary aspects of the problem. The PERI group (Bailey et al.) builds on a foundation 
of performance modeling, endeavoring to understand, through systematic empirical 
testing and analysis, the way real world applications behave on real world systems. 
The knowledge gained thereby is then used to help guide the application design and 
development process through a variety of techniques, the more automated the better. 
By contrast, the CScADS group (Mellor-Crummey et al.) is exploring programming 
models that make the process of developing well tuned, highly parallel software as easy 
and efficient as possible by innovatively combining high level languages, scripting lan-
guages, compilers and other software tools. As these efforts converge, their collective 
results hold tremendous promise for the HPC developer community.

The CETs dedicated to scientific visualization have to confront the problem of 
petascale science from a uniquely important point of view, namely, where the bits meet 
the mind and the bandwidth is inherently limited. Their task is to find ways to enable 
scientists to fruitfully apply their observational capabilities, constrained as they are by 
nature, to some of the world’s largest and most complex datasets, using some of the 
world’s most massive and sophisticated computational platforms. 

As described in the Bethel, Johnson et al. article, the Visualization and Analytics 
Center for Enabling Technologies (VACET) group is developing solutions to this problem 
that combine “query-driven” strategies, which pre-filter the data to be visualized for 
relevance and interest, with “context and focus” user interface designs, which enable 
scientists to control their field of attention while navigating complex data spaces. The 
success of this approach obviously depends on finding fast and efficient ways to index 
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and search targeted data sets; VACET is collaborating closely with other centers in 
researching this problem. The work of the Institute for Ultrascale Visualization (Ultraviz 
Institute), described in Kwan-Liu Ma’s article, also (by necessity) puts the question of 
interface design at the center of its research agenda, especially for cases requiring the 
exploration of time-varying multivariate volume data. The Institute’s investigation of 
“in situ” visualization attempts to address problems at the other end of the visualization 
pipeline. To overcome the severe problems of data logistics involved in managing the 
rendering of multi-terabyte data sets in networked environments, in situ visualization 
performs the necessary calculations while data still resides on the supercomputer that 
was used to generate it.

Similar problems of petascale data logistics are central to the mission of the three 
CETs that focus on large scale data management for distributed environments. As the 
leaders of the Center for Enabling Distributed Petascale Science (CEDPS) make clear in 
their article (Schopf et al.), such questions of “data placement” are central to the end-
to-end effectiveness of SciDAC’s highly distributed collaboration environments. The 
authors describe their development of a policy-driven data placement service, which 
builds on their experience working with several leading application communities, 
including HEP, Fusion Energy, Combustion, and Earth Systems. Complementary 
efforts on automated scientific workflow, using well known Kepler middleware, are 
also underway at the Scientific Data Management (SDM) Center. But in order to help 
investigators manage and analyze the data deluge they confront, the SDM Center 
research portfolio extends farther down the storage middleware stack. In the Shoshani 
et al. article, they describe the ensemble of software tools and middleware that they are 
developing to help scientists to explore their data through automatic feature extraction 
and highly scalable indexing of massive data sets, and to optimize their use of storage 
resources through low level parallel I/0 libraries and in situ processing on the storage 
nodes (“active storage”).

The third CET focused on data management – the Earth System Grid Center for 
Enabling Technologies (ESG-CET) – revolves, as the name suggests, around a single 
major application community, viz. the climate research community. This community 
has been at the forefront of the data grid movement for many years, aggressively devel-
oping and deploying data grid technology to show how high impact data sharing can 
be implemented on a global scale, even while the volume of data continues to escalate. 
Their discussion (Williams et al.) of the past successes, the current implementation, 
and the future plans for the Earth System Grid describes a model that several other 
application communities would do well to emulate as we enter the era of petascale 
data. 

Reflecting on the range and diversity of the work on software cyberinfrastructure 
presented in this issue of CTWatch Quarterly, it’s hard to avoid the conclusion that the 
relentless movement toward petascale science, in which the DOE SciDAC program 
has played such a leading role, has generated a software ecosystem whose continued 
vitality seems more and more essential to success on the new frontiers of research. 
But we cannot be complacent. The push beyond petascale is just around the corner 
and, as before, the effort to scale up even further is certain to bring up uniquely dif-
ficult problems that we have not yet anticipated.  We must hope, therefore, that the 
next generation of enabling software technology researchers contains the same kind of 
energetic, dedicated and creative pioneers that have led the current one.  
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Introduction 

Three of the most difficult and growing problems in future high-performance com-
puting (HPC) installations will be avoiding, coping and recovering from failures. The 
coming PetaFLOPS clusters will require the simultaneous use and control of hundreds 
of thousands or even millions of processing, storage, and networking elements. With 
this large number of elements involved, element failure will be frequent, making it 
increasingly difficult for applications to make forward progress. The success of petascale 
computing will depend on the ability to provide reliability and availability at scale. 

While researchers and practitioners have spent decades investigating approaches 
for avoiding, coping and recovering from abstract models of computer failures, the 
progress in this area has been hindered by the lack of publicly available, detailed failure 
data from real large-scale systems. 

We have collected and analyzed a number of large data sets on failures in high-
performance computing (HPC) systems. Using these data sets and large scale trends 
and assumptions commonly applied to future computing systems design, we project 
onto the potential machines of the next decade our expectations for failure rates, mean 
time to application interruption, and the consequential application utilization of the 
full machine, based on checkpoint/restart fault tolerance and the balanced system 
design method of matching storage bandwidth and memory size to aggregate com-
puting power.1

Not surprisingly, if the growth in aggregate computing power continues to outstrip 
the growth in per-chip computing power, more and more of the computer’s resources 
may be spent on conventional fault recovery methods. For example, we envision appli-
cations being denied as much as half of the system’s resources in five years.2 The alter-
natives that might compensate for this unacceptable trend include application-level 
checkpoint compression, new special checkpoint devices or system level process-pairs 
fault-tolerance for supercomputing applications. 

Our interest in large-scale cluster failure stems from our role in a larger effort, the 
DOE SciDAC-II Petascale Data Storage Institute (PDSI), chartered to anticipate and 
explore the challenges of storage systems for petascale computing.3 In as much as check-
point/restart is a driving application for petascale data storage systems, understanding 
node failure and application failure tolerance is an important function for the PDSI. To 
increase the benefit of our data collection efforts, and to inspire others to do the same, 
we are working with the USENIX Association to make publicly available these and 
other datasets in a Computer Failure Data Repository (CFDR).4 Systems researchers 
and developers need to have ready access to raw data describing how computer failures 
have occurred on existing large-scale machines.

Garth Gibson 
Carnegie Mellon University

Bianca Schroeder
Carnegie Mellon University

Joan Digney
Carnegie Mellon University

1 Grider, G. “HPC I/O and File System Issues 
and Perspectives,” In Presentation at ISW4, 
LA-UR-06-0473, Slides available at http://
www.dtc.umn.edu/disc/isw/presentations/
isw4 6.pdf, 2006. 

2 Schroeder, B.,  Gibson, G. “Understanding 
Failures in Petascale Computers,” In SciDAC 
2007: Journal of Physics: Conference Series 78 
(2007) 012022.

3 Scientific Discovery through Advanced 
Computing (SciDAC), The Petascale Data 
Storage Institute (PDSI). http://www.
pdsi-scidac.org/, 2006. 

4 The Computer Failure Data Repository 
(CFDR) - http://cfdr.usenix.org/. 

Failure Tolerance in Petascale Computers 
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5 Schroeder, B., Gibson, G. “A large-scale study 
of failures in high-performance computing 
systems,” In Proc. of the 2006 International 
Conference on Dependable Systems and 
Networks (DSN’06), 2006. 

6 The LANL raw data and more information are 
available at: http://www.lanl.gov/projects/
computerscience/data/. 

Data Sources 

The primary data set we are studying was collected between 1995 and 2005 at Los 
Alamos National Laboratory (LANL, www.lanl.gov) and covers 22 high-performance 
computing systems, including a total of 4,750 machines and 24,101 processors.5 Figure 
1 shows pictures of  two LANL systems. The data contain an entry for any failure that 
occurred during the nine year time period that resulted in an application interruption 
or a node outage. It covers all aspects of system failures: software failures, hardware 
failures, failures due to operator error, network failures, and failures due to environ-
mental problems (e.g., power outages). For each failure, the data notes start time and 
end time, the system and node affected, as well as categorized root cause information. 
To the best of our knowledge, this is the largest failure data set studied to date, both in 
terms of the time-period it spans and the number of systems and processors it covers. 
It is also the first to be publicly available to researchers.6 

Figure 1. Example high-performance computer clusters at Los Alamos National Laboratory, Blue 
Mountain (above) and ASC Q.

Understanding Outages in LANL Computers 

The first question most ask is “What causes a node outage?” Figure 2 provides a root 
cause breakdown of failures from the LANL data into human, environment, network, 
software, hardware, and unknown, with the relative frequency of the high-level root 
cause categories on the left. Hardware is the single largest source of malfunction, with 
more than 50% of all failures assigned to this category. Software is the second largest 
contributor, with around 20% of all failures. The trends are similar if we look at Figure 
2(b), which shows the fraction of total repair time attributed to each of the different 
root cause categories.
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Figure 2. (a) The breakdown of failures by root cause. (b) The breakdown of total repair time spent 
on a system due to each root cause. Each bar shows the breakdown for the systems of one particular 
hardware platform, labeled D, E, F, G, and H, and the right-most bar shows aggregate statistics across all 
LANL systems.

 
It is important to note that the number of failures with undetermined root cause is 

significant. Since the fraction of hardware failures is larger than the fraction of unde-
termined failures, and the fraction of software failures is close to that of undetermined 
failures, we can still conclude that hardware and software are among the largest con-
tributors to failures. However, we cannot conclude that  any of the other failure sources 
(Human, Environment, Network) is actually insignificant.

A second question is “How frequently do node outages occur?” or “How long can 
an application be expected to run before it will be interrupted by a node failure?” Figure 
3(a) shows the average number of node failures observed per year for each of the LANL 
systems according to the year that each system was introduced into use.  The figure 
indicates that the failure rates vary widely across systems, from less than 20 failures 
per year per system to more than 1100 failures per year. Note that a failure rate of 
1100 per year means that an application running on all the nodes of the system will be 
interrupted and forced into recovery more than two times per day. Since many of the 
applications running on these systems require a large number of nodes and weeks of 
computation to complete, failure and recovery are frequent events during an applica-
tion’s execution. 

One might wonder what causes the large differences in failure rates across the dif-
ferent systems. The main reason for these differences is that the systems vary widely 
in size. Figure 3(b) shows the average number of failures per year for each system 
normalized by the number of processors in the system. The normalized failure rates 
show significantly less variability across the different types of systems, which leads us 
to two interesting suggestions. First, the failure rate of a system grows in proportion to 
the number of processor chips in the system. Second, there is little indication that systems 
and their hardware get more reliable over time as technology changes. 

	  

Figure 3. (a) Average number of failures for each LANL system per year. (b) Average number of failures 
for each system per year normalized by number of processors in the system. Systems with the same 
hardware type have the same color.
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 7 Top 500 supercomputing sites - http://
www.top500.org/, 2007. 

8 Asanovic, K., Bodik, R., Catanzaro, B. C., 
Gebis, J. J., Husbands, P., Keutzer, K., Patterson, 
D. A., Plishker, W. L., Shalf, J., Williams, S. 
W., Yelick, K. A. “The landscape of parallel 
computing research: A view from Berkeley,” 
Technical Report UCB/EECS-2006-183, EECS 
Department, University of California, Berkeley, 
Dec 2006. 

9 Roth, P. C. “The Path to Petascale at Oak 
Ridge National Laboratory,” In Petascale Data 
Storage Workshop Supercomputing ’06, 2006. 

Lower Mean Time To Interrupt (MTTI) in Petascale Computers

What does our data analysis, examined in the light of recent technology trends, 
predict for the reliability and availability of future HPC systems?

Our essential prediction is that the number of processor chips will grow with time, 
increasing failure rates and fault tolerance overheads. 

First, we expect petascale computers will be conceived and constructed according 
to long standing trends (aggregate compute performance doubling every year) shown 
on the top500.org list of the largest documented computers.7 Second, we expect little 
or no increase in clock speed, but an increase in the number of processor cores per 
processor chip, commonly referred to as a socket in the new multi-core processor era, 
at a fast rate, estimated as doubling every two years.8 Our data also predicts that failure 
rates will grow in proportion to the number of sockets in the system and that there is 
no indication that the failure rate per socket will decrease over time with technology 
changes. Therefore, as the number of sockets in future systems increases to achieve 
top500.org performance trends, we expect the system wide failure rate will increase. 

In an attempt to quantify what one might expect to see in future systems, we 
examined the LANL data and found that an optimistic estimate for the failure rate 
per year per socket is 0.1. Our data does not predict how failure rates will change with 
increasing numbers of cores per processor chip core, but it is reasonable to predict that 
many failure prone mechanisms operate at the chip level, so we make the (possibly 
highly optimistic) assumption that failure rates will increase only with the number of 
chip sockets, and not with the number of cores per chip. 

As a baseline for our projections, we modeled the Jaguar system at Oak Ridge 
National Laboratory (ORNL). After it is expanded to a Petaflop system in 2008, Jaguar 
is expected to have around 11,000 processor sockets (dual-core Opterons), 45 TB of 
main memory and a storage bandwidth of 55 GB/s.9 Predictions for system expansion 
are bracketed with three projected rates of growth, with numbers of cores doubling 
every 18, 24 and 30 months.

	  

Figure 4. (a) The expected growth in failure rate and (b) decrease in MTTI, assuming that the number of 
cores per socket grows by a factor of two every 18, 24 and 30 months, respectively, and the number of 
sockets increases so that aggregate performance conforms to top500.org.

Figure 4 plots the expected increase in failure rate and corresponding decrease in 
mean time to interrupt (MTTI), based on the above assumptions. Even if we assume 
a zero increase in failure rate with more cores per socket (a stretch), the failure rates 
across the biggest machines in the top 500 lists of the future can be expected to grow 
dramatically. 
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10 Young, J. W. “A first order approximation to 
the optimum checkpoint interval,” Commun. 
ACM, 17(9):530–531, 1974.

Decreasing Effectiveness of Checkpoint-Restart Fault 
Tolerance

Observing this sort of dramatic increase in failure rates brings up the question of 
how the utility of future systems will be affected. Fault tolerance in HPC systems is 
typically implemented with checkpoint restart programming. Here, the application 
periodically stops useful work to write a checkpoint to disk. In case of a node failure, 
the application is restarted from the most recent checkpoint and recomputes the lost 
results. 

The time to write a checkpoint depends on the total amount of memory in the 
system, the fraction of memory the application needs to checkpoint to be able to recover, 
and the I/O bandwidth. To be conservative, we assume that demanding applications 
may utilize and checkpoint their entire memory. For a system like Jaguar, with 45TB of 
memory and 55 GB/s of storage bandwidth, that means one system-wide checkpoint 
will take on the order of 13 minutes. In a balanced system model, where bandwidth and 
memory both grow in proportion to compute power, the time to write a checkpoint will 
stay constant over time. However, with failures becoming more frequent, restarting will 
be more frequent and application work will be recomputed more frequently.  Reducing 
the time between checkpoints reduces the amount of work recomputed on a restart but 
it also increases the fraction of each checkpoint interval spent taking a checkpoint.

Figure 5. Effective application utilization 
drops because mean time to interrupt is 
dropping and more time will be lost to 
taking checkpoints and restarting from 
checkpoints. The three models are the 
same as in Figure 4.

 Based on the models of Figure 4 and on an optimal selection of the period between 
checkpoints,10 Figure 5 shows a prediction that the effective resource utilization by 
an application will drastically decrease over time. For example, in the case where the 
number of cores per chip doubles every 30 months, the utilization drops to zero by 
2013, meaning the system is spending 100% of its time writing checkpoints or recov-
ering lost work, a situation that is clearly unacceptable.  In the next section we consider 
possible ways to stave off this projected drop in resources utilization.

Better Fault Tolerance for Petascale Computers

As LANL’s data suggests that failure rate grows proportionally to the number of 
sockets, keeping the number of sockets constant should stave off an increase in the 
failure rate. To do this, however, means either failing to achieve the top500.org aggregate 
performance trends, or increasing the performance of each processor chip faster than 
currently projected.8 Chip designers consider it unlikely that we will see a return to 
the era of rapid decreases in processor cycle time because of the power consumption 
implications. The remaining alternative, increasing the number of cores per chip faster, 
would probably not be effective, even if it was possible, because memory bandwidth 
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11 Plank, J. S.,  Li, K. “Faster checkpointing 
with N + 1 parity,” In Proc. 24th International 
Symposium on Fault Tolerant Computing, 1994. 

12 Plank, J. S., Li, K., Puening, M. A. “Diskless 
checkpointing,” IEEE Trans. Parallel Distrib. 
Syst., 9(10):972–986, 1998. 

 13 Vaidya, N. H.  “A case for two-level 
distributed recovery schemes,” In Proceedings 
of the 1995 ACM SIGMETRICS conference, 1995. 

per chip will not keep up. Therefore, we think the number of processor chip sockets 
will continue to increase to keep performance on the top500.org trends. 

Socket Reliability: The increase in failure rates could also be prevented if individual 
processor chip sockets were made more reliable each year in the future, i.e., if the per 
socket MTTI would increase proportionally to the number of sockets per system over 
time. Unfortunately, LANL’s data does not indicate that hardware has become more 
reliable over time, suggesting that as long as the number of sockets is rising, the system-
wide MTTI will drop. 

Partitioning: The number of interrupts an application sees depends on the number 
of processor chips it is using in parallel. One way to stave off the drop in MTTI per 
application would be to run it only on a constant-sized sub-partition of the machine, 
rather than on all nodes of a machine. Unfortunately, while this solution works for 
small applications that do not need performance to increase faster than the speed each 
chip increases, it is not appealing for the most demanding “hero” applications, for 
which the largest new computers are often justified. 

Faster Checkpointing: The basic premise of the checkpoint restart approach to 
fault tolerance, often called the balanced system design, is that even if MTTI is not 
decreasing, storage bandwidth increases in proportion to total performance.1 Though 
achieving balance (i.e., doubling of storage bandwidth every year) is a difficult challenge 
for storage systems, one way to cope with increasing failure rates is to effect further 
increases in storage bandwidth. For example, assuming that the number of sockets 
and hence the failure rate grows by 40% per year, the effective application utilization 
would stay the same if checkpoints were taken in 30% less time each year. Projections 
show that this sort of increase in bandwidth is orders of magnitude higher than the 
commonly expected increase in bandwidth per disk drive (generally about 20% per 
year). Therefore, an increase in bandwidth would have to come from a rapid growth in 
the total number of drives, well over 100% per year, increasing the cost of the storage 
system much faster than any other part of petascale computers. This might be possible, 
but it is not very desirable. 

Another option is to decrease the amount of memory being checkpointed, either by 
not growing total memory as fast, or by better compression of application data leading 
to only a smaller fraction of memory being written in each checkpoint. Growing total 
memory at a slower than balanced rate will help reduce total system cost, which is 
perhaps independently likely, but may not be acceptable for the most demanding 
applications. Of the two, compression seems to be the more appealing approach, and is 
entirely under the control of application programmers. 

Achieving higher checkpoint speedups purely by compression will require signifi-
cantly better compression ratios each year. As early as in the year 2010, an application 
will have to construct its checkpoints with a size at most 50% of the total memory. 
Once the 50% mark is crossed, other options, such as diskless checkpointing where 
the checkpoint is written to the volatile memory of another node rather than disk, 11 

12 or hybrid approaches13 become viable. We recommend that any application capable 
of compressing its checkpoint size should pursue this path; considering the increasing 
number of cycles that will go into checkpointing, the compute time needed for com-
pression may be time well spent. 

A third approach to taking checkpoints faster is to introduce special devices between 
storage and memory that will accept a checkpoint at speeds that scale with memory, 
then relay the checkpoint to storage after the application has resumed computing.  
Although such an intermediate memory could be very expensive as it is as large as 
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memory, it might be a good application for cheaper but write-limited technologies 
such as flash memory, because checkpoints are written infrequently.

Non-Checkpoint-based Fault Tolerance: Process-pairs duplication and checking of 
all computations is a traditional method for tolerating detectable faults that hasn’t been 
applied to HPC systems.14 15 16 Basically, every operation is done twice in different nodes 
so the later failure of a node does not destroy the operation’s results. Process pairs 
would eliminate both the cost associated with writing checkpoints, because they are 
not needed, as well as lost work in the case of failure. However, using process pairs is 
expensive in that it requires giving up 50% of the hardware to compute each operation 
twice in different nodes and it introduces further overheads to keep process pairs in 
synch. However, if no other method works to keep utilization above 50%, this sacrifice 
might become appropriate, and it bounds the decrease in effectiveness to about 50%, 
perhaps without requiring special hardware. 

Conclusions

The most demanding applications, often the same applications that justify the 
largest computers, will see ever-increasing failure rates if the trends seen at top500.org 
continue. Using the standard checkpoint restart fault tolerance strategy, the efficacy of 
petascale machines running demanding applications will fall off. Relying on computer 
vendors to counter this trend is not recommended by historical data, and relying on 
disk storage bandwidth to counter it is likely to be expensive at best. We recommend 
that these applications consider spending an increasing number of cycles compressing 
checkpoints. We also recommend experimentation with process pairs fault tolerance 
for supercomputing. And if technologies such as flash memory are appropriate, we 
recommend experimenting with special devices devoted to checkpointing.

The Computer Failure Data Repository 

The work described in this article is part of our broader research agenda with the 
goal of analyzing and making publicly available the failure data from a large variety 
of real production systems. To date, large-scale studies of failures in real production 
systems are scarce, probably a result of the reluctance of the owners of such systems 
to release failure data. Thus, we have built a public Computer Failure Data Repository 
(CFDR), hosted by the USENIX association4 with the goal of accelerating research on 
system reliability by filling the nearly empty collection of public data with detailed 
failure data from a variety of large production systems. We encourage all petascale 
computing organizations to collect and publish failure data for their systems in the 
repository. 
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Overview

The SciDAC Center for Technology for Advanced Scientific Computing Software 
(TASCS) focuses on developing tools, components and best practices for developing 
high quality, reusable high-performance computing software.  TASCS fosters the 
Common Component Architecture (CCA) through a community forum that involves 
a wide range of participants.   The CCA environment aims to bring component-based 
software development techniques and tools, which are commonplace in the computing 
industry, to high performance computing.  To do so, several challenges are being 
addressed including parallelism, performance, and efficient handling of large datasets.   
The CCA has produced a specification that allows components to be deployed and 
reused in a highly extensible yet efficient parallel environment.   The primary advantage 
of this component-based approach is the separate development of simulation algo-
rithms, models, and infrastructure. This allows the pieces of a complex simulation 
to evolve independently, thereby helping a system grow intelligently as technologies 
mature.  The CCA tools have been used to improve productivity and increase capa-
bilities for HPC software in meshing, solvers, and computational chemistry, among 
other applications.

TASCS supports a range of core technologies for using components in high-perfor-
mance simulation software, including the Caffeine framework, the Babel interopera-
bility tool, and the Bocca development environment for HPC components.  In addition, 
the CCA helps provide access to tools for performance analysis, for coupling parallel 
simulations, for mixing distributed and parallel computing, and for ensuring software 
quality in complex parallel simulations.   These tools can help tame the complexity of 
utilizing parallel computation, especially for sophisticated applications that integrate 
multiple software packages, physical simulation regimes or solution techniques.  We 
will discuss some of these tools and show how they have been used to solve HPC pro-
gramming challenges.

Component-based Software Engineering

The component-based software engineering (CBSE)1 methodology has been 
developed to facilitate the understanding, development, and evolution of large-scale 
software systems.  By emphasizing strong encapsulation of code with well defined 
interfaces between modules, a component approach provides a way of decomposing 
software into units that are conceptually manageable, and that interact in specific and 
easily understood ways.

These characteristics also facilitate the design and evolution of large, complex software 
systems by distinguishing between the functional specification of a component (fixed 
or slowly changing) and its implementation (possibly more rapidly changing, or even 
having multiple implementations).  With thoughtful design of interfaces, component 
approaches can promote software reuse and interoperability. The encapsulation of com-
ponents makes them useful in collaborative software development situations, where 
individuals or small groups take responsibility for the implementation of components 
conforming to interface specifications agreed to by the collaboration as a whole. These 
characteristics match very well with the way that the modern computational science 
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community approaches simulation software, which makes the component approach 
an ideal match for high-performance scientific computing.  Furthermore, simulation 
coupling is of rapidly growing importance in scientific computing, and maps directly 
to the philosophy of software components.

Although the idea of CBSE has a long history, component architectures have 
only recently become practical for use in high-performance scientific computing.  
Development of the Common Component Architecture,2 a general component 
environment, began with the establishment of the CCA Forum3 in 1998.  The Cactus 
framework,4 originally developed primarily to support numerical relativity simulations, 
began appearing in the scientific literature in roughly 1999.  Another domain-specific 
framework effort, the Earth System Modeling Framework (ESMF),5 6 began in 2001.

Scientific computing poses both technical and sociological challenges to the 
deployment and adoption of new technologies, such as components and frameworks.  
The scientific CBSE community is still in the formative stages of understanding how 
these concepts can be used most effectively in the context of advanced computational 
science applications. At the same time, the field is evolving: computing power grows, 
the tools and software environments evolve, and applications move to take advantage 
of new capabilities not just to solve larger problems faster, but also at higher levels of 
physical fidelity.  If CBSE is to become a routine part of computational science, we 
need to anticipate emerging trends and how they will impact the concepts and tools of 
CBSE.  These emerging trends in high-end scientific computing pose both challenges 
and opportunities for component-based software development, and provide incredible 
opportunities to dramatically enhance the reliability, maintainability, and scope of 
HPC applications.

The CCA Component Model

Formally, the Common Component Architecture is a specification of an HPC-
friendly component model.  This specification provides a focus for an extensive 
research and development effort.  The research effort emphasizes understanding how 
best to utilize and implement component-based software engineering practices in the 
high-performance scientific computing arena. The development effort creates practical 
reference implementations and helps scientific software developers use them to create 
CCA-compliant components and applications. 

The CCA specification is expressed as a set of abstract interfaces7 written in the 
Scientific Interface Definition Language (SIDL). SIDL is used by the Babel language 
interoperability tool (discussed further below), which implicitly defines bindings to 
the various languages that Babel supports (currently Fortran 77, Fortran 90, C, C++, 
Python, and Java).

The primary players in a CCA application are Components that encapsulate a par-
ticular piece of software, Ports that define the interfaces between components, and 
Framework that glue the aforementioned components together and allow them to 
communicate through the ports that are defined.  Figure 1 illustrates how several such 
components combine together to form a single application. This conceptual model 
should be familiar to anyone that has used component-based systems before, except 
that the components explicitly support parallelism and the ports facilitate fine-grained 
communication of large quantities of data without the copying that is inherent in many 
such systems.



November 2007 13
Enabling Advanced Scientific Computing Software

The core of the CCA specification is the Services interface. This is the primary means 
by which components interact with the framework, allowing the component to inform 
the framework of component capabilities and interfaces, and to request access to other 
services the framework may provide, such as information about connections between 
itself and other components, or the ability to instantiate and otherwise manipulate 
other components.  The Services interface allows a component to declare two different 
types of ports, those that it will provide and those that it will use.  These ports can also 
be thought of as callee and caller.  These ports make it possible for a CCA framework 
to effectively mediate connections between components, and allows components 
to be assembled by another entity (a user through a GUI, a script, or even another 
component).  The CCA component model espouses a minimalist approach, requiring 
only that components implement a single method/function (called setServices) that 
establishes contact between the component and the framework.

Figure 1. A CCA Component wiring diagram showing the interconnection of components in a reaction-
diffusion combustion simulation.

CCA ports are simply a babel-described interface, and are also identified by a 
type and name.  An optional set of properties associated with each port can describe 
additional functionality, such as the minimum/maximum number of connections.  
Components may provide multiple ports and even multiple instances of the same 
port.  In addition to defining the port mechanism, the CCA specification also defines a 
number of specific ports that are useful in multiple applications, such as the GoPort (for 
starting an application), parameter ports for communicating basic configuration infor-
mation to the application, and ports for communicating events to other components.  
The CCA reuses this port mechanism to export services provided by the framework 
that allow a component to assemble and manage other components, monitor available 
components, and watch for application events.  Using this mechanism, graphical user 
interfaces become simply a component that is instantiated in the system and are not 
tied to the underlying framework.  These services also allow dynamic behavior of the 
application itself, such as swapping components, and provide a mechanism for a hier-
archy of components that are assembled at multiple levels of abstraction.

Software Tools

Beyond the core specification, a number of software tools have been developed that 
assist users in developing HPC applications around component technology.   These 
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tools, developed both through the TASCS Center, and through CCA collaborators, 
provide interoperability between programming languages, assistance with packing and 
deployment, and tools for performance analysis. There also exists a handful of different 
CCA-compliant frameworks that target different operating environments.  A few of 
these tools are described here and additional information can be found at the CCA 
Forum home page.

Babel (pronounced babble)8 addresses the language interoperability problem using 
a Scientific Interface Definition Language (SIDL) that provides the ability to interact 
between programming languages and platforms, while addressing the unique needs 
of parallel scientific computing.  Given a SIDL description that describes the calling 
interface (but not the implementation) of a particular software library, Babel generates 
glue code that allows software implemented in one supported language to be called 
from any other supported language.  SIDL supports complex numbers and dynamic 
multi-dimensional arrays as well as parallel communication directives that are required 
for parallel distributed components. SIDL also provides other common features that 
are generally useful for software engineering, such as enumerated types, symbol ver-
sioning, and name space management, and employs an object-oriented inheritance 
model similar to Java.  Babel provides a code splicing capability that preserves old 
edits during the regeneration of implementation files after modifications to the SIDL 
source.

Babel recently added a remote method invocation that provides a consistent 
mechanism to communicate between objects regardless of where they are located.  This 
model provides a simpler and more consistent object-oriented programming model 
than CORBA or COM, and provides an API for third-party plug-ins to customize 
the underlying communication model.  A simple TCP/IP protocol is provided that 
outperforms both CORBA and Web Services.  Babel RMI fills a niche in “short-haul” 
distributed computing - within a machine room, or even in a single machine with 
concurrent MPI runs.

Ccaffeine9 is the main CCA framework implementation for HPC parallel com-
puting and it supports the component analogs of both the single program/multiple data 
(SPMD) and multiple program/multiple data (MPMD) parallel programming models. 
We refer to these as single or multiple component/multiple data (SCMD or MCMD) 
models. Figure 2 depicts the SCMD case; each process is loaded with the same set of 
components wired together in the same way. Interactions among components within a 
given process (vertical direction) take place through the normal CCA means - through 
Ports.  Interactions within a parallel component (called a parallel cohort) take place via 
the parallel programming model that the component uses (typically MPI).  “Diagonal” 
interactions - between component A on one process and component B on another 
process - are not prohibited by the CCA, but are currently not supported in Ccaffeine.

Figure 2. A schematic representation of the CCA parallel programming environment in the single 
component/multiple data (SCMD) paradigm.
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Bocca is a system for creating, managing, and deploying CCA-based components.  
Bocca can create components, define ports and interfaces, and manage the build 
system for the resulting component.   Bocca is a new addition to the CCA tool suite, but 
promises to dramatically simplify the process of creating a component from scratch 
and subsequently maintaining it.

Performance Monitoring and Tuning. TAU is a robust and portable 
measurement interface and system for software performance evaluation. 
Using SIDL to describe TAU’s measurement API, Babel has enabled access 
to TAU across all supported languages.  CCA/Babel has also enabled incor-
poration of dynamic selection of measurement options into the TAU per-
formance evaluation tools. Users can choose from a variety of measurement 
options interactively at runtime, without re-compilation of applications. 
Proxy components are automatically generated to mirror a component’s 
interface, allowing dynamic interposition of proxies between callers and 
callees, via hooks into the intermediate Babel communication layer. Such 
inter-component interaction measurements can correlate performance to 
application parameters, used for constructing more sophisticated perfor-
mance models.

Components for Parallel Coupling. Multiphysics and multiscale 
models face a formidable obstacle:  the parallel coupling problem.  Parallel 
coupling involves the description, transfer, and transformation of dis-
tributed data.  We are developing a set of CCA components (the Parallel 
Coupling Infrastructure, or PCI Toolkit) that leverage successful parallel 
coupling technology - the Model Coupling Toolkit - to simplify the process 
of remapping data between disparate discretizations and processor map-
pings.

Additional tools. In addition to these tools and software frameworks, the TASCS 
Center maintains additional component-based software for developing HPC applica-
tions on CCA technology.  A graphical user interface allows interactive construction 
and monitoring of HPC applications.  CCA-lite is a slimmed down version of the 
CCA specification designed for statically-linked components that are written in C, 
C++ and/or Fortran.  Additional frameworks, such as the SCIJump distributed/par-
allel framework from Utah and the LegionCCA Grid-based framework from SUNY 
Binghamton, also provide alternative deployment vehicles for CCA components.

Applications

CCA is applicable to a broad range of parallel applications.  We highlight a few of 
these endeavors.

Combustion Modeling. One of the most sophisticated implementations of the CCA 
paradigm to date is in combustion modeling.  The endeavor, which started in 2001 at 
the Computational Facility for Reacting Flow Science (CFRFS) project,10 seeks to create 
a facility for the high fidelity simulation of flames involving realistic physical models, 
nonlinear PDEs, and a spectrum of time and length scales.  Given the complexity of 
the problem and the multiplicity of physical and mathematical models required for 
the task, a component based approach was a natural fit. CCA was chosen primarily for 
its high performance and simplicity. General purpose components, implementing a 
particular numerical or physical functionality, are reused in various code assemblies. 

Figure 3. A Component wiring diagram 
showing how explicit coupling components 
can manage the interfaces in a multi-physics 
climate simulation.

10 Najm, H. (PI), Computational Facility for 
Reacting Flow Science (CFRFS) - http://cfrfs.
ca.sandia.gov/.
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Fusion. The standardization of fusion codes has become of  paramount importance 
with the beginning of the fusion integrated modeling.  In 2006, two SciDAC projects, 
SWIM (Center for Simulation of RF Wave Interactions with Magnetohydrodynamics)11 

and CPES (the Center for Plasma Edge Simulation),12 were funded.  In 2007, another 
integrating SciDAC project FACETS (the Framework Application for Core-Edge 
Transport Simulations)13 started.  Each of these three projects addresses a different area 
of integration, and some of them will possibly unite in the upcoming Fusion Simulation 
Project sometime in 2008.  All projects are looking at components technologies to assist 
them in defining and composing participating codes.  FACETS uses the CCA language 
interoperability tool, Babel, to wrap F90 modules for the use in its 
C++ framework.

Quantum Chemistry. In response to the strong need for a 
community software base in the quantum chemistry community, 
members of the Quantum Chemistry Scientific Application 
Partnership (QCSAP) have leveraged the software engineering 
practices and tools developed by the CCA Forum to create a com-
munity-based architecture for chemistry simulation.  By designing 
flexible interfaces by which quantum chemistry capabilities can 
be shared, the scaling of human effort is drastically improved, 
allowing the exploration of new algorithms and hardware in 
a fraction of the time required by traditional approaches. A 
screenshot of such an application is shown in Figure 4.  For the 
quantum chemistry packages adopting this new design paradigm 
[GAMESS (Ames Laboratory), NWChem (Pacific Northwest 
National Laboratory) and MPQC (Sandia National Laboratories) 
thus far], many advantages have already been realized, including 
the abilities to leverage more efficient optimization components 
written by domain experts, transparently share low-level integral 
evaluation routines, more efficiently utilize high performance computers, and automati-
cally tune applications for specific molecular systems and hardware environments.

The Future 

Some of the ongoing work includes advances in component capabilities for mas-
sively parallel and heterogeneous architectures, runtime enforcement of behavioral 
semantics, additional expressibility for complex interactions between components, and 
parallel coupling.  We provide brief highlights below; see [3, 14] for additional details.

Emerging HPC Environments. Scientists developing petascale computational 
science capabilities continue to face major challenges in effectively using emerging 
high-performance computing (HPC) architectures, which are characterized by large 
processor counts and increasing use of heterogeneous, specialized environments.  We 
are thus developing new tools for CCA users to simplify and accelerate the development 
of true petascale applications on diverse hardware platforms.  Our goals are that CCA 
users will be able to flexibly and dynamically express higher levels of parallelism,15 

transparently exploit specialized coprocessing resources, and support intelligent 
application-level responses to the hardware failures that are inevitable on systems of 
this scale.  For example, we are working with a bioinformatics/proteomics application 
team to analyze data generated by mass spectrometers at PNNL.16

Software Quality and Verification.  To help make the vision of interchangeable 
components a reality for scientific software, we are developing capabilities for the 
composition- and execution-time verification of interface semantics.17 18  Component 

Figure 4. Screenshot of a graphical component front-end 
developed within the QCSAP.
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interfaces, expressed separately from implementations, can be extended with semantic 
information to provide concise specifications that are both human-readable and 
interpreted by software. Unlike traditional verification techniques based either on 
post-execution comparisons with prior or analytical results or on algorithm-based 
fault tolerance techniques, this approach enables error detection closer to the point of 
failure. The result is improved testing, debugging, and runtime monitoring of software 
quality, thereby providing software developers with a powerful tool for catching errors 
early and ensuring correct software usage. 

Computational Quality of Service. As computational science progresses toward 
ever more realistic multi-physics applications, no single research group can effectively 
select or tune all components of a given application, and no solution strategy can seam-
lessly span the entire spectrum efficiently.  Common component interfaces enable easy 
access to suites of independently developed algorithms and implementations.  The 
challenge then becomes how, during runtime, to make the best choices for reliability, 
accuracy, and performance. As motivated by simulations in combustion,10 quantum 
chemistry,19 fusion,13 and accelerators,20 TASCS researchers are addressing this chal-
lenge by developing tools for Computational Quality of Service (CQoS), or the auto-
matic selection and configuration of components to suit a particular computational 
purpose and environment.21  The two main facets of CQoS tools are (1) measurement 
and analysis infrastructure and (2) control infrastructure for dynamic component 
replacement and domain-specific decision making.22

Parallel Data Redistribution and Parallel Remote Method Invocation. Parallel 
components raise questions about the semantics of method invocations and the 
mechanics of parallel data redistribution involving these components. Method invoca-
tions between parallel components are an opportunity to automate the data redistri-
bution and translation semantics of the interaction between those components.  The 
so-called MxN problem (where M processors associated with one component  coor-
dinate with N processors associated with another) arises often when multiple simu-
lation components are joined in a single application.   This allows an application to 
utilize a combination of task-based parallelism and domain decomposition to achieve 
integration, regardless of the scaling characteristics and resource constraints of the 
individual components.  Support for this capability is being integrated into the Babel 
compiler. 

Conclusion

The Common Component Architecture is a solid foundation for developing 
modular, maintainable high-performance simulations.  Through support of the TASCS 
Center and collaborators, the surrounding ecosystem continues to flourish, and 
provides new functionality for taming the complexity of multi-physics, multi-scale, 
scalable applications. 
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1. Introduction

Understanding and enhancing the performance of large-scale scientific programs is 
a crucial component of the high-performance computing world.  This is due not only 
to the increasing processor count, architectural complexity and application complexity 
that we face, but also due to the sheer cost of these systems.  A quick calculation shows 
that if one can increase by just 30% the performance of two of the major SciDAC1 
applications codes (which together use, say, 10% of the NERSC and ORNL high-end 
systems over three years), this represents a savings of some $6 million.

Within just five years, systems with one million processors are expected, which poses 
a challenge not only to application developers but also to those engaged in performance 
tuning. Earlier research and development by us and others in the performance research 
area focused on the memory wall – the rising disparity between processor speed and 
memory latency. Now the emerging multi-core commodity microprocessor designs, 
with many processors on a single chip and large shared caches, create even greater 
penalties for off-chip memory accesses and further increase optimization complexity. 
With the release of systems such as the Cray X1, custom vector processing systems 
have re-emerged in U.S. markets. Other emerging designs include single-instruction 
multiple-data (SIMD) extensions, field-programmable gate arrays (FPGAs), graphics 
processors and the Sony-Toshiba-IBM Cell processor. Understanding the performance 
implications for such diverse architectures is a daunting task.

In concert with the growing scale and complexity of systems is the growing scale 
and complexity of the scientific applications themselves.  Applications are increas-
ingly multilingual, with source code and libraries created using a blend of Fortran 77, 
Fortran-90, C, C++, Java, and even interpreted languages such as Python.   Large appli-
cations typically have rather complex build processes, involving code preprocessors, 
macros and make files.  Effective performance analysis methodologies must deal seam-
lessly with such structures.  Applications can be large, often exceeding one million lines 
of code.  Optimizations may be required at many locations in the code, and seeming 
local changes can affect global data structures.  Applications are often componentized 
and performance can depend significantly on the context in which the components 
are used.  Finally, applications increasingly involve advanced features such as adaptive 
mesh refinement, data intensive operations and multi-scale, multi-physics and multi-
method computations.

The PERI project emphasizes three aspects of performance tuning for high-end 
systems and the complex SciDAC applications that run on them: (1) performance 
modeling of applications and systems; (2) automatic performance tuning; and (3) 
application engagement and tuning. The next section discusses the modeling activ-
ities we are undertaking both to understand the performance of applications better 
and to be able to determine what are reasonable bounds on expected performance.  
Section 3 presents the PERI vision for how we are creating an automatic performance 
tuning capability, which ideally will alleviate scientific programmers of this burden.  
Automating performance tuning is a long-term research project, and the SciDAC 
program has scientific objectives that cannot await its outcome.  Thus, as Section 4 
discusses, we are engaging with DOE computational scientists to address today’s most 
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pressing performance problems.  Finally, Section 5 summarizes the current state of the 
PERI SciDAC-2 project.

2. Performance Modeling and Prediction

The goal of performance modeling is to understand the performance of an appli-
cation on a computer system via measurement and analysis. This information can be 
used for a variety of tasks: evaluating architectural tradeoffs early in the system design 
cycle, validating performance of a new system installation, guiding algorithm choice 
when developing a new application, improving optimization of applications on specific 
platforms, and guiding the application of techniques for automated tuning and optimi-
zation.2 Modeling is now an integral part of many high-end system procurements,3 thus 
making performance research useful beyond the confines of performance tuning.  For 
performance engineering, modeling analyses (when coupled with empirical data) can 
inform us when tuning is needed, and just as importantly, when we are done. Naturally, 
if they are to support automatic performance tuning, then the models themselves must 
be automatically generated.

Traditional performance modeling and prediction have been done via some combi-
nation of three methods: (1) analytical modeling; (2) statistical modeling derived from 
measurement; and (3) simulation. In the earlier SciDAC-1 Performance Evaluation 
Research Center (PERC), researchers developed a semi-automatic yet accurate meth-
odology based on application signatures, machine profiles and convolutions.  These 
methodologies allow us to predict performance to within reasonable tolerances for 
an important set of applications on traditional clusters of SMPs for specific inputs and 
processor counts.  

PERI is extending these techniques not only to account for the effects of emerging 
architectures, but also to model scaling of input and processor counts.   It has been 
shown that modeling the response of a system’s memory hierarchy to an application’s 
workload is crucial for accurately predicting its performance on today’s systems with 
deep their memory hierarchies. The current state-of-the-art works well for weak scaling 
(i.e., increasing the processor count proportionally with input).  PERI is developing 
advanced schemes for modeling application performance, such as by using neural 
networks.4 We are also exploring variations of existing techniques and parameterized 
statistical models built from empirical observations to predict application scaling. We 
are also pursuing methods for automated extrapolation of scaling models, as a function 
of increasing processor count, while holding the input constant.5  One of our goals is 
to provide the ability to reliably forecast the performance of a code on a machine size 
that has not yet been built.

Within PERI, we are also extending our framework to model communication per-
formance as a function of the type, size, and frequency of application messages, and the 
characteristics of the interconnect. Several parallel communication models have been 
developed that predict performance of message-passing operations based on system 
parameters.6 7 8 Assessing the parameters for these models within local area networks 
is relatively straightforward and the methods to approximate them have already been 
established and are well understood.8 9  Our models, which are similar to PlogP, capture 
the effects of network bandwidth and latency; however, a more robust model must also 
account for noise, contention and concurrency limits. We are developing performance 
models directly from observed characteristics of applications on existing architectures. 
Predictions from such models can serve as the basis to optimize collective MPI opera-
tions,10 and permit us to predict network performance in a very general way.  This work 
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will require us to develop a new open-source network simulator to analyze communi-
cation performance.

Finally, we will reduce the time needed to develop models, since automated tuning 
requires on-the-fly model modification. For example, a compiler, or application, 
may propose a code change in response to a performance observation, and need an 
immediate forecast of the performance impact of the change.  Dynamic tracing, the 
foundation of current modeling methods, requires running existing codes and can be 
quite time consuming.  Static analysis of binary executables can make trace acquisition 
much faster by limiting it to only those features that are not known before execution.  
User annotations11 can broaden the reach of modeling by specifying at a high level the 
expected characteristics of code fragments.  Application phase modeling can reduce 
the amount of data required to form models.  We are exploring less expensive tech-
niques to identify dynamic phases through statistical sampling and time-series cluster 
analysis.  For on-the-fly observation, we are using DynInst to attach to a running 
application, slow it down momentarily to measure something, then detach.12  In PERI, 
we will advance automated, rapid, machine-independent model formation to push 
the efficacy of performance modeling down into lower levels of the application and 
architecture lifecycle.

3. Automatic Performance Tuning

In discussions with application scientists, it is clear that users want to focus on 
their science and not be burdened with optimizing their code’s performance. Thus, 
the ideal performance tool analyzes and optimizes performance without human 
intervention, a long-term vision that we term automatic performance tuning. This 
vision encompasses tools that analyze a scientific application, both as source code and 
during execution, generate a space of tuning options, and search for a near-optimal 
performance solution. There are numerous daunting challenges to realizing the vision, 
including enhancement of automatic code manipulation tools, automatic run-time 
parameter selection, automatic communication optimization, and intelligent heuristics 
to control the combinatorial explosion of tuning possibilities. On the other hand, we are 
encouraged by recent successful results such as ATLAS, which has automatically tuned 
components of the LAPACK linear algebra library.13 We are also studying techniques 
used in the highly successful FFTW library14 and several other related projects.15 16 17 
The PERI strategy for automatic performance tuning is presented in greater detail in 
this section of this paper.

Figure 1 illustrates the automated performance tuning process and integration 
we are pursuing in PERI.  We are attempting to integrate performance measurement 
and modeling techniques with code transformations to create an automated tuning 
process for optimizing complex codes on large-scale architectures. The result will be 
an integrated compile-time and run-time optimization methodology that can reduce 
dependence on human experts and automate key aspects of code optimization.  The 
color and shape code in Figure 1 indicates the processes associated with the auto-
mation of empirical tuning on either libraries or whole applications.  Blue rectangles 
indicate specific tools or parts of tools to support automated empirical tuning.  Yellow 
ovals indicate activities that are part of a code that is using automatic tuning at run-
time.  Green hexagons indicate information may be supplied to guide the optimization 
selection during empirical tuning. The large green hexagon lists the type of information 
that may be used.

As shown in Figure 1, the main input to the automatic tuning process is the 
application source code. In addition, there may also be external code (e.g., libraries), 
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ancillary information such as performance models or annotations, sample input data, 
and historical data from previous executions and analyses. With these inputs, we 
anticipate that the automatic tuning process involves the following steps:

Triage•	 . This step involves performance measurement, analysis and modeling to 
determine whether an application has opportunities for optimization.
Semantic analysis•	 . This step involves analysis of program semantics to support 
safe transformation of the source code, including traditional compiler analyses 
to determine data and control dependencies.  Here we can also exploit semantic 
information provided by the user.
Transformation•	 . Transformations include traditional optimizations such as 
loop optimizations and in-lining, as well as more aggressive data structure reor-
ganizations and domain-specific optimizations. Tiling transformations may be 
parameterized to allow for input size and machine characteristic tuning. Unlike 
traditional compiler transformations, we allow user input.
Code generation•	 . The code generation phase produces a set of possible imple-
mentations to be considered. Code generation may either come from general 
transformations to source code in an application or from a domain-specific tool 
that produces a set of implementations for a given computation, as is the case with 
the ATLAS BLAS generator.
Offline search•	 . This phase evaluates the generated code to select the “best” 
version. Offline search entails running the generated code and searching for the 
best-performing implementation. The search process may be constrained by 
guidance from a performance model or user input. By viewing these constraints 
as guidance, we allow the extremes of pure search-based, model-based, or user-
directed, as well as arbitrary combinations.
Application assembly•	 . At this point, the components of optimized code are inte-
grated to produce an executable code, including possible instrumentation and 
support for dynamic tuning.

Figure 1. The PERI automatic tuning workflow
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Training runs•	 . Training runs involve a separate execution step designed mainly 
to produce performance data for feedback into the optimization process. This 
step may be used prior to a large run to have the code well-tuned for a particular 
input set.
Online adaptation•	 . Finally, optimizations may occur during production runs, 
especially for problems or machines whose optimal configuration changes during 
the execution.

Automatic tuning of a particular application need not involve all of these steps.  
Furthermore, there will likely not be a single automatic tuning tool, but rather a suite 
of interacting tools that are themselves research projects.

A key part of the automatic tuning process is the maintenance of a persistent store 
of performance information from both training and production runs.  Of particular 
concern  are changes in the behavior of production codes over time.  Such changes 
can be symptomatic of changes in the hardware, of the versions and configuration of 
system software, of changes to the application, or of changes to problems being solved.  
Regardless of the source, such changes require analysis and remediation.  The problem 
of maintaining persistent performance data is recognized across the HPC community.  
PERI therefore formed a Performance Database Working Group, which involves PERI 
researchers as well as colleagues at the University of Oregon, Portland State University, 
and Texas A&M University. The group has developed technology for storing perform-
ance data collected by a number of performance measurement and analysis tools, 
including TAU, PerfTrack, Prophesy, and SvPablo. The PERI Database system provides 
web interfaces that link to  the performance data and analysis tools in each tool’s home 
database.

4. Application Engagement

The key long-term research objective of PERI is to automate as much of the per-
formance tuning process as possible.  Ideally, in five years we will produce a prototype 
of the kind of system that will free scientific programmers from the burden of tuning 
their codes, especially when simply porting from one system to another.  While this 
may offer today’s scientific programmers hope for a brighter future, it does little to 
help with the immediate problems they face as they try ready their codes for Petascale.  
PERI has therefore created a third activity that we are calling application engagement, 
wherein PERI researchers will bring their tools and skills to bear in order both to help 
DOE meet its performance objectives and to ground our own research in practical 
experience.  This section discusses the current status of our application engagement 
activities.

PERI has a two-pronged application engagement strategy.  Our first strategy is 
establishing long term liaison relationships with many of the application teams.  PERI 
liaisons who work with application teams without significant, immediate performance 
optimization needs provide these application teams with advice on how to collect per-
formance data and track performance evolution, and ensure that PERI becomes aware 
of any changes in these needs.  For application teams with immediate performance 
needs, the PERI liaison works actively with the team to help them meet their needs, 
utilizing other PERI personnel as needed. The status of a PERI liaison activity, passive 
or active, changes over time as the performance needs of the application teams change. 
As of June 2007, PERI is working actively with six application teams and passively with 
ten others.  The nature of each interaction is specific to each application team.
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The other primary PERI application engagement strategy is tiger teams. A tiger 
team works directly with application teams with immediate, high-profile perfor-
mance requirements. Our tiger teams, consisting of several PERI researchers, strive 
to improve application performance by applying the full range of PERI capabilities, 
including not only performance modeling and automated tuning research but also in-
depth familiarity with today’s state-of-the-art performance analysis tools.  Tiger team 
assignments are of a relatively short duration, lasting between 6 and 12 months. As of 
June 2007, PERI tiger teams are working with two application codes that will be part 
of the 2007 JOULE report: S3D18 and GTC_s.19 We have already identified significant 
opportunities for performance improvements for both applications.  Current work is 
focused on providing these improvements through automated tools that support the 
continuing code evolution required by the JOULE criteria.  

5. Summary

The Performance Engineering Research Institute was created to focus on the 
increasingly difficult problem of achieving high scientific throughput on large-scale 
computing systems.  These performance challenges arise not only from the scale and 
complexity of leadership class computers, but also from the increasing sophistication 
of today’s scientific software.   Experience has shown that scientists want to focus their 
programming efforts on discovery and do not want to be burdened by the need to 
constantly refine their codes to maximize performance.  Performance tools that they 
can use themselves are not embraced, but rather viewed as a necessary evil.

To alleviate scientists from the burden of performance tuning, PERI has embarked 
on a research program addressing three different aspects of performance tuning: 
performance modeling of applications and systems; automatic performance tuning; 
and application engagement and tuning.  Our application engagement activities are 
intended to help scientists address today’s performance related problems.  We hope 
that our automatic performance tuning research will lead to technology that, in the 
future, will significantly reduce this burden.  Performance modeling in-forms both of 
these activities.

While PERI is a new project, as are all SciDAC-2 efforts, it builds on five years of 
SciDAC-1 research and decades of prior art.  We believe that PERI is off to a good start, 
and that its investigators have already made contributions to SciDAC-2 and to DOE’s 
2007 Joule codes.  We confidently look forward to an era of Petascale computing in 
which scientific codes migrate amongst a variety of leadership class computing systems 
without their developers being overly burdened by the need to continually refine them 
so as to achieve acceptable levels of throughput. 
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1. Center for Scalable Application Development Software

The Department of Energy’s (DOE) Office of Science is deploying leadership 
computing facilities, including a Blue Gene/P system at Argonne National Laboratory 
and a Cray XT system at Oak Ridge National Laboratory, with the aim of catalyzing 
scientific discovery. These emerging systems composed of tens of thousands of pro-
cessor cores are beginning to provide immense computational power for scientific 
simulation and modeling. However, harnessing the capabilities of such large-scale 
microprocessor-based, parallel systems is daunting for application developers. A grand 
challenge for computer science is to develop software technology that simplifies using 
such systems. 

To help address this challenge, in January 2007 the Center for Scalable Application 
Development Software (CScADS)1 was established as a partnership between Rice 
University, Argonne National Laboratory, University of California – Berkeley, University 
of Tennessee – Knoxville, and University of Wisconsin – Madison. As part of the DOE’s 
Scientific Discovery through Advanced Computing (SciDAC) program, CScADS is 
pursuing an integrated set of activities that aim to increase the productivity of DOE 
computational scientists by catalyzing the development of software tools and libraries 
for leadership computing platforms. These activities include workshops to engage the 
research community in the challenges of leadership-class computing, research and 
development of open-source software, and work with computational scientists to help 
them develop codes for leadership computing platforms. 

Figure 1. Relationship between CScADS activities.

Figure 1 illustrates the relationships between the Center’s activities. The flow of ideas 
originates from two sources: workshops for community outreach and vision-building, 
and direct involvement with application development.  These activities focus research 
efforts on important problems. In turn, research drives the infrastructure devel-
opment by identifying capabilities that are needed to support the long-range vision. 
Infrastructure feeds back into the research program, but also supports prototyping of 
software tools that support further application development. Finally, experiences by 
developers using prototype compilers, tools and libraries will spur the next cycle of 
research and development.
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First, we briefly describe each of the Center’s activities in a bit more detail. Then, we 
describe the themes of CScADS research. Finally, we conclude with a brief discussion 
of ongoing work.

1.1 Community Outreach and Vision-Building

Achieving petascale performance with applications will require a close col-
laboration between scientists developing computational models and computer science 
teams developing enabling technologies. To engage the community in the challenges 
and to foster interdisciplinary collaborations, we have established the CScADS Summer 
Workshops – an annual series of workshops that will focus on topics related to scalable 
software for the DOE’s leadership-class systems. In July 2007, we held our first series of 
four workshops in Snowbird, Utah. 

Automatic Tuning for Petascale Systems•	 . This workshop brought together 
researchers to discuss some of the code generation challenges for multicore pro-
cessors that are the building blocks for emerging petascale systems, to identify 
some of the opportunities afforded by the use of automatic tuning techniques, and 
to explore opportunities for collaboration among tuning researchers. 
Performance Tools for Petascale Computing•	 . This workshop brought together 
researchers to discuss the challenges of measurement, attribution, analysis, and 
presentation of application performance for leadership computing platforms. An 
important workshop goal was to explore opportunities for research teams to break 
their software into components to foster community collaboration and accelerate 
development of effective performance tools for petascale systems.
Petascale Architectures and Performance•	 . This workshop brought together com-
puter scientists and SciDAC application scientists who aim to develop codes for 
the leadership computing platforms. The goal of this workshop was to introduce 
the computer scientists to the SciDAC applications and to familiarize the appli-
cation scientists with the emerging leadership computing platforms, software 
libraries and tools for parallel computing, and effective strategies for parallel 
programming. 
Libraries and Algorithms for Petascale Applications•	 . This workshop brought 
together computer scientists working on algorithms and libraries with members 
of the SciDAC application teams. The principal workshop goal was to identify 
challenges for library and algorithm developers from the needs of the SciDAC 
applications and to foster collaboration between the communities. Workshop 
topics included the use of multicore processors and the use of automatic tuning 
in libraries.

The latter two workshops included “hands-on” sessions in which computer scientists 
and application scientists collaboratively explored application challenges on leadership 
computing platforms. 

1.2 Research and Development

Several national reports, such as the 2000 report Information Technology Research: 
Investing in our Future by the President’s Information Technology Advisory Committee, 
have pointed out that open-source software represents an opportunity to address the 
shortage of software support for programming high-end systems. The power of this 
approach has been amply demonstrated by the success of Linux in fostering the devel-
opment of operating systems for high-performance clusters.

The CScADS research program focuses on strategies for improving the productivity 
of application developers for developing high-performance codes for leadership-class 
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machines. Rather than attack a narrow range of problems within this space, CScADS 
will explore a broad spectrum of issues because we believe that there is a high degree 
of synergy to be exploited. 

Research on software support for high-end systems cannot be performed in a 
vacuum. Direct interaction between application developers and enabling technologies 
teams can clarify the problems that need to be addressed, yield insight into strategies 
for overcoming performance bottlenecks, identify how those strategies might be auto-
mated, and produce a vision for new tools and programming systems. 

1.3 Open-Source Software Infrastructure

To facilitate the research, both within CScADS and in the community at large, 
we are developing the CScADS Open Software Suite. This suite will include an open-
source software infrastructure to support compiler/programming-language research, 
development, and evaluation based on the Open64 compiler as well as Rice’s D System 
compiler infrastructure. Other components will include software infrastructure for 
performance tools, including support for binary analysis, instrumentation, data col-
lection, and measurement interpretation that will draw from Rice’s HPCToolkit2 and 
Wisconsin’s Paradyn3 and Dyninst tools, and a range of libraries that help harness the 
power of leadership-class platforms composed of multicore processors.

2. CScADS Research Themes

In CScADS, we have begun a broad program of research on software to support 
scalability in three dimensions: productivity, homogeneous scalability, and platform 
heterogeneity.  We briefly outline the themes of this work in each of these areas.

2.1 Rapid Construction of High-Performance Applications

An application specification is high level if (1) it is written in a programming system 
that supports rapid prototyping; (2) aside from algorithm choice, it does not include 
any hardware-specific programming strategies  (e.g., loop tiling); and (3) it is possible 
to generate code for the entire spectrum of different computing platforms from a single 
source version. The goal of CScADS productivity research is to explore how we can 
transform such high-level specifications into high-performance implementations for 
leadership-class systems.

For higher productivity, we believe that developers should construct high-
performance applications by using scripting languages to integrate domain-specific 
component libraries. At Rice we have been exploring a strategy, called telescoping 
languages, to generate high-performance compilers for scientific scripting languages. 
The fundamental idea is to preprocess a library of components to produce a compiler 
that understands and optimizes component invocations as if they were language primi-
tives. As part of this effort, we have been exploring analysis and optimization based 
on inference about generalized types. A goal of CScADS research is to explore how 
we can adapt these ideas to optimize programs based on the Common Component 
Architecture (CCA).  

2.2 Scaling to Homogeneous Parallel Systems

Achieving high performance on a modern microprocessor, though challenging, is 
not by itself enough for SciDAC applications; in addition, applications must be able 
to scale to the thousands or even hundreds of thousands of processors that make up a 



November 2007 27
Creating Software Tools and Libraries for Leadership Computing

petascale computing platform. Two general classes of software systems are needed to 
make this feasible: (1) tools that analyze scalable performance and help the developer 
overcome bottlenecks, and (2) compiler support that can take higher-level languages 
and map them efficiently to large numbers of processors.

2.2.1 Tools for Scalable Parallel Performance Analysis and Improvement

Effectively harnessing leadership-class systems for capability computing is a grand 
challenge for computer science. Running codes that are poorly tuned on such systems 
would waste these precious resources. To help users tune codes for leadership-class 
systems, we are conducting research on performance tools that addresses the following 
challenges:

Analyzing integrated measurements. Understanding application performance 
requires capturing detailed information about parallel application behavior, including 
the interplay of computation, data movement, synchronization, and I/O.  We are 
focusing on analysis techniques that help understand the interplay of these activities.

 
Taming the complexity of scale. Analysis and presentation techniques must support 

top-down analysis to cope with the complexity of large codes running on thousands 
of processors. To understand executions on thousands of processors, it is not practical 
to inspect them individually. We are exploring statistical techniques for classifying 
behaviors into equivalence classes and differential performance analysis techniques for 
identifying scalability bottlenecks.

Coping with dynamic parallelism. The arrival of multicore processors will give rise 
to more dynamic threading models on processor nodes. Strategies to analyze the effec-
tiveness of dynamic parallelism will be important in understanding performance on 
emerging processors.

This work on performance tools extends and complements activities in the 
Performance Engineering Research Institute (PERI). The CScADS tools research and 
development will build upon work at Rice on HPCToolkit and work at Wisconsin on 
Dyninst as well as other tools for analysis and instrumentation of application binaries. 
An outcome of this effort will be shared interoperable components that will accelerate 
development of better tools for analyzing the performance of applications running on 
leadership class systems.

2.2.2 Compiler Technology for Parallel Languages

The principal stumbling block to using parallel computers productively is that par-
allel programming models in wide use today place most of the burden of managing 
parallelism and optimizing parallel performance on application developers. We face 
a looming productivity crisis if we continue programming parallel systems at such a 
low level of abstraction, as these parallel systems increase in scale and architectural 
complexity. As a component of CScADS research, we are exploring a range of compiler 
technologies for parallel systems ranging from technologies with near-term impact to 
technologies for higher level programming models that we expect to pay off further 
in the future. This work is being done in conjunction with the DOE-funded Center 
for Programming Models for Scalable Parallel Computing. Technologies that we are 
exploring include:

Partitioned global address space (PGAS) languages. Communication optimization 
will be critical to the performance of PGAS languages on large-scale systems. As part 
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of CScADS, we are enhancing the Open64 compiler infrastructure to support compile-
time communication analysis and optimization of Co-Array Fortran and UPC. 

Global array languages. High-level languages that support data-parallel pro-
gramming using a global view offer a dramatically simpler alternative for programming 
parallel systems. Programming in such languages is simpler; one simply reads and 
writes shared variables without worrying about synchronization and data movement. 
An application programmer merely specifies how to partition the data and leaves the 
details of partitioning the computation and choreographing communication to a paral-
lelizing compiler. Having an HPF program achieve over 10 TFLOPS on Japan’s Earth 
Simulator has rekindled interest in high-level programming models within the US. 
Research challenges include improving the expressiveness, performance, and porta-
bility of high-level programming models.

Parallel scripting languages. Matlab and other scripting languages boost developer 
productivity both by providing a rich set of library primitives and by abstracting away 
mundane details of programming. Ongoing work at Rice is exploring compiler tech-
nology for Matlab. Work at Tennessee involves parallel implementations of scripting 
languages such as Matlab, Python, and Mathematica. As a part of this project, we are 
exploring compiler and run-time techniques that will enable such high-level pro-
gramming systems to scale to much larger computation configurations while retaining 
support for most languages features. 

2.2.3 Support for Multicore Platforms

Multicore chips will force at least two dimensions of parallelism into scalable 
architectures: (1) on-chip, shared-memory parallelism and (2) cross-chip distributed-
memory parallelism. Many architects predict that with processor speed improvements 
slowing, the number of cores per chip is likely to double every two years.  In addition, 
many of the contemplated architectures will incorporate multi-threading on each of 
the cores, adding a third dimension of parallelism. Based on this increased complexity, 
we see three principal challenges in dealing with scalable parallel systems constructed 
from multicore chips.

Decomposing available parallelism and mapping it well to available resources•	 .  For a 
given loop nest, we will need to find instruction-level parallelism to exploit short-
vector operations, multi-threaded parallelism to map across multiple cores, and 
outer-loop parallelism to exploit an entire scalable system.
Keeping multiple cores busy requires that more data be transferred from off-chip •	
memory.  In the near term, given the limitations on sockets, the aggregate off-chip 
bandwidth will not scale linearly with the number of cores. For this reason, it will 
be critical to transform applications to achieve high levels of cache reuse.
Choreographing parallelism and data movement•	 . Rather than having cores 
compute independently, coordinating their computation with synchronization 
can improve reuse.

We are pursuing three approaches to cope with the challenges of multicore com-
puting. First, Tennessee is exploring the design of algorithms and component libraries 
for systems employing multicore chips. This work seeks to achieve the highest possible 
performance, produce useful libraries, and drive the research on compilation strategies 
and automatic tuning for multicore chips. Second, Rice is exploring compiler trans-
formations to exploit multicore processors effectively by carefully partitioning and 
scheduling computations to enhance inter-core data reuse. Third, Argonne is exploring 
the interaction of multi-threaded application programs with systems software such as 
node operating systems and communication libraries such as MPI.
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2.3 Portability and Support for Heterogeneous Platforms

The third dimension of scalability is mapping an application to different sequential 
and parallel computing platforms. Over the lifetime of an application, the effort spent 
in porting and retuning for new platforms can often exceed the original implemen-
tation effort. In support of portability, we are initially focusing on obtaining the highest 
possible performance on leadership-class machines. In addition, we will explore com-
pilation and optimization of applications to permit them to run efficiently on computer 
systems that incorporate different kinds of computational elements, such as vector/
SIMD and scalar processors. 

2.3.1 Automatic Tuning to New Platforms

The success of libraries such as ATLAS4 and FFTW5 has increased interest in auto-
matic tuning of components and applications. The goal of research in this area is to 
develop compiler and run-time technology to identify which loop nests in a program 
are critical for high performance and then restructure them appropriately to achieve 
the highest performance on a target platform. 

The search space for alternative implementations of loop nests is too big to explore 
exhaustively. We have been exploring several strategies to reduce the cost of searching 
for the best loop structure. By leveraging capabilities of Rice’s HPCToolkit, we can pin-
point sources of inefficiency at the loop level, which can guide exploration of transfor-
mation parameters. Also, we have been employing model guidance along with search 
to dramatically reduce the size of the search needed for good performance.6

As part of CScADS, the Rice and Tennessee groups are continuing their efforts 
based on LoopTool, HPCToolkit, and ATLAS 2, with a focus on pre-tuning component 
libraries for various platforms. This work will provide variants of arbitrary component 
libraries optimized for different platforms and different application contexts, much 
as Atlas does today. A second group at Rice is extending adaptive code optimization 
strategies to tune components. This work will explore adaptive transformations and 
aggressive interprocedural optimization.

2.3.2 Compiling to Heterogeneous Computing Platforms

Emerging high-end computing architectures are beginning to have heterogeneous 
computational components within a single system. Exploiting these features (or even 
coping with them) will be a challenge. We believe that new techniques must be incor-
porated into compilers and tools to support portable high-performance programming. 
To date, our work has explored compilation for chips with attached vector units (SSE 
on Intel chips, Altivec on the IBM G5) and code generation for Cell.7  We are building 
upon this work to develop compiler techniques for partitioning and mapping computa-
tions onto the resources to which they are best suited. These techniques will be critical 
for effective use of systems that incorporate both vector and scalar elements in the same 
machine, such as those outlined in Cray’s strategy for “adaptive supercomputing.”

3. Recent and Ongoing Work

To date, work in CScADS has included both research and development of a range of 
technologies necessary to support leadership computing, as well as direct involvement 
with SciDAC application teams. We briefly summarize a few of these efforts.
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3.1 Research and Development of Software for Leadership Computing

Rice and Wisconsin have begun collaborative development of a series of perfor-
mance-tool components that can serve as community infrastructure for performance 
tools for leadership computing platforms. Initial efforts in this area have been focused 
on development of multi-platform components for stack unwinding within and across 
process address spaces that has uses for both debugging and performance analysis, and 
a library that provides a foundation for sampling-based performance measurement of 
both statically-linked and dynamically-linked executables. 

 
Berkeley and Tennessee have been collaborating on re-engineering numerical 

libraries for parallel systems. Initially, this work has been exploring parallel matrix fac-
torization using multi-threading in combination with intelligent scheduling. The new 
execution model relies on dynamic, dataflow-driven execution and avoids both global 
synchronization and implicit point-to-point synchronization due to send/receive-style 
message passing. Experimental results indicate that this strategy can significantly out-
perform traditional codes by hiding both algorithmic and communication latencies. 
Future plans call for exploring this programming paradigm for both two-sided linear 
algebra algorithms and sparse matrix algorithms. 

Argonne has been exploring the implementation and performance evaluation 
of MPI support for multi-threading and remote memory access. Experiments with 
Argonne’s own MPI implementation (MPICH) and various vendor implementations 
have demonstrated the potential contribution these still little-used parts of MPI can 
make to parallel program performance and have revealed widely varying attention to 
efficient implementations.

3.2 Application Engagement

As part of the Center’s application engagement efforts, Rice has been working 
closely with several of the SciDAC S3D and GTC application teams to diagnose appli-
cation performance bottlenecks on leadership-class platforms using a combination of 
measurement, analysis, and modeling.  S3D is a massively parallel solver for turbulent 
reacting flows.8 GTC (Gyrokinetic Toroidal Code) is a three-dimensional particle-in-
cell (PIC) code used for studying the impact of fine-scale plasma turbulence on energy 
and particle confinement in the core of tokamak fusion reactors.9 Our early experiences 
with both S3D and GTC demonstrate the value of the CScADS approach of tightly 
coupling computer science research with application development and tuning. Work 
with these applications has influenced development of software tools for performance 
measurement and performance modeling, as well as motivated a study of run-time 
libraries for adaptive data reordering. 

Work with S3D uncovered opportunities for using source-to-source tools to tailor 
code to improve memory hierarchy utilization. This led to refinement of Rice’s LoopTool 
program transformation tool. Applying LoopTool to S3D yielded improved perfor-
mance of S3D’s most memory intensive loop by nearly a factor of three.10 Additionally, 
analysis of experiments with S3D on the hybrid Cray XT3/XT4 system showed that 
the lower memory bandwidth on the XT3 nodes hurts the weak scaling performance 
of S3D on the hybrid system. Performance on the hybrid system could be improved 
by proportionally adjusting the partitioning of computation to account for the higher 
efficiency of the XT4 nodes.

Work with GTC has focused on exploring opportunities for improving memory 
hierarchy utilization. One component of this effort has been studying the impact of 
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data structure layout and code organization on the spatial and temporal locality present 
in data access patterns. A detailed study of GTC using a performance modeling toolkit 
developed at Rice11 identified several opportunities for improving application perfor-
mance. These included reorganizing the particle data structures to improve spatial 
reuse in the charge deposition and particle pushing phases of the application, using 
loop fusion to increase temporal reuse of particle data, and transforming the code to 
increase instruction-level parallelism and reduce translation look-aside buffer misses. 
A study of the transformed code on an Itanium2 system showed that our code trans-
formations improved performance by 33%. Code modifications have been provided 
back to the application team. Ongoing work is exploring on-line adaptive reordering 
of particle data to improve temporal locality for the cell data structures during the 
charge deposition and particle pushing phases. Preliminary experiments indicate that 
this approach offers the potential for substantially improving performance.

An outcome of the CScADS summer workshop Libraries and Algorithms for 
Petascale Applications was a substantial improvement in I/O scaling and performance 
of the Omega3P simulation tool under development at the Stanford Linear Accelerator 
Center. Discussions at the workshop led to the use of collective communication patterns 
to avoid scaling bottlenecks associated with reading input data. Additionally, adjusting 
the application to use parallel netCDF and MPI-IO reduced the time for writing output 
data by a factor of 100 when Omega3P was run on thousands of processors on the Cray 
XT system at Oak Ridge.  These improvements dramatically enhanced the scalability 
of Omega3P.  
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 Introduction

Galileo Galilei (15 February 1564 -- 8 January 1642) has been credited with fun-
damental improvements to early telescope designs that resulted in the first practically 
usable instrument for observing the heavens. With his “invention,” Galileo went on 
to many notable astronomical discoveries: the satellites of Jupiter, sunspots and the 
rotation of the sun, and proved the Copernican heliocentric model of the solar system 
(where the sun, rather than the earth, is the center of the solar system). These discov-
eries, and their subsequent impact on science and society, would not have been pos-
sible without the aid of the telescope – a device that serves to transform the unseeable 
into the seeable.

Modern scientific visualization, or just visualization for the sake of brevity in this 
article, plays a similarly significant role in contemporary science. Visualization is the 
transformation of abstract data, whether it be observed, simulated, or both, into readily 
comprehensible images. Like the telescope and other modern instruments, visual-
ization has proven to be an indispensable part of the scientific discovery process in 
virtually all fields of study. It is largely accepted that the term “scientific visualization” 
was coined in the landmark 1987 report1 that offered a glimpse into the important role 
visualization could play in scientific discovery.

Visualization produces a rich and diverse set of output – from the x/y plot to pho-
torealistic renderings of complex multidimensional phenomena. It is most typically 
“reduced to practice” in the form of software. There is a strong, vibrant, and productive 
worldwide visualization community that is inclusive of commercial, government and 
academic interests.

The field of visualization is as diverse as the number of different scientific domains 
to which it can be applied. Visualization software design and engineering both study 
and solve what are essentially computer science problems. Much of visualization 
algorithm conception and design shares space with applied mathematics. Application 
of visualization concepts (and software) to specific scientific problems to produce 
insightful and useful images overlaps with cognitive psychology, art, and often the 
scientific domain itself.

In the present day, the U.S. Department of Energy has a significant investment 
in many science programs. Some of these programs, carried out under the Scientific 
Discovery through Advanced Computing (SciDAC) program,2 aim to study, via simu-
lation, scientific phenomena on the world’s largest computer systems. These new sci-
entific simulations, which are being carried out on fractional-petascale sized machines 
today, generate vast amounts of output data. Managing and gaining insight from such 
data is widely accepted as one of the bottlenecks in contemporary science.3 As a result, 
DOE’s SciDAC program includes efforts aimed at addressing data management and 
knowledge discovery to complement the computational science efforts.
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Figure 1. Visualization offers the 
ability to “see the unseeable.”’ 
This image shows visualization of 
coherent flow structures in a large 
scale delta wing dataset: Volume 
rendering of regions of high forward 
(red) and backward (blue) Finite 
Time Lyapunov Exponent. Coherent 
structures appear as surfaces 
corresponding to the major vortices 
developing over the wing along 
the leading edge.4 Occlusion is a 
limitation that can be addressed 
with cropping or clipping. (Image 
courtesy of X. Tricoche, University 
of Utah and C. Garth, University of 
California – Davis)

The focus of this article is on how one group of researchers – the DOE SciDAC 
Visualization and Analytics Center for Enabling Technologies (VACET) – is tackling 
the daunting task of enabling knowledge discovery through visualization and analytics 
on some of the world’s largest and most complex datasets and on some of the world’s 
largest computational platforms. As a Center for Enabling Technology, VACET’s 
mission is the creation of usable, production-quality visualization and knowledge dis-
covery software infrastructure that runs on large, parallel computer systems at DOE’s 
Open Computing facilities, and that provides solutions to challenging visual data 
exploration and knowledge discovery needs of modern science, particularly the DOE 
science community.

Why Visualization Works So Well

One of the reasons that scientific visualization, and visual data analysis, has proven 
to be highly effective in knowledge discovery is because it leverages the human cog-
nitive system. Pseudocoloring, a staple visualization technique, performs a mapping of 
data values to colors in images to take advantage of this very ability. Figure 2 is a good 
example, where high data values are mapped to a specific color that attracts the eye. 
Additionally, a very clear 3D structure becomes apparent in this image; it would be vir-
tually impossible to “see” such structure by looking at a large table of numbers. While 
Figure 2 shows a 3D example, we are all familiar with 2D versions of this technique; 
the weather report on the evening news often shows pseudo-colored representations of 
temperature or levels of precipitation overlaid on a map.

 
Figure 2. Two types of “features” are immediately 
visible in this image showing the entropy field 
of a radiation/hydrodynamic simulation that 
models the accretion-induced collapse of a star, 
a phenomena that produces supernovae. One 
“feature” is the “sandwiching” of high values of 
entropy between lower values. The other is an 
overall sense of 3D structure. (Simulation data 
courtesy of Adam Burrows, University of Arizona, 
SciDAC Science Application “The Computational 
Astrophysics Consortium,’” image courtesy of the 
Visualization Group, Lawrence Berkeley National 
Laboratory.)
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Surviving the Data Tsunami

Many “tried and true” visualization techniques – like using psuedocoloring to map 
scalar data values to color – do a great job of leveraging the human cognitive system 
to accelerate discovery and understanding of complex phenomena. However, we are 
faced with some difficult challenges when considering the notion of using visualization 
as a knowledge discovery vehicle on very large datasets. One of many challenges is 
limited human cognitive bandwidth, which is conveyed in the notional chart shown in 
Figure 3. This chart conveys that while our ability to generate, collect, store and analyze 
data grows at a rate tracking the increase in processor speed and storage density, we 
as humans have fixed cognitive capacity to absorb information. Given that our ability 
to generate data far exceeds what we can possibly understand, one major challenge 
for “petascale visual data exploration and analysis” is how to effectively “impedance 
match” between “limitless data” and a fixed human cognitive capacity.

 

Figure 3. While our ability to generate, collect, store, and analyze data grows at a rate that tracks the 
increase in processor speed and storage density, our ability as humans to absorb information remains 
fixed (Illustration adapted from a slide by J. Heer, PARC User Interface Research Group). 

“What information consumes is rather obvious: it consumes the attention of its 
recipients.  Hence a wealth of information creates a poverty of attention, and a need 
to allocate that attention efficiently among the overabundance of information sources 
that might consume it.” – Herb Simon, as quoted by Hal Varian.5

In the context of our work – namely, petascale visual data analysis – we are faced 
with several dilemmas. First, even if we could simply scale up our existing tools and 
algorithms so they would operate at the petascale rather than the terascale, would the 
results be useful for knowledge discovery? Second, if the answer to the first question is 
“no,” then how can we help to “allocate attention efficiently among the overabundance 
of information”?

Let’s examine the first question a bit more closely. First, let’s assume that we’re oper-
ating in a gigabyte-sized dataset (109 data points), and we’re displaying the results in 
a monitor that has, say, 2 million pixels (2*106 pixels). For the sake of discussion, let’s 
assume we’re going to create and display an isosurface of this dataset. Studies have 
shown that on the order of about N2/3 , grid cells in a dataset of size N3 will contain 
any given isosurface.6 In our own work, we have found this estimate to be somewhat 
low – our results have shown the number to be closer to N0.8 for N3 data. Also, we 
have found an average of about 2.4 triangles per grid cell will result from the isocon-
touring algorithm.7 If we use these two figures as lower and upper bounds, then for our 
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gigabyte-sized dataset, we can reasonably expect on the order of between about 2.1 and 
40 million triangles for many isocontouring levels. At a display resolution of about 2 
million pixels, the result is a depth complexity – the number of objects at each pixel 
along all depths – of between 1 and 20. 

With increasing depth complexity come at least two types of problems. First, more 
information is “hidden from view.” In other words, the nearest object at each pixel 
hides all the other objects that are further away. Second, if we do use a form of visual-
ization and rendering that supports transparency – so that we can, in principle, see all 
the objects along all depths at each pixel – we are assuming that a human observer will 
be capable of distinguishing among the objects in depth. At best, this latter assumption 
does not always hold true, and at worst, we are virtually guaranteed the viewer will not 
be able to gain any meaningful information from the visual information overload.

If we scale up our dataset from gigabyte (109) to terabyte (1012), then we can expect 
on the order of between 199 million and 9.5 billion triangles representing a depth 
complexity ranging between about 80 and 4700, respectively. Regardless of which 
estimate of the number of triangles we use, we end up drawing the same conclusion: 
depth complexity and, correspondingly, scene complexity and human workload, grow 
linearly with the size of the source data. Even if we are able to somehow display all 
those triangles, we would be placing an incredibly difficult burden on the user. He or 
she will be facing the impossible task of visually trying to locate “smaller needles in a 
larger haystack.” 

The multi-faceted approach we’re adopting takes square aim at the fundamental 
objective: help the scientific researchers more quickly and efficiently do science. In one 
view, one primary tactical approach that seems promising is to help focus user attention 
on easily consumable images from the large data collection. We do not have enough 
space in this brief article to cover all aspects of our team’s effort in this regard. Instead, 
we provide a few details about a couple of especially interesting challenge areas.

Query-Driven Visualization

The term “query-driven visualization” (QDV) refers to the process of limiting 
visual data analysis processing only to “data of interest.”8 In brief, QDV is about using 
software machinery combined with flexible and highly useful interfaces to help reduce 
the amount of information that needs to be analyzed. The basis for the reduction varies 
from domain to domain, but boils down to “what subset of the large dataset is really of 
interest for the problem being studied.” This notion is closely related to that of “feature 
detection and analysis,” where “features” can be thought of as subsets of the larger 
population that exhibit some characteristics that are either intrinsic to individuals 
within the population (e.g., data points where there is high pressure and high velocity) 
or that are defined as relations between individuals within the population (e.g., the 
temperature gradient changes sign at a given data point). 

For the purposes of our discussion here, we will focus on the first category of fea-
tures. The second category is also of great interest to our team, where we have developed 
new technologies for topological data analysis9 that have proven very useful as the basis 
for enabling scientific knowledge discovery.

Broadly speaking, QDV consists of three broad conceptual elements. One is how 
one goes about “specifying interesting.” Another is how one displays and analyzes that 
subset of data. Yet another is the process of storing, indexing, querying and retrieving 
data subsets from large data archives.
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Specifying Queries

In many scientific data analysis applications, “interesting” data can be defined by 
compound boolean range queries of the form “(temperature > 1000) AND (0.8 <= 
density <= 1.0)”. Obviously, one could manually enter such an SQL-like query, but 
doing so is somewhat clumsy from an interface perspective, but also requires that the 
user know something about the data characteristics. In many instances, the users are 
quite familiar with their data, so the expectation of a priori knowledge is not unrea-
sonable. Rather than typing in queries, we propose that a visual interface for specifying 
queries will result in greater scientific productivity and better serve our mission of 
enabling data exploration and knowledge discovery.

We have implemented several different types of visual interfaces for specifying 
queries. The general theme in these implementations is that the visual interface helps 
the user to formulate queries while at the same time gaining an overall sense of data 
characteristics. This type of interaction is a variation on a well-known usability design 
principle called “context and focus,” where a given presentation affords the opportunity 
to see overviews of data (the context) as well as details about specific data of interest 
(the focus). Numerous works have applied this principle to the effective navigation of 
complex dataspaces, e.g., application to browsing of hierarchical filesystems.10

One example for formulating queries along these lines is an application for explo-
ration of large collections of particle-based datasets produced by the Gyrokinetic 
Turbulence Code (GTC), which is used to model microturbulence in magnetically 
confined fusion plasmas.11 Output from GTC consists of on the order of tens of mil-
lions of particles per timestep on present-day computational platforms; this figure is 
expected to rise at a rate commensurate with growth in computational capacity. From 
this output, fusion researchers are interested in studying various types of phenomena: 
formation, evolution and analysis of turbulent structures (eddies, vortices, etc.); and 
how particle “trapping” and “untrapping” in magnetic fields through microturbulence 
leads to an erosion of energy efficiency. 

We clearly don’t want to present an image of the entire dataset at each timestep – the 
result would be a very cluttered and unintelligible display. Instead, we want to offer 
the ability for a fusion scientist to focus visual analysis on subsets of data. The result, 
which is shown below in Figure 4, is an effective context-and-focus interface for rapidly 
selecting subsets of particles for display. 

Figure 4. For visual exploration and analysis 
of GTC data, our implementation provides a 
visual interface for selecting subsets of particles 
that meet a set of user-defined criteria. Here, 
“interesting” is defined as those data points that 
satisfy a set of multivariate range combinations via 
the parallel coordinates interface (lower image). 
The subset satisfying these range conditions then 
appears in the physical view (top image), where 
the view may be manipulated, the color transfer 
changed to draw attention to specific particles 
based upon other user-defined criteria, or subject 
to other types of visual or traditional analysis. 
(Image courtesy S. Ahern, Oak Ridge National 
Laboratory)
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These concepts can be applied to other types of data in other scientific domains, such 
as exploring the relationships between gene expression levels in cells of a developing 
organism as shown in Figure 5. These ideas, when combined with multiple linked views 
where updates in one display are then propagated to other views of the same dataset, 
offer an extremely powerful framework for rapid exploration of complex data.12

 
Figure 5. Here, we define three groups of “interesting” data – colored red, green, and blue – with a 
parallel coordinates interface (bottom pane), and those data points satisfying the multivariate range 
condition appear in the physical view (upper right). Here, we introduce a third linked view (upper left) 
that shows a 3D scatterplot – each of the data points from the three “groups of interesting” are colored 
red, green or blue (according to which “group of interesting” they belong). The three axes of the scat-
terplot are the expression levels for three specific genes; there are on the order of about 20 different 
gene expression levels per cell in this dataset – we picked three genes from the group of 20 for the 
purposes of display. This type of linked view presentation is very helpful in conveying different types of 
relationships in complex data. (Image courtesy of Oliver Rübel, Lawrence Berkeley National Laboratory)

High Performance Implementation

So far, we’ve discussed how one might go about specifying queries, or “defining 
interesting,” and have also shown a couple of different ways to present the results that 
show only “the interesting data.” Here, we want to turn our attention to the underlying 
machinery that makes this kind of approach feasible in high performance implementa-
tions suitable for use with very large datasets.

All Computer Science undergraduates are introduced to the idea of binary trees and 
their use as an indexing data structure. Briefly, if you have a sorted array of data of N 
items, you can construct a binary tree that will have N-1 nodes and N leaves where each 
interior node partitions the data in deeper nodes and leaves into two groups – “greater 
than” and “less than or equal to” the value of a key. Once you have constructed this 
data structure, the search for the data record having the value of some key is performed 
in log2N search steps assuming an optimal, or balanced tree. This basic idea – called 
tree-based indexing – is widely used in many types of relational and object-oriented 
database systems. One obvious limitation of this type of approach when considering 
very large data is that the size of the indexing structure – the tree – is linear with respect 
to the size of the dataset being indexed. As this size grows larger, we clearly don’t want 
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to incur a commensurately larger storage cost for our search indices. Another problem, 
which may not be quite as obvious, is that these tree-based approaches require the 
original data to be sorted. For scientific data, where you typically write the data once 
then examine it over and over again, this may not be a serious limitation. In some 
instances, it may simply be impractical to sort the data. 

Of greater concern is the so-called “Curse of Dimensionality”13 The previous para-
graph calls out that the storage complexity for a tree-based structure is O(N) when 
there are N data points. If these data points, or records, have two variables, and we 
want to create a two-dimensional tree that spans both variables, we end up with a 
storage complexity of O(N2). If there are three variables, the storage requirements are 
of O(N3). The basic premise is that storage requirements for tree-based indices grow 
exponentially with respect to the number of variables being indexed. Many modern 
simulations routinely have on the order of 100 variables that are computed and saved 
at each time step. It should be obvious that tree-based indexing is simply not practical 
for large and complex scientific data.

This well-known problem has received a great deal of attention from our colleagues 
in the field of scientific data management. They have developed a unique technology 
called “compressed bitmap indices” that have very favorable storage and search com-
plexity.14 This technology has been applied with great success to index/query problems 
of some of the world’s largest datasets.15 In a series of collaborative research projects, 
members of VACET and DOE’s Scientific Data Management Center have demonstrated 
the practicality of combining fast bitmap indexing with high performance visual data 
analysis, to implement a novel approach to query-driven visualization applied to visual 
data analysis of problems in combustion modeling8 and large-scale network traffic 
analysis.16

Adaptive Mesh Refinement Visualization

Adaptive Mesh Refinement (AMR) techniques combine the compact, implicitly 
specified structure of regular, rectilinear with the adaptivity to changes in scale of 
unstructured grids. AMR has proven particularly useful for modeling multiscale com-
putational domains that span many orders of magnitude of spatial or temporal scales 
by focusing solvers on regions where “interesting” physics or chemistry occur. Such 
domains include applications like astrophysics supernova modeling, where the simu-
lation endeavors to model phenomena that occur at scales ranging from sub-kilometer 
to interplanetary. AMR avoids the inefficiencies inherent in attempting to model this 
vast computational domain at a single, fine, homogeneous resolution. 

Handling AMR data for visualization is challenging, since coarser information in 
regions covered by finer patches is superseded and replaced with information from 
these finer patches. During visualization, it becomes necessary to manage the selection 
of which resolutions are being used. Furthermore, it is difficult to avoid discontinuities 
at level boundaries, which, if not properly handled, lead to visible artifacts in visual-
izations. Due to these difficulties, AMR support as first class data type in production 
visualization tools has been lacking despite the growing popularity of AMR-based 
simulations.17
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Figure 6. Production-quality visualization of data from an AMR-based simulation of a hydrogen flame. 
The left panel shows three orthogonal slices colored by temperature (blue is colder, red is hotter). The 
right panel shows an image produced with volume rendering of the same variable from this dataset. 
(Simulation data courtesy M. Day and J. Bell, Lawrence Berkeley National Laboratory; images courtesy 
G. Weber, Lawrence Berkeley National Laboratory).

Through interactions with our computational science stakeholders, VACET is pro-
viding production-quality, parallel capable software providing capabilities that fulfills 
needs in exploratory, analytical and presentation AMR visualization. Our deployment 
software – VisIt18 – is an open source visualization tool that accommodates AMR as a 
first class data type. VisIt handles AMR data as a special case of “ghost data,” i.e., data 
that is used to make computations more efficient, but which is not considered to be 
part of the simulation result. VisIt tags cells in coarse patches that are available at finer 
resolution as “ghost” cells, allowing AMR patches to retain their highly efficient native 
format as rectilinear grids. VisIt offers a rich set of production-quality functions, such 
as pseudocolor and volume rendering plots (Figure 6), for visualization and analysis 
of massive scale data sets, making it an ideal candidate to replace specialized AMR 
visualization tools. 

 

Figure 7. Spreadsheet plots are an important tool for debugging AMR codes. They support direct 
viewing of numerical data in patch cells. VisIt labels selected cells both in Spreadsheet and 3D visualiza-
tions allowing users to recognize correspondences quickly and effectively.

Recently, VACET has focused attention on implementing a set of essential debugging 
features in VisIt so that one of our stakeholders, the DOE SciDAC Applied Partial 
Differential Equations Center (APDEC), can fully migrate from their project-written 
and maintained visual data analysis software (ChomboVis) to VisIt. This migration will 
result in two benefits crucial to APDEC. The first is a cost savings, as APDEC will no 
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longer need to expend in-project resources on maintaining visualization software. The 
second is new AMR visualization capabilities that include the ability to run on parallel 
machines as well as support for remote and distributed visualization.

We added a new capability in VisIt – AMR spreadsheet plots – that support direct 
viewing of numerical values on a particular slice of a patch (see Figure 7). This function 
is essential for debugging and used by AMR code development teams on a daily basis. 
The new spreadsheet capability is integrated with VisIt’s “pick cell” feature, allowing 
users to “link” them to other plots. Additional new features include the ability to cus-
tomize the VisIt interface, thereby improving usability so that new users can quickly 
navigate and employ features familiar to them in their older, retiring software. 

While not as visible as the features above, other recent accomplishments include 
software architecture and engineering work to produce all-important performance 
improvements. Optimizations in AMR grid processing have produced a ten-fold 
savings in memory, and support more efficient rendering. Additional performance 
and memory optimizations improve efficiency for the important use case of rendering 
patch boundaries. Our new, specialized algorithm is an order of magnitude faster and 
more memory efficient than the previous implementation.

All of these software enhancements that produce important performance improve-
ments and visualization capabilities crucial to AMR-based computational science 
projects have been made available to the public through production-quality, parallel-
capable, open source visualization software.

Conclusion

This article has but scratched the surface of a number of serious challenges facing 
modern scientific researchers. At the root of most of these challenges is the fact that 
we are awash with information, and that gaining understanding from an increasing 
amount of data is an incredibly challenging task with few, if any, “off-the-shelf ” solu-
tions. This article has provided an overview of the value of visualization in scientific 
knowledge discovery, as well as a couple of examples of current state-of-the-art.

The mission of DOE’s SciDAC Visualization and Analytics Center for Enabling 
Technologies is to gain traction on solutions to this large family of difficult challenges. 
We use a multi-faceted approach where state-of-the-art technologies from visual-
ization, data analysis, data management, visual interfaces, software architecture and 
engineering are brought to bear on some of the world’s most challenging scientific data 
understanding problems.

For more information about VACET, please visit our website at www.vacet.org. 
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Supercomputers give scientists the power to model highly complex and detailed 
physical phenomena and chemical processes, leading to many advances in science and 
engineering. With the current growth rates of supercomputing speed and capacity, sci-
entists are anticipated to study many problems of unprecedented complexity and fidelity 
and attempt to study many new problems for the first time.  The size and complexity 
of the data produced by such ultra-scale simulations, however, present tremendous 
challenges to the subsequent data visualization and analysis tasks, creating a growing 
gap between scientists’ ability to simulate complex physics at high resolution and 
their ability to extract knowledge from the resulting massive data sets.  The Institute 
for Ultrascale Visualization,1 2 funded by the U.S. Department of Energy’s SciDAC 
program,3 aims to close this gap by developing advanced visualization technologies 
that enable knowledge discovery at the peta and exa-scale.  This article reveals three 
such enabling technologies that are critical to the future success of scientific supercom-
puting and discovery.

Parallel Visualization

Parallel visualization can be a useful path to understanding data at the ultra scale, 
but is not without its own challenges, especially across our diverse scientific user com-
munity. The Ultravis Institute has brought together leading experts from visualization, 
high-performance computing, and science application areas to make parallel visual-
ization technology a commodity for SciDAC scientists and the broader community. 
One distinct effort is the development of scalable parallel visualization methods for 
understanding vector field data. Vector field visualization is more difficult to do than 
scalar field visualization because it generally requires more computing for conveying 
the directional information and more storage space to store the vector field.

So far, more researchers have worked on the visualization of scalar field data than 
vector field data, regardless of the fact that vector fields in the same data sets are equally 
critical to the understanding of the   modeled phenomena.  3D vector field  visualization 
particularly requires more attention from the research community because most of 
the effective 2D vector field visualization methods incur visual clutter when directly 
applied to depicting 3D vector data.  For large data sets, a scalable parallel visualization 
solution for depicting a vector field is needed even more because the expanded space 
requirement and additional calculations needed to ensure temporal coherence for 
visualizing time-varying vector data. Furthermore, it is challenging to simultaneously 
visualize both scalar and vector fields due to the added complexity of rendering calcu-
lations and combined computing requirements. As a result, previous works in vector 
field visualization primarily focused on 2D, steady flow fields, the associated seed/
glyph placement problem, or the topological aspect of the vector fields. 

Particle tracing is fundamental to portraying the structure and direction of a vector 
flow field. When an appropriate set of seed points are used, we can construct paths and 
surfaces from the traced particles to effectively characterize the flow field. Visualizing 
a large time-varying vector field on a parallel computer using particle tracing presents 
some unique challenges. Even though the tracing of each individual particle is inde-
pendent of other particles, a particle may drift to anywhere in the spatial domain over 
time, demanding interprocessor communication. Furthermore, as particles move 
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around, the number of particles each processor must handle varies, leading to uneven 
workloads.  We have developed a scalable, parallel particle tracing algorithm allowing 
us to visualize large time-varying 3D vector fields at the desired resolution and pre-
cision.4 Figure 1 shows visualization of a velocity field superimposed with volume 
rendering of  a scalar field from a supernova simulation. 

Figure 1. Simultaneous visualization of velocity and angular momentum fields obtained from a 
supernova simulation.

We take a high-dimensional approach by treating time as the fourth dimension, 
rather than considering space and time as separate entities. In this way, a 4D volume 
is used to represent a time-varying 3D vector field. This unified representation enables 
us to make a time-accurate depiction of the flow field. More importantly, it allows us to 
construct pathlines by simply tracing streamlines in the 4D space. To support adaptive 
visualization of the data, we cluster the 4D space in a hierarchical manner. The resulting 
hierarchy can be used to allow visualization of the data at different levels of abstraction 
and interactivity. This hierarchy also facilitates data partitioning for efficient parallel 
pathline construction. We have achieved excellent parallel efficiency using up to 256 
processors for the visualization of large flow fields.4 This new capability enables scien-
tists to see their vector field data in unprecedented detail, at varying abstraction levels, 
and with higher interactivity, as shown in Figure 2. 

Figure 2. Pathline visualization of velocity field from a supernova simulation and the corresponding 
vector field partitioning.
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  Visualization Interfaces

Over the past 20 years, many novel visualization techniques have been invented but 
few have been deployed in production systems and tools. Even though some of tech-
niques are made available in a few open-source visualization tools, scientists seem to 
prefer the more rudimentary tools they have been using.  There are several reasons for 
this.  First, scientists are reluctant to switch to a new tool unless the tool can seamlessly 
fit in their existing computing and analysis environment. Second, although the new 
technique may produce highly desired visualizations, it will not be widely employed if 
it requires a tedious process and special hardware to operate. Third and most impor-
tantly, for scientists to adopt a new tool, the tool must be very easy and intuitive to use.  
The past effort in the visualization research community largely focused on improving 
the performance and quality of visualization calculations.   Only over the last few years 
have the design and deployment of appropriate user interfaces for advanced visual-
ization techniques began to receive more attention.5 6

Interface design has played a major role in several of our visualization projects.  One 
such visualization interface designed for exploring time-varying, multivariate volume 
data consists of three components, which abstract the complexity of exploring in dif-
ferent spaces of the data and visualization parameters.7 One important concept realized 
here is that the interface is also the visualization itself. As shown in Figure 3, the right-
most panel displays the time histograms of the data. A time histogram shows how the 
distribution of data values changes over the whole time sequence and can thus help the 
user to identify time steps of interest and to specify time-varying features. The middle 
panel attempts to display the potential correlation between each pair of variables in 
parallel coordinates for a selected time step. By examining different pairs of variables, 
the user can often identify features of interest based on the correlations observed. The 
left-most panel displays the hardware accelerated volume rendering enhanced with the 
capability to render multiple variables into a single visualization in a user controllable 
fashion. Such simultaneous visualization of multiple scalar quantities allows users to 
more closely explore and validate their simulations from the parallel-coordinate space 
to the 3D physical space. These three components are tightly cross linked to facilitate 
tri-space data exploration, offering scientists new power to study their time-varying 
volume data.

Figure 3. Interface for tri-space visual exploration of time-varying multivariate volume data.7 From left 
to right, the spatial view, variable view, and temporal view of the data are given.

The other interface design effectively facilitates visualization of multidimensional 
particle data output from a gyrokinetic simulation.8  Depicting the complex phe-
nomena associated with the particle data presents a challenge due to the large quantity 
of particles, variables, and time steps. By utilizing two modes of interaction–physical 
space and variable space–our system allows scientists to explore collections of densely 
packed particles and discover interesting features within the data. While single vari-
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ables can be easily explored through the use of a one dimensional transfer function, we 
again turn to the information visualization approach of parallel coordinates for inter-
actively selecting particles in multivariate space. In this manner, particles with deeper 
connections can be separated from the rest of the data and then rendered using sphere 
glyphs and pathlines, as shown in Figure 4. With this system, scientists at Princeton 
Plasma Physics Laboratory are able to more easily identify features of interest, such as 
the location and motion of particles that become trapped in turbulent plasma flow. The 
combination of scientific and information visualization techniques extend our ability 
to analyze complex collections of particles.

Figure 4. A parallel coordinate interface for multidimensional particle data visualization. The six axes of 
the parallel coordinates, from top to bottom, are: toroidal coordinate, trap particle condition, parallel 
velocity, statistical weight, perpendicular velocity, and distance from the center. Left: Visualization of 
those particles in a layer far from the center, with high parallel velocity and non-zero statistical weight. 
Right: Visualization of those particles changing direction frequently. This is achieved by restricting the 
parallel velocity values in a small range. 

In addition, we have been studying how to incorporate machine learning into 
the process of visualization, leading to an intelligent interface for data visualization. 
Intelligent interfaces are anticipated to replace the current clutter of hardware-specific 
and algorithm-specific controls with a simple and intuitive interface supported by 
an invisible layer of complex intelligent algorithms.6 Only high-level, goal-oriented 
decisions need to be made by the user, making cutting-edge visualization technology 
directly accessible to a wide range of application scientists.  To make intelligent inter-
faces widely employed, we need to evaluate the effectiveness of the resulting interface 
designs using a variety of applications. These studies will pave the way to the creation of 
next-generation visualization technology. We believe the next generation visualization 
technology will be built upon further exploitation of human perception to simplify 
visualization, advanced hardware features to accelerate visualization calculations, and 
machine learning to reduce the complexity, size, and high-dimensionality of data.

 

In-Situ Visualization

Due to the size of data output by a large-scale simulation, visualization is almost 
exclusively done as a post-processing step.  Even though it is desirable to monitor and 
validate some of the simulation stages, the cost of moving the simulation output to 
a visualization machine could be too high to make interactive visualization feasible. 
A better approach is not to move the data, or to keep the data that must be moved to 
a minimum. That is, both simulation and visualization calculations run on the same 
parallel supercomputer so the data can be shared, as shown in Figure 5.   Such in-situ 
processing can render images directly or extract features, which are much smaller than 
the full raw data, to store for on-the-fly or later examination. As a result, reducing both 
the data transfer and storage costs early in the data analysis pipeline can optimize the 
overall scientific discovery process. 
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In practice, however, this approach has been sparsely adopted because for two 
reasons. First, most scientists have been reluctant to use their supercomputer time for 
visualization calculations. Second, it could take a significant effort to couple a legacy 
parallel simulation code with an in-situ visualization code. In particular, the domain 
decomposition optimized for the simulation is often unsuitable for parallel visual-
ization, resulting in the need to replicate data for speeding up the visualization calcula-
tions. Hence, the common practice for scientists has been to store only a small fraction 
of the data or to study the stored data at a coarser resolution, which defeats the original 
purpose of performing the high-resolution simulations. To enable scientists to study 
the full extent of the data generated by their simulations and for us to possibly realize 
the concept of steering simulations at extreme-scale, we should begin investigating the 
option of in-situ processing and visualization. Many scientists become convinced that 
simulation-time feature extraction, in particular, is a feasible solution to their large 
data problem. An important fact is that during the simulation time, all relevant data 
about the simulated field are readily available for the extraction calculations. 

Figure 5. Left: the conventional ways to visualize a large-scale simulation running on a supercomputer.  
Right:  In-situ processing and visualization of large-scale simulations. 

In many cases, it is also desirable and feasible to render the data in-situ for moni-
toring and steering a simulation. Even in the case that runtime monitoring is not 
practical due to the length of the simulation run or the nature of the calculations, it 
could still be desirable to generate an animation characterizing selected parts of the 
simulation. This in-situ visualization capability is especially helpful when a significant 
amount of the data is to be discarded. Along with restart files, the animations could 
capture the integrity of the simulation with respect to a particularly important aspect 
of the modeled phenomenon. 

We have been studying in-situ processing and visualization for selected applications 
to understand the impact of this new approach on ultra-scale simulations, subsequent 
visualization tasks, and how scientists do their work. Compared with a traditional visu-
alization task that is performed in a post-processing fashion, in-situ visualization brings 
some unique challenges. First of all, the visualization code must interact directly with 
the simulation code, which requires both the scientist and the visualization specialist to 
commit to this integration effort. To optimize memory usage, we have to find a way for 
the simulation and visualization codes to share the same data structures to avoid repli-
cating data. Second, visualization workload balancing is more difficult to achieve since 
the visualization has to comply with the simulation architecture and be tightly coupled 
with it.  Unlike parallelizing visualization algorithms for standalone processing where 
we can partition and distribute data best suited for the visualization calculations, for 
in-situ visualization, the simulation code dictates data partitioning and distribution. 
Moving data frequently among processors is not an option for visualization processing. 
We need to rethink this to possibly balance the visualization workload so the visual-



November 2007 46

9 Tu, T., Yu, H., Ramirez-Guzman, L., Bielak, J., 
Ghattas, O., Ma, K.-L., O’Hallaron, D. R.  “From 
mesh generation to scientific visualization: 
an end-to-end approach to parallel 
supercomputing,” in Proceedings of ACM/IEEE 
Supercomputing 2006 Conference (SC ’06). 

10 Yu, H., Tu, T., Bielak, J., Ghattas, O., Lopez, J. 
C., Ma, K.-L. O’Hallaron, D. R.  Ramirezguzman, 
L., Stone, N., Taborda-Rios, R., Urbanic, J. 
“Remote runtime steering of integrated 
terascale simulation and visualization,” 
HPC Analytics Challenge, ACM/IEEE 
Supercomputing 2006 Conference (SC ’06). 

Acknowledgments 
This work is supported in part by 

the DOE SciDAC program and 

NSF ITR program. The images 

displayed in this article were 

made by members of the Ultravis 

Institute and the VIDI research 

group at University of California 

at Davis. The supernova data set 

was provided by Dr. John Blondin 

at North Carolina State University. 

The turbulent combustion 

data set was provided by Dr. 

Jackie Chen at Sandia National 

Laboratory. 

Emerging Visualization Technologies for Ultra-Scale Simulations

ization is at least as scalable as the simulation. Finally, visualization calculations must 
be low cost, with decoupled I/O for delivering the rendering results while the simu-
lation is running. Since the visualization calculations on the supercomputer cannot be 
hardware accelerated, we must find other ways to simplify the calculations such that 
adding visualization would take away only a very small fraction of the supercomputer 
time allocated to the scientist. 

We have realized in-situ visualization for a terascale earthquake simulation.9 This 
work also won the HPC Analytics Challenges at the SC 2006 Conference10 because of 
the scalability and interactive volume visualization we demonstrated. Over a wide-area 
network, we were able to interactively change view angles, adjust sampling steps, edit 
the color and opacity transfer function, and zoom in and out for visually monitoring 
the simulation running on 2048 processors of a supercomputer at the Pittsburgh 
Supercomputing Center. We were able to achieve high parallel efficiency exactly 
because we made the visualization calculations, i.e., direct volume rendering, to use 
the data structures used by simulation code, which removes the need to reorganize the 
simulation output and replicate data. Rendering is done in-situ using the same data 
partitioning made by the simulation, and thus no data movement is needed among 
processors. Similar to the traditional parallel volume rendering algorithms, our par-
allel in-situ rendering pipeline consists of two stages: parallel rendering and parallel 
image compositing. In the rendering stage, each processor renders its local data using 
software ray-casting. Note that this stage may not be balanced given a set of visual-
ization parameters and the transfer function used. In the image compositing stage, a 
new algorithm is designed to build a communication schedule in parallel on the fly. 
The basic idea is to balance the overall visualization workload by carefully distributing 
the compositing calculations. This is possible because parallel image compositing uses 
only the data generated by the rendering stage and is thus completely independent of 
the simulation. 

For implementation of in-situ visualization, no significant change is needed for the 
earthquake simulation code for the integration. The only requirement for the simu-
lation is to provide APIs for the access of the simulation internal data structure, which 
does not require much effort in practice. Furthermore, because all the access is a read 
operation, the simulation context is not affected by the visualization calculations. The 
advantage of our approach is obvious. Scientists do not need to change their code to 
incorporate in-situ visualization. They only need to provide an interface for the visual-
ization code to access their data, as everything else is taken care of by the visualization 
part. This approach is certainly the most acceptable by scientists. 

Conclusion

We are not too far from peta- and exa-scale computing.  Will we have the adequate 
tools for possibly extracting meaning from the data sets generated by such extreme-
scale simulations?   The investment made by the DOE SciDAC program in ultra-scale 
visualization2 is timely and ensures that challenges will be addressed. In this article, we 
point out the grand challenges facing extreme-scale data analysis and visualization, and 
present several key technologies for gaining insights in ultra-scale simulations. While 
we have had some success in deploying some of these technologies, further research 
and experimental studies are still needed to make these new technologies benefit the 
scientific supercomputing community at large. 
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1.  Petascale Science is an End-to-end Problem

Petascale science is an end-to-end endeavor, involving not only the creation of 
massive datasets at supercomputers or experimental facilities, but the subsequent 
analysis of that data by a user community that may be distributed across many labo-
ratories and universities. The new Center for Enabling Distributed Petascale Science 
(CEDPS), supported by the US Department of Energy’s Scientific Discovery through 
Advanced Computing (SciDAC) program, is developing tools to support this end-to-
end process. In this brief article, we summarize the goals of the project and its progress 
to date. Some material is adapted from a longer article that appeared in the 2007 
SciDAC conference proceedings.1

At a recent workshop on computational science, the chair noted in his introductory 
remarks that if the speed of airplanes had increased by the same factor as computers 
over the last 50 years, namely five orders of magnitude, then we would be able to cross 
the US in less than a second. This analogy communicates with great effectiveness the 
remarkable impact of continued exponential growth in computational performance, 
which along with comparable improvements in solution methods is arguably the foun-
dation for SciDAC.

However, a participant was heard to exclaim following these remarks: “yes—but it 
would still take two hours to get downtown!” The serious point that this speaker was 
making is that science is an end-to-end problem and that accelerating just one single 
aspect of the problem solving process can inevitably achieve only limited returns in 
terms of increased scientific productivity. 

These concerns become particularly important as we enter the era of petascale 
science, by which we mean science involving numerical simulations performed on 
supercomputers capable of a petaflop/sec or higher performance, and/or experimental 
apparatus—such as the Large Hadron Collider,2 light sources and other user facilities,3 
and ITER4 —capable of producing petabytes of data. Successful science using such 
devices demands not only that we be able to construct and operate the simulation or 
experiment, but also that a distributed community of participants be able to access, 
analyze, and ultimately make sense of the resulting massive datasets. In the absence of 
appropriate solutions to the end-to-end problem, the utility of these unique apparatus 
can be severely compromised.

The following example illustrates issues that can arise in such contexts. A team 
at the University of Chicago recently used the FLASH3 code to perform the world’s 
largest compressible, homogeneous isotropic turbulence simulation.5 Using 11 million 
CPU-hours on the LLNL BG/L computer over a period of a week, they produced a total 
of 154 terabytes of data, contained in 75 million files that were subsequently archived. 
Subsequently, they used GridFTP to move 23 terabytes of this data to computers at 
the University of Chicago; using four parallel streams, this took some three weeks at 
around 20 megabyte/sec. Next, they spent considerable time using local resources to 
tag the data, analyze it, and visualize it, augmenting the metadata as well. In a final 
step, they are making this unique dataset available for use by the community of turbu-
lence researchers by providing analysis services so that other researchers can securely 
download portions of the data for their own use. In each of these steps, they were 
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ultimately successful—but they would be the first to argue that the effort required to 
achieve their end-to-end goals of scientific publications and publicly available datasets 
was excessive.

As this example illustrates, a complete solution to the end-to-end problem may 
require not only methods for parallel petascale simulation and high-performance par-
allel I/O (both handled by the FLASH3 code and associated parallel libraries), but also 
efficient and reliable methods for:

high-speed reliable •	 data placement, to transfer data from its site of creation to 
other locations for subsequent analysis;
terascale or faster •	 local data analysis, to enable exploration of data that has been 
fetched locally;
high-performance •	 visualization, to enable perusal of selected subsets and features 
of large datasets data prior to download;
troubleshooting•	  the complex end-to-end system, which due to its myriad hardware 
and software components can fail in a wide range of often hard-to-diagnose 
ways;
building and operating •	 scalable services,6 so that many users can request analyses 
of data without having to download large subsets [this aspect of the project is not 
addressed in this article];
securing•	  the end-to-end system, in a manner that prevents (and/or can detect) 
intrusions and other attacks, without preventing the high-performance data 
movement and collaborative access that is essential to petascale science; and
orchestrating•	  these various activities, so that they can be performed routinely and 
repeatedly.

Each of these requirements can be a significant challenge when working at the 
petascale level. Thus, a new SciDAC Center for Enabling Technology, the Center for 
Enabling Distributed Petascale Science (CEDPS) was recently established to support 
the work of any SciDAC program that involves the creation, movement, and/or 
analysis of large amounts of data, with a focus on data placement, scalable services, 
and troubleshooting.

2.  Current Data Placement Approaches

Large quantities of data must frequently be moved among computers in a petascale 
computing environment, whether because there are insufficient resources to perform 
analysis on the platform that generated the data, because analysis requires specialized 
resources or involves comparison with other data, or because the data must be published, 
that is, moved and augmented with metadata, to facilitate use by the community. 

Our data placement work addresses three classes of application requirements. 
First, staging to and from active computations and workflows requires placement of 
data at advantageous locations. By using a data placement service to perform staging 
operations asynchronously with respect to a workflow or execution engine, rather 
than explicitly staging data at run time, we hope to demonstrate improved application 
performance, as suggested in simulations7 and initial measurements of workflow exe-
cution.8 A current example of where these methods can be applied is the visualization 
of the results of a combustion simulation at NERSC, which produces 100 TB of data. 
Smarter placement of the data during simulation execution will enable better use of 
the visualization component and let scientists understand the resulting data in a more 
timely fashion.
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Second, archival storage is often the final location of data products that are staged out 
of a running application, and better data placement services can make archiving opera-
tions more efficient. When an application runs on a compute resource such as a cluster 
or supercomputer, data products must often be staged off the storage system associated 
with that computational resource onto more permanent secondary or archival storage. 
These staging out operations can limit application performance, particularly if the 
compute resource is storage-limited; using an asynchronous data placement service to 
stage out data products should improve performance. For example, the team running 
the CCSM climate simulation code at ORNL wants to publish its output data to the 
Earth System Grid (ESG).9 They must both transfer the output data to an HPSS archive 
at NERSC (perhaps while the model is running) and also register each file in a metadata 
catalog for ESG.

Finally, we are interested in data placement services that maintain required levels 
of redundancy in a distributed environment. For example, it might be the policy of 
the data placement service to ensure that there are always three copies of every data 
item stored in the system. If the number of replicas of any data item falls below this 
threshold, the placement service is responsible for creating additional replicas to meet 
this requirement. An example of where this requirement arises in practice is the data 
produced by the CMS experiment at the LHC (at a sustained rate of 400 MB/s), which 
must be delivered to a Tier 1 site in the US for further processing and then distributed 
among several US domestic and 20 non-US Tier-2 sites. 

Such scenarios, for which we can give many other examples across a wide range of 
applications, can involve many of the following six elements:

Data 1.	 registration and metadata tagging as well as data movement;
Bulk data transfer2.	  over high-speed long-haul networks from different sources and 
sinks;
Coordinated data movement3.	  across multiple sources, destinations, and inter-
mediate locations, including parallel file systems, virtual disks, and hierarchical 
storage, and among multiple users and applications;
Failure reduction4.	  techniques, such as storage reservation and data replication;
Failure detection5.	  techniques including online monitoring and operation retry to 
detect and recover from multiple failure modalities; and
A need for 6.	 predictability and coordinated scheduling in spite of variations in 
load and competing use of storage space, bandwidth to the storage system, and 
network bandwidth.

To summarize the motivation for CEDPS in a sentence: not only must we be able 
to transfer data and manage end-point storage systems and resource managers; we must 
also be able to support the coordinated orchestration of data across many community 
resources. 

Currently available tools address portions of this functionality. Basic high-perfor-
mance data transfer (2) is supported by GridFTP,10 which provides fast performance 
through parallelism and stripping between data sources. The Replica Location Service 
and associated Globus data services11 can provide basic ways to look up where a 
replica is stored, but metadata tagging (1) is generally an application-specific tool. 
The NeST12 and dCache13 storage management services provide disk-side support for 
data placement and some of the reliability and error prevention required (4), but not 
the broader coordinated data movement (3) needed by today’s applications. Failure 
detection (5) and performance prediction (6) are considered open areas of research 
by many. In general, these requirements go well beyond our current data transfer and 
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storage resource management capabilities. We will discuss the ways in which our new 
technology addresses these six elements in the following sections.

3.  The CEDPS Managed Object Placement Service: MOPS

We are creating a new class of data placement services that can position data reliably 
across diverse systems and coordinate provisioning, movement, and registration across 
multiple storage systems to enable efficient and prioritized access by many users. A 
single, logical transfer may involve multiple sources and destinations necessitating the 
use of intermediate store and forward storage systems, or the creation of optimized 
overlay networks such as user level multicast networks. Concurrent independent 
placement operations may be prioritized and monitored in case of failures.

As a first step, we have recently released a prototype Managed Object Placement 
Service (MOPS), shown in Figure 1, which transforms storage into a managed resource. 
MOPS allows users to negotiate access to a certain quantity of storage for a certain time 
and with defined performance characteristics. Its design and implementation leverages 
GridFTP, NeST, and dCache.

GridFTP provides a flexible core architecture with a data interface component that 
allows different plug-ins for added functionality. It is well known for its high-speed 
data transfer capabilities. GridFTP gives MOPS the core functionality of fast, bulk 
file transfers, element 2 in our scenarios, which MOPS extends through its plug-in 
capability

 

Figure 1. General MOPS architecture.

NeST provides guaranteed storage allocation by allowing the user and storage device 
to negotiate a size and duration and to specify access control lists (ACLs) for file access. 
In this way, a system can specify which users can access certain files or sets of files and 
also work with disk reservations when they are available. This feature helps address 
element 3, coordinated data movement, and element 4, failure reduction, by decreasing 
the chance of disk overflow errors. 
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dCache provides methods for managing backend (tertiary) storage systems 
including space management, hot spot determination, and recovery from disk or node 
failures. When connected to a tertiary storage system, dCache simulates unlimited 
direct access storage space; data exchanges to and from the underlying tertiary storage 
system are performed automatically and invisibly to the user. Recent CEDPS-funded 
work has implemented data transfer consistency verification features for verifying that 
individual transfers have completed correctly. dCache also addresses element 3, coor-
dinated data movement, and element 4, failure reduction. 

By combining these three tools with a single user interface using MOPS, CEDPS 
users can now work with their data in a more managed environment, especially in 
terms of reducing failures due to running out of disk space in the middle of a transfer, 
limiting the access to a set of files, or verifying that a transfer has completed success-
fully, while continuing to serve the data quickly across a wide variety of networks and 
back-end storage systems.

4.  The CEDPS Data Placement Service 

CEDPS is also developing the Data Placement Service (DPS) that will perform data 
transfer operations using MOPS. For data-intensive scientific applications running 
in a distributed environment, the placement of data onto storage systems can have a 
significant impact on the performance of scientific computations and on the reliability 
and availability of data sets. These scientific applications may produce and consume 
terabytes or petabytes of data stored in millions of files or objects, and they may run 
complex computational workflows consisting of millions of interdependent tasks. A 
variety of data placement algorithms could be used, depending on the requirements 
of a scheduler or workflow management system as well as the data distribution goals 
of the scientific collaboration, or Virtual Organization (VO). For example, a placement 
algorithm might distribute data in a way that is advantageous for application or 
workflow execution by placing data sets near high-performance computing resources 
so that they can be staged into computations efficiently; by moving data off computa-
tional resources quickly when computation is complete; and by replicating data sets for 
performance and reliability. These goals might be considered policies of the workflow 
manager or VO, and a policy-driven data placement service is responsible for repli-
cating and distributing data items in conformance with these policies or preferences. 
A data placement service could also make use of hints from a workflow management 
system about applications and their access patterns, for example, whether a set of files 
is likely to be accessed together and therefore should be replicated together on storage 
systems. 

To demonstrate the effectiveness of intelligent data placement, we integrated the 
Pegasus workflow management system14 from the USC Information Sciences Institute 
with the Globus Data Replication Service,15 which provides efficient replication and 
registration of data sets. We demonstrated8 that using hints from the workflow man-
agement system allowed us to reduce the execution time of scientific workflows when 
we were able to successfully prestage necessary data onto appropriate computational 
resources. 

This initial work has led us to design a general, asynchronous Data Placement 
Service (DPS) that will operate on behalf of a virtual organization and accept data 
placement requests from clients that reflect, for example, grouping of files, order of 
file requests, etc. Figure 2 illustrates the operation of a DPS for stage in requests issued 
by a workflow management system. We also plan to incorporate configurable policies 
into the data placement service that reflect the data distribution policies of a particular 
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VO. Our goal is to produce a placement service that manages the competing demands 
of VO data distribution policies, data staging requests from multiple competing work-
flows, and additional on-demand data requests from other clients. 

 

Figure 2. Shows a workflow management system acting as a client of a data placement service and 
issuing requests for staging of data sets. The DPS issues MOPS data transfers from appropriate storage 
elements to the compute cluster(s) on which workflow execution will take place. 

We have implemented an initial version of the data placement service with a planned 
software release in October 2007. This implementation modifies and significantly 
extends the existing Globus Data Replication Service. The implementation uses several 
Globus components, including the Java WS Core that provides the basic infrastructure 
for supporting web service deployment and generic operation support such as basic 
state management, query operations, endpoint references, etc.; the Globus Replica 
Location Service that provides registration and discovery of of data items; the GridFTP 
data transfer service for secure and efficient data staging operations; and the Grid 
Security Infrastructure for secure access to resources in the distributed environment.

5.  CEDPS Troubleshooting

Distributed data management involves end-to-end systems comprising of many dif-
ferent hardware and software components in different physical locations and adminis-
trative domains. Failures can occur and they can be hard to diagnose. Experience with 
current DOE distributed system deployments has shown that understanding behavior 
is a fundamental requirement, not just a desirable enhancement. Middleware may also 
mask performance faults, when applications produce correct results but experience 
degradation in performance.

In order to better understand failures and to increase the reliability of the end-to 
end system, we have developed tools to allow easer access to logs and additional log 
analysis software that performs anomaly detection. In addition, we have also deployed 
a higher-level monitoring tool that observes services and generates notifications when 
errors occur. 

Figure 3 shows the CEDPS log management service based on the syslog-ng 
system.16 We mine software and service logs (such as those from GridFTP, MOPS, or 
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other tools), which are filtered and forwarded to a common location. That combined 
set of data can then be analyzed. We have used NetLogger17 to access performance data 
and discover faulty event chains where expected behavior does not occur. We have also 
developed prototypes of anomaly detection tools that can detect a missing event in 
an event stream and also identify unexpected performance variations that indicate an 
underlying problem that may not cause an out right failure.18 This system is currently 
in the process of being deployed on the Open Science Grid (OSG).19

 

 

Figure 3. Syslog-ng deployment architecture, and interactions with anomaly detection and alarm tools.

Both of these tools have been aided by effort spent on improving the quality and 
consistency of available performance information. Specifically, we have codified a set 
of logging “Best Practices,”20 and are modifying the Globus Toolkit21 to follow these 
practices. In defining these guidelines, we have worked with the European EGEE 
project to achieve compatibility with their security logging guidelines,22 an important 
requirement for LHC computing.

To compliment our log services and to assist further with our scenario elements 
5 and 6 (failure reduction and detection), we have also developed a Trigger service18 
that runs small probes and notifies system administrators and end users when certain 
conditions are met. These can include a service failure or failure to respond to a ping, 
or a warning condition, such as a nearly full disk, overly long queue, or high load 
condition on a resource. The Trigger service has been used by ESG for over three years 
for system failure notifications and to help diagnose errors. We have re-architected this 
component to allow for additional trigger services, a separation of matching condi-
tions and actions taken upon failure notification, and easier deployment through a 
Web interface.

These tools combine to give us additional support in the end-to-end data man-
agement environment.
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6.  Revisiting the FLASH Example

We began this article with a discussion of the University of Chicago FLASH appli-
cation experiment, in which it took three weeks at 20 MB/s to transfer less than 15% 
of the data produced in a three-week simulation. By using MOPS, it is possible that 
smarter disk allocation could have been done, allowing the FLASH group to transfer 
data of particular interest more quickly and as it was being generated due to smarter 
handling of the backend storage system. When performing local analysis and repli-
cation of the data, the FLASH team could now take advantage of the DPS, which would 
handle registering new files and distributing them according to the policy defined by 
the FLASH team, instead of having to do this work by hand. In addition, with the added 
centralized logging and trigger service deployed at the various sites, FLASH scientists 
would be able to detect any failures and debug any performance problems much more 
easily than the current environment. The effort required to achieve their end-to-end 
goals of scientific publications and publicly available datasets would be significantly 
reduced overall.

7.  Summary

We have introduced the SciDAC Center for Enabling Distributed Petascale Science 
(CEDPS), which is addressing three problems critical to enabling the distributed 
management and analysis of petascale datasets: data placement, scalable services, and 
troubleshooting.

In data placement, we are developing tools and techniques for reliable, high-per-
formance, secure, and policy driven placement of data within a distributed science 
environment. We are constructing a managed object placement service (MOPS)—a 
significant enhancement to today’s GridFTP—that allows for management of the space, 
bandwidth, connections, and other resources needed to transfer data to and/or from 
a storage system. Building on this base, we are developing end-to-end data placement 
services that implement different data distribution and replication behaviors.

In troubleshooting, we are developing tools for the detection and diagnosis of failures 
in end-to-end data placement and distributed application hosting configurations. 
We are constructing an end-to-end monitoring architecture that uses instrumented 
services to provide detailed data for both background collection and run-time, event-
driven collection. We are also constructing new monitoring analysis tools able to detect 
failures and performance anomalies and predict system behaviors using archived data 
and event logs.

These tools allow scientists to interact more easily with large data sets created during 
petascale computations, and allow faster end analysis of the data. More details can be 
found at http://www.cedps.net/. 

Acknowledgements
This work is supported through the U.S. Department of Energy Office of Science, Office of Advanced 

Scientific Computing Research, through the SciDAC program. Work at Argonne is supported under Contract 

DE-AC02-06CH11357 and at Lawrence Berkeley National Laboratory, under Contract DE-AC02-05CH11231. 

We gratefully acknowledge the contributions of our fellow CEDPS participants Andrew Baranovski, Shishir 

Bharathi, John Bresnahan, Tim Freeman, Keith Jackson, Kate Keahey, Carl Kesselman, David E. Konerding, 

Mike Link, Miron Livny, Neill Miller, Robert Miller, Gene Oleynik, Laura Pearlman, and Robert Schuler.



November 2007 55

Introduction

Terascale computing and large scientific experiments produce enormous quantities 
of data that require effective and efficient management. The task of managing scientific 
data is so overwhelming that scientists spend much of their time managing the data 
by developing special purpose solutions, rather than using their time effectively for 
scientific investigation and discovery.  Effectively generating, managing, and analyzing 
this information requires a comprehensive, end-to-end approach to data management 
that encompasses all of the stages, from the initial data acquisition to the final analysis 
of the data. Fortunately, the data management problems encountered by most scientific 
domains are common enough to be addressed through shared technology solutions. 
Based on community input, we have identified three significant requirements. First, 
more efficient access to storage systems is needed. In particular, parallel file system 
improvements are needed to read and write large volumes of data without slowing a 
simulation, analysis, or visualization engine.  These processes are complicated by the 
fact that scientific data are structured differently for specific application domains, and 
are stored in specialized file formats.  Second, scientists require technologies to facil-
itate better understanding of their data, in particular the ability to effectively perform 
complex data analysis and searches over large data sets.  Specialized feature discovery 
and statistical analysis techniques are needed before the data can be understood or 
visualized.  To facilitate efficient access, it is necessary to keep track of the location 
of the datasets, effectively manage storage resources, and efficiently select subsets of 
the data. Finally, generating the data, collecting and storing the results, data post-pro-
cessing, and analysis of results is a tedious, fragmented process.  Tools for automation 
of this process in a robust, tractable, and recoverable fashion are required to enhance 
scientific exploration.

The Scientific Data Management (SDM) Center,1 funded under the DOE SciDAC 
program, focuses on the application of known and emerging data management 
technologies to scientific applications.  The Center’s goals are to integrate and deploy 
software-based solutions to the efficient and effective management of large volumes of 
data generated by scientific applications. Our purpose is not only to achieve efficient 
storage and access to the data using specialized indexing, compression, and parallel 
storage and access technology, but also to enhance the effective use of the scientist’s 
time by eliminating unproductive simulations, by providing specialized data-mining 
techniques, by streamlining time-consuming tasks, and by automating the scientist’s 
workflows. Our approach is to provide an integrated scientific data management 
framework where components can be chosen by the scientists and applied to their 
specific domains.  By overcoming the data management bottlenecks and unnecessary 
information-technology overhead through the use of this integrated framework, scien-
tists are freed to concentrate on their science and achieve new scientific insights.
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The Three-Layer Organization of the SDM Center

As part of our evolutionary technology development and deployment process (from 
research through prototypes to deployment and infrastructure) we have organized 
our activities in three layers that abstract the end-to-end data flow described above.  
We labeled the layers as Storage Efficient Access (SEA), Data Mining and Analytics 
(DMA), and Scientific Process Automation (SPA). The SEA layer is immediately on 
top of hardware and operating systems, providing parallel data access to files and trans-
parent access to archival storage.  The DMA layer, which builds on the functionality 
of the SEA layer, consists of indexing, feature selection, and parallel statistical analysis 
technology.  The SPA layer, which is on top of the DMA layer, provides the ability 
to compose workflows from the components in the DMA layer as well as application 
specific modules.  Figure 1 shows this organization and the components developed by 
the center and applied to various scientific applications.

Scienti�c Process Automation (SPA) Layer

Work�ow Management Engine 
(Kepler)

Scienti�c Work�ow
Components

Data Mining and Analysis (DMA) Layer

Parallel R 
Statistical
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Data Analysis and
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Active Storage

Storage
Resource
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(SRM)

Parallel I/O
(ROMIO)

Parallel
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Virtual File

System

Hardware, Operating Systems, and Storage Systems

Figure 1. The three-layer organization 
of technologies in the SDM Center

Over the last several years, the technologies supported by the SDM center have 
been deployed for a variety of application domains. Some of the most notable 
achievements are: 

More than a tenfold speedup in writing and reading netCDF files has been •	
achieved by developing MPI-IO based Parallel netCDF software being utilized by 
astrophysics, climate, and Parallel VTK. 
An improved version of PVFS is freely available to the community and offered •	
through cluster vendors. In addition to operating on clusters, it is routinely used 
on the IBM BlueGene/L and soon on the BlueGene/P.
Methods for the correct classification of orbits in puncture plots and for “blob •	
tracking” from the National Compact Stellarator eXperiment (NCSX) at PPPL 
were using a combination of image processing, statistics, and pattern recognition 
techniques.
A new bitmap indexing method has enabled an efficient search over billions of •	
collisions (events) in High Energy Physics, and is being applied to combustion, 
astrophysics, and visualization domains. It achieves more than a tenfold speedup 
in generating regions and tracking them over time. 
The development of a Parallel R, an open source parallel version of the popular •	
statistical package R. This is being applied to climate, GIS, and mass spec pro-
teomics applications. 
A scientific workflow management and execution system (called Kepler) has been •	
developed and deployed within multiple scientific domains, including genomics 
and astrophysics. The system supports the design and the execution of flexible 
and reusable, component-oriented workflows. 
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Descriptions of technologies developed and used in the SDM 
Center

In this section we describe the SDM Center technologies, and include some examples 
of their application in various scientific projects.  We proceed with technologies from 
the top layer to the bottom layer.

The Kepler Scientific Workflow System

A practical bottleneck for more effective use of available computational and data 
resources is often the design of resource access and use of processes, and the corre-
sponding execution environments, i.e., in the scientific workflow environment of end 
user scientists. The goal of the Kepler system2 is to provide solutions and products for 
effective and efficient modeling, design and execution of scientific workflows.  Kepler 
is a multi-site open source effort, co-founded by the SDM center, to extend the Ptolemy 
system (from UC Berkeley) and create an integrated scientific workflow infrastructure. 
We have also started to incorporate data, process, system and workflow provenance and 
run-time tracking and monitoring.  We have worked closely with application scientists 
to design, implement, and deploy workflows that address their real-world needs.  In 
particular, we have active users on the SciDAC Terascale Supernova Initiative (TSI) 
team and an LLNL Biotechnology project, as well as at the Center for Plasma Edge 
Simulation (CPES) fusion project.  While the Scientific Process Automation (SPA) 
layer uses Kepler to achieve workflow automation, it is the specific task components 
(called “actors” in Kepler) developed by the SDM center that makes our work unique 
in it usefulness to scientific applications.

Figure 2. An abstract representation of a scientific workflow

Underlying challenges related to simulations, data analysis and data manipulation 
include scalable parallel numerical algorithms for the solution of large, often sparse 
linear systems, flow equations, and large Eigen-value problems, running of simula-
tions on supercomputers, movement of large amounts of data over large distances, 
collaborative visualization and computational steering, and collection of appropriate 
process and simulation related status and provenance information. This requires inter-
disciplinary teams of application scientists and computer scientists working together 
to define the workflows and putting them into the Kepler workflow framework.   The 
general underlying “templates” are often similar across disciplines: large-scale parallel 
computations and steering (hundreds of processors, gigabytes of memory, hours to 
weeks of CPU time), data-movement and reduction (terabytes of data), visualization 
and analytics (interactive, retrospective, and auditable). An abstraction of this and its 
Kepler translation are illustrated in Figure 2 and 3 for a particular astrophysics project, 
call the Terascale Supernova Initiative (TSI).3  Figure 3 shows the capability of the 
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Kepler system to represent hierarchically structured workflows.  In the center of the 
figure there are four simple high-level tasks; each is expanded into lower level tasks that 
manage the detailed processes. 

Figure 3. Instantiation of the abstract workflow in Kepler

Feature Extraction and Tracking

As part of the Data Mining and Analysis (DMA) layer, the SDM center is developing 
scalable algorithms for the interactive exploration of large, complex, multi-dimensional 
scientific data. By applying and extending ideas from data mining, image and video 
processing, statistics, and pattern recognition, we are developing a new generation of 
computational tools and techniques that are being used to improve the way in which 
scientists extract useful information from data.4  These tools were applied to problems 
in a variety of application areas, including separation of signals in climate data from 
simulations, the identification of key features in sensor data from the D-III-D Tokamak, 
and the classification and characterization of orbits in Poincaré plots in Fusion data.  

Figure 4. A schematic of the NSTX Figure 5. Tracking of “blobs” in Fusion images

A specific example of the effectiveness of such techniques is the identification of 
the movement of “blobs” in images from fusion experiments, using data from the 
National Spherical Torus Experiment (NSTX),5 shown in Figure 4.  A blob is a coherent 
structure in the image that carries heat and energy from the center of the torus to 
the wall.  Figure 5 shows bright blobs extracted from experimental images from the 
NSTX.  The blobs are high energy regions.  If they hit the torus wall that confines the 
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plasma, it can vaporize. The figure shows movement of the blobs over time. A key 
challenge to the analysis is the lack of a precise definition for these structures.  Figure 
5 shows three consecutive images from an NSTX sequence. The original images are 
somewhat noisy and must first be processed to remove the noise. We have applied our 
background subtraction software to remove the quiescent background intensity in the 
sequences.  Next, ambient background intensity, which is approximated by the median 
of the sequence, is removed, thus highlighting the blob regions, as shown in the second 
row of the figure. We then use image processing techniques to identify and track the 
blobs over time, as shown in the third row. The goal is to validate and refine the theory 
of plasma turbulence.

Parallel Statistical Analysis

Another area supported by the DMA layer is efficient statistical analysis. Present 
data analysis tools such as Matlab, IDL, and R, even though highly advanced in pro-
viding various statistical analysis capabilities, are not apt to handle large data-sets. 
Most of the researchers’ time is spent on addressing data preparation and management 
needs of their analyses.  Parallel R6 is an open source parallel statistical analysis package 
developed by the SDM center that lets scientists employ a wide range of statistical 
analysis routines on high performance shared and distributed memory architectures 
without having to deal with the intricacies of parallelizing these routines. Through 
Parallel R, the user can distribute data and carry out the required parallel computation 
but maintain the same look-and-feel interface of the R system. Two major levels of 
parallelism are supported: data parallelism (k-means clustering, Principal Component 
Analysis, Hierarchical Clustering, Distance matrix, Histogram) and task parallelism 
(Likelihood Maximization, Bootstrap and Jackknife Re-sampling, Markov Chain 
Monte Carlo, Animations).  Figure 6 shows a schematic of the concepts.  ParallelR has 
been applied in multiple scientific projects including feature extraction for quantitative 
high-throughput proteomics, parallel analyses of climate data, and in combination 
with geographical information systems.

Figure 6. Providing data and task parallelism in 
ParallelR

Specialized indexing technology for very large datasets

Another aspect of effective data analysis supported by the DMA technology in the 
SDM center, is the ability to identify, in real-time, items of interest from billions of data 
values in large datasets.  This is a significant challenge posed by the huge amount of 
data being produced by many data-intensive science applications.  For example, a high-
energy physics experiment called STAR is producing hundreds of terabytes of data 
a year and has accumulated many millions of files in the last five years of operation. 
One of the core missions of the STAR experiment is to verify the existence of a new 
state of matter called the Quark Gluon Plasma (QGP).  An effective strategy for this 
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task is to find the high-energy collisions that contain signatures unique to QGP, such 
as a phenomenon called jet quenching. Among the hundreds of millions of collision 
events captured, a very small fraction of them (maybe only a few hundreds) contain 
clear signatures of jet quenching.  Efficiently identifying these events and transferring 
the relevant data files to analysis programs are a great challenge.  Many data-intensive 
science applications are facing similar challenges in searching their data. 

Over the last several years, we have been working on a set of strategies to address 
this type of searching problem.  Usually, the data to be searched are read-only. Our 
approach takes advantage of this fact.  We have developed a specialized indexing 
method based on representing the indexed data as a compressed bitmap.  This indexing 
method, called FastBit,7 is an extremely efficient bitmap indexing technology.  Unlike 
other bitmap indexes that assume low cardinality of possible data values, FastBit is 
particularly useful for scientific data, since it is designed for high-cardinality numeric 
data.  FastBit performs 12 times faster than any known compressed bitmap index in 
answering range queries.  Because of its speed, Fastbit facilitates real-time analysis of 
data, searching over billions of data values in seconds.  FastBit has been applied to several 
application domains, including finding flame fronts in combustion data, searching for 
rare events from billions of high energy physics collision events, and more recently to 
facilitate query-based visualization.  The examples in Figure 7 (for astrophysics and 
combustion data) show the use of a tool, called DEX,8 that used Fastbit in combination 
with VTK to achieve a very fast selection of features from large datsets and their display 
in real-time.

Exploding supernova Methane jet flame

Figure 7. Examples of regions found by Fastbit indexes in real-time from very large datasets

Advanced I/O Infrastructure 

As high-performance computing applications scale and move from performing 
simulation and computing to data analysis they become tremendously data-intensive, 
creating a potential bottleneck in the entire scientific discovery cycle.  At the same 
time, it is a well-known phenomenon that I/O access rates have not kept pace with 
high-performance computing performance as a whole.  Because of this phenomenon, 
it becomes increasingly important for us to extract the highest possible performance 
from the I/O hardware that is available to us. Even if the raw hardware capacity for 
storage and I/O is available in an infrastructure, the complexity arising from the scale 
and parallelism is daunting and requires significant advances in software to provide the 
required performance to applications.
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The Storage Efficient Access (SEA) component provides the software infrastructure 
necessary for efficient use of the I/O hardware by applications.  This is accomplished 
through a sequence of tightly coupled software layers, shown in Figure 8, building on 
top of I/O hardware at the bottom and providing application-oriented, high-level I/O 
interfaces at the top.  Three APIs are made available for accessing SEA components: 
Parallel netCDF at the high-level I/O library level, ROMIO at the MPI-IO level, and 
Parallel Virtual File System (PVFS) at the file level.

Application

High-Level I/O Library

MPI-IO Implementation

Parallel File System

Storage Hardware

Figure 8. The I/O stack Figure 9. Serialization problems in original netCDF removed in 
Parallel netCDF to achieve a 10 fold performance increase

PVFS9 can provide multiple GB/second parallel access rates, and is freely available.  
Above the parallel file system is software designed to aid applications in more efficiently 
accessing the parallel file system.  Implementations of the MPI-IO interface are arguably 
the best example of this type of software.  MPI-IO provides optimizations that help map 
complex data movement into efficient parallel file system operations.  Our ROMIO10 
MPI-IO interface implementation is freely distributed and is the most popular MPI-IO 
implementation for both clusters and a wide variety of vendor platforms.  MPI-IO is a 
powerful but low-level interface that operates in terms of basic types, such as floating 
point numbers, stored at offsets in a file.  However, some scientific applications desire 
more structured formats that map more closely to the application’s use, such as multi-
dimensional datasets.  NetCDF11 is a widely used API and portable file format that is 
popular in the climate simulation and data fusion communities. As part of the work in 
the SDM center, a parallel version of NetCDF (pNetCDF) was developed.  It provides a 
new interface for accessing NetCDF data sets in parallel. This new parallel API closely 
mimics the original API, but is designed with scalability in mind and is implemented 
on top of MPI-IO. Performance evaluations using micro-benchmarks as well as appli-
cation I/O kernels have shown major scalability improvements over previous efforts.  
Figure 9 shows schematically the concept of adding a parallel netCDF layer to eliminate 
serialization through a single processor. 

Upcoming systems will incorporate hundreds of thousands of compute processors 
along with support nodes. Using POSIX and MPI-IO interfaces, I/O operations will be 
forwarded through a set of I/O nodes to storage targets.  Work is underway to develop 
efficient forwarding systems to match petascale architectures and to best connect to 
underlying file systems, including PVFS.
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Figure 10. The Active Storage architecture

Active Storage

Despite recent advancements in storage technologies for many data intensive appli-
cations, analysis of data remains a serious bottleneck. In traditional cluster systems, 
I/O-intensive tasks must be performed in the compute nodes. This produces a high 
volume of network traffic. One option for data analysis is to leverage resources not 
on the client side, but on the storage side referred to as Active Storage. The original 
research efforts on active storage were based on a premise that modern storage archi-
tectures might include usable processing resources at the storage controller or disk; 
unfortunately, commodity storage has not yet reached this point. However, parallel file 
systems offer a similar opportunity. Because the servers used in parallel file systems 
often include commodity processors similar to the ones used in compute nodes, many 
Giga-op/s of aggregate processing power are often available in the parallel file system. 
As part of the SEA layer technology, our goal in the Active Storage project is to leverage 
these resources for data processing. Scientific applications that rely on out-of-core 
computation are likely candidates for application of this technique, because their data 
is already being moved through the file system.  The Active Storage approach allows 
moving computations involving data stored in a parallel file system from the compute 
nodes to the storage nodes. Benefits of Active Storage include low network traffic, local 
I/O operations, and better overall performance. The SDM center has implemented 
Active Storage on Lustre and PVFS parallel file systems.  We plan to pursue deployment 
of Active Storage in biology or climate application. 
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1.  Introduction

Climate research is inherently a multidisciplinary endeavor. As researchers strive 
to understand the complexity of our climate system, they form multi-institutional and 
multinational teams to tackle “Grand Challenge” problems. These multidisciplinary, 
virtual organizations need a common software infrastructure to access the many large 
global climate model datasets and tools. It is critical that this infrastructure provide 
equal access to climate data, supercomputers, simulations, visualization software, white-
board, and other resources. To this end, we established the Earth System Grid (ESG) 
Center for Enabling Technologies (ESG-CET),1 a collaboration of seven U.S. research 
laboratories (Argonne, LANL, LBNL, LLNL, NCAR, NOAA/PMEL, and ORNL) and 
a university (USC/ISI) working together to identify and implement key computational 
and informational technologies for advancing climate change science. Sponsored by 
the Department of Energy (DOE) Scientific Discovery through Advanced Computing 
(SciDAC)-22 program, through the Offices of Advanced Scientific Computing Research 
(OASCR)3 and the Offices of Biological and Environmental Research (OBER),4 
ESG-CET utilizes and develops computational resources, software, data management, 
and collaboration technologies to support observational and modeling data archives. 

Work on ESG began with the “Prototyping an Earth System Grid” (ESG I) project, 
initially funded under the DOE Next Generation Internet (NGI) program, with follow-
on support from OBER and DOE’s Mathematical, Information, and Computational 
Sciences (MICS) office. In this prototyping project, we developed Data Grid technol-
ogies for managing the movement and replication of large datasets, and applied these 
technologies in a practical setting (an ESG-enabled data browser based on current 
climate data analysis tools), achieving cross-country transfer rates of more than 500 
Mb/s. Having demonstrated the potential for remotely accessing and analyzing climate 
data located at sites across the U.S., we won the “Hottest Infrastructure” award in the 
Network Challenge event at the SC’2000 conference.

While the ESG I prototype provided a proof of concept (“Turning Climate Datasets 
into Community Resources”), the SciDAC Earth System Grid (ESG) II project5 6 made 
this a reality. Our efforts in that project targeted the development of metadata technol-
ogies7 (standard schema, XML metadata extraction based on netCDF, and a Metadata 
Catalog Service), security technologies8 (Web-based user registration and authenti-
cation, and community authorization), data transport technologies9 10 (GridFTP-
enabled OPeNDAP-G for high-performance access, robust multiple file transport 
and integration with mass storage systems, and support for dataset aggregation and 
subsetting), and web portal technologies to provide interactive access to climate data 
holdings. At this point, the technology was in place and assembled, and ESG II was 
poised to make a substantial impact on the climate modeling community.

In 2004, the National Center for Atmospheric Research (NCAR), a premier 
climate science laboratory and lead institution for the Community Climate System 
Model (CCSM) modeling collaboration, began its first publication of climate model 
data into the ESG system, drawing on simulation data archived at LANL, LBNL, 
NCAR, and ORNL. Late that same year, the Program for Climate Model Diagnosis 
and Intercomparison (PCMDI), an internationally recognized climate data center at 
LLNL, launched a production service providing access to climate model data germane 
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to the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report 
(AR4).11 (Because of international data requirements, restrictions, and timelines, 
the NCAR and PCMDI ESG data holdings were separated.) ESG has since become a 
world-renowned leader in developing technologies that provide scientists with virtual 
access to distributed data and resources. 

In its first full year of production (late 2005), the two ESG sites provided access to a 
total of 220 TB of data, served over 3,000 registered users, and delivered over 100 TB of 
data to users worldwide. Analysis of just one component of ESG data holdings, those 
relating to the Coupled Model Intercomparison Project phase 3 (CMIP3), resulted in 
the publication of over 100 peer-reviewed scientific papers.

In 2006 we launched the current phase of the ESG effort, the ESG Center for 
Enabling Technologies (ESG-CET). The primary goal of this stage of the project is 
to broaden and generalize the ESG system to support a more broadly distributed, 
more international, and more diverse collection of archive sites and types of data. An 
additional goal is to extend the services provided by ESG beyond access to raw data 
by developing “server-side analysis” capabilities that will allow users to request the 
output from commonly used analysis and intercomparison procedures. We view such 
capabilities as essential if we are to enable large communities to make use of petascale 
data. However, their realization poses significant resource management and security 
challenges.

2.  Overview of ESG

ESG is a large, production, distributed system – a Data Grid – with primary access 
points via three web portals: one for general climate research data; another dedicated 
to the IPCC activity; and a third for the Community Climate System Model (CCSM) 
Biogeochemistry (BGC) Working Group, which is just going into production at ORNL. 
The deployment of these three separate portals is driven by international data require-
ments, restrictions, and timelines. However, they are all based on the same underlying 
software system. Our goal in ESG-CET is to achieve complete integration of these 
focused archives, while providing the tailored access and other controls required by 
the various data owners. In this way, we will provide ESG users with coherent access to 
ever-growing and increasingly diverse collections of global community climate data.

 
Users of the ESG portal must first register, at which time they are granted appro-

priate privileges and access to data collections. The main portal page, shown in Figure 
1, provides news, status, and live monitoring of ESG. Once logged in, users may either 
search or browse ESG catalogs to locate desired datasets, with the option of browsing 
both collection-level and file/usage-level metadata. Based on this perusal of the catalogs, 
users may gather a collection of files into a “DataCart” or request an “aggregation,” 
which allows them to request a specific set of variables subject to a spatiotemporal con-
straint. Selected data may then be downloaded to the user’s system, including datasets 
that are on deep storage at multiple sites behind security firewalls. Group-based autho-
rization mechanisms allow the ESG administrators to control which users can access 
which data. These capabilities are made possible by a collection of ESG management, 
data publishing, and large-scale data transport tools.
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Figure 1. ESG Portal

The ESG system includes a metrics-gathering capability that keeps track of user 
activity. Interactive displays as well as reports allow us to track what data is down-
loaded, how often, and by whom. The resulting data has proved invaluable not only for 
reporting to sponsors and data owners on degree of use (its initial intent), but also as a 
guide to system development and optimization.

3.  Overall Impact

ESG has had a significant impact upon the national and international climate 
community by enabling broad dissemination of important data holdings, including 
the Community Climate System Model (CCSM) data archive, the Intergovernmental 
Panel on Climate Change (IPCC) 4th Assessment Report (AR4) data archive, and 
now the CCSM BGC Carbon-Land Model Intercomparison Project (C-LAMP)12 data 
archive. All three archives are well known to the user community and, since ESG’s 
official release, the community has downloaded well over 300 TB of data, well over 1 
million files, and reported over 300 journal articles,13 all in a short time span. 

The ESG team works closely with the CCSM community to publish CCSM model 
data into the ESG archives. Collaborating with CCSM scientists and data providers, 
the ESG team developed and utilized Grid technology that interfaces into the ESG 
metadata database allowing the CCSM community to view and manage all infor-
mation related to generating, defining, and archiving CCSM model simulation runs. 
This interface allows scientists to impose selective access control on project runs, to 
sort information by any type, and to enter data collaboratively. The long-term goal is 
to tie the metadata ingestion process to the actual CCSM run workflow, so that model 
simulation metadata can be added automatically into the ESG data holdings. 

The ESG user base comprises climate scientists, analysts, educators, governments 
(both domestic and abroad), private industry, and many others. CCSM data, along 
with other important datasets accessible via ESG, such as those produced by the 
Parallel Climate Model (PCM)14 and the Parallel Ocean Program (POP),15 have been 
used in numerous scientific papers, impact analyses, urban planning and ecosystem 
monitoring studies, education, and other activities. By allowing access, ESG enables 
scientists, hardware and software engineers, universities and others to examine and 
learn how a state-of-the-art climate model works, and to provide suggestions and 
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enhancements for its scientific accuracy, portability, and performance. We even receive 
occasional queries from the general public, asking how they can use data published in 
ESG to better understand climate change issues or local impacts.

ESG was thrust into international collaboration when it was asked in late 2003 to 
support the IPCC/Working Group on Coupled Models (WGCM) need to distribute 
data to the international climate community. The IPCC, which was jointly estab-
lished by the World Meteorological Organisation (WMO) and the United Nations 
Environment Programme, carries out periodic assessments of the science of climate 
change. Fundamental to this effort is the production, collection and analysis of data 
from climate model simulations carried out by major international research centers. 
Analysis of a set of standard climate-change simulations from many modelling centers 
provides comprehensive understanding of the strengths and weaknesses of climate 
models, as well as which aspects of the simulation results may be due to characteristics 
of specific models and which are generally observed across multiple models. The IPCC 
and WGCM requested that PCMDI at LLNL collect model output data from these 
IPCC simulations and distribute these to the community via ESG. Since this effort 
began, IPCC model runs published to the climate community via the CMIP3 (IPCC 
AR4) ESG portal total just over 35 TB (78,158 files), and some 1,400 users have reg-
istered to receive IPCC data for analysis. Figure 2 shows the daily download rate over 
time.

 

 
Figure 2. CMIP3 (IPCC AR4) Download Rates in Gigabytes/day

New to ESG is the dissemination of C-LAMP12 biogeochemistry data. This model 
inter-comparison project has two terrestrial BGC modules linked to the same set of 
prescribed ocean BGC fluxes, together with the CCSM’s interactive atmosphere and 
interactive land surface modules. The C-LAMP effort involves two separate experi-
ments: one in which atmospheric data comes from observations, the other in which 
it is calculated by CAM3, the current atmospheric component of the CCSM. The first 
experiment will determine how well land-air fluxes of CO2 are simulated by the two 
BGC modules, given the observed climate. The second will determine the effect of 
the atmospheric model’s climate bias (notably in precipitation) on the simulated CO2 
fluxes. The C-LAMP experimental output is now being archived and disseminated 
on an ESG C-LAMP site modelled after the ESG CMIP3 (IPCC AR4). This archive 
will initially be open only to members of the BGC Working Group, but ultimately the 
working group will open up the data to any interested researcher.

Knowledge and expertise gained from ESG have helped the climate community 
plan effective strategies to manage a rapidly growing data environment. Approaches 
and technologies developed under the ESG project have also impacted data-simulation 
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integration in other disciplines, such as astrophysics, molecular biology, and materials 
science.

4.  The Next-Generation ESG

Building upon ESG’s success to date, ESG-CET is developing a next-generation 
environment targeted at enabling flexible, efficient, and universal access to yet larger 
datasets, and to harnessing distributed worldwide resources for the purpose of 
advancing climate and related impacts research and assessment. In creating this new 
community infrastructure, ESG-CET will turn even more climate model data into true 
community resources and place advanced capabilities in the hands of a substantial user 
base community. 

Our high-level goals for this next phase of ESG are driven by scientific objectives 
relevant to DOE’s scientific priorities over the next several years. In brief, they are, 
firstly, to sustain successful existing ESG services and, secondly, to address scientific 
needs related to projected future data management and analysis requirements, with a 
particular focus on:

Preparing for the CMIP4 IPCC 5•	 th Assessment Report (AR5) in 2010.
Publishing and enabling processing of the massive data produced by the Climate •	
Science Computational End Station (CCES) at ORNL’s NCCS/LCF.
Supporting a wide-range of climate model evaluation activities aimed at improving •	
climate change research.

To support this effort, we will broaden ESG to support multiple types of model 
and observational data, provide more powerful (client-side) ESG access and analysis 
services, enhance interoperability between common climate analysis tools and ESG, 
and enable end-to-end simulation and analysis workflow. Figure 3 depicts the scientific 
data management and analysis requirements in relationship to the ESG development 
timeframe. We specifically note that a distributed testbed for CMIP4 (IPCC AR5) must 
be in place by early 2009.

 
Figure 3. Evolving ESG to the Petascale: High-level ESG-CET Roadmap
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The ESG-CET architecture must be generalized to enable a larger number of sites 
with more diverse capabilities to selectively federate, cooperate, or operate in a stand-
alone fashion as individual sites desire. The architecture must support a variety of user 
access mechanisms, including multiple portals and service- or API-based access, and 
data delivery mechanisms. This architecture must also be robust in the face of system 
and network failures at the participating sites. 

To address these concerns, we designed the federated ESG-CET architecture (see 
Figures 4 and 5) to provide interoperability and enhanced functionality to users, and 
are now implementing the new design through a combination of evolution of existing 
software, development of new tools, and integration with third-party software. The 
much wider deployment anticipated for the next generation system means that 
software deployability and maintainability are vital considerations in determining the 
most effective implementation.

 

Figure 4. Future ESG-CET Architecture

 

Figure 5. The ESG-CET Federated System
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5.  Conclusion

ESG has made significant progress towards the definition of the federated metadata, 
security, and data services required to enable distributed access to, and analysis of, 
large quantities of climate simulation data. The current production-level ESG system 
primarily addresses the tasks of publishing and cataloging terabytes of climate model 
data for a diverse set of registered users. We are now working to take ESG-CET to the 
next level of distributed environments with an even greater emphasis on federation and 
server-side capabilities. ESG-CET will build upon the current ESG system and target 
flexibility, efficiency, and more universal access while expanding to serve much larger 
archives (petabytes), as required for CMIP4 (IPCC AR5), CCSM, and CCES. To this 
end, ESG-CET is working with disparate technologies and partnering with national 
and international leaders in the computer and climate communities to build a robust 
data and analysis distributed infrastructure in support of advancing climate change 
research. 
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