PROJECT TITLE

Application of Cutting-Edge 3-D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

Presenter: Tom Bjorklund, Department of Geosciences, University of Houston CONTRIBUTORS

University of Houston

Tayo Akintokunbo Fred Hilterman (Faculty) Kurt Marfurt (Faculty) Jenny Zhou

Suat Aktepe Hao Guo Gabriel Perez Mingya Chen Na Li Rafael Sanguinetti

Consultant

Susan Nissen (for sub-recipient Kansas Geological Survey)

OUTLINE OF PRESENTATION

- Introduction to seismic attributes
- Description of project
- Highlights of the past year
- Planned work flow

Seismic attributes: A working definition

A seismic attribute is any measure of seismic data that helps to better visualize or characterize subsurface features of interest.

There are hundreds of statistically valid 'special' attributes!

Some commonly applied attributes

- Dip and azimuth: Estimates of reflector orientation
- Curvature: Estimate of reflector shape
- Coherence: Measure of waveform similarity
- Amplitude filter: Change in amplitude along a reflector
- Impedance: Correlative with layer properties

The concept of curvature

Curvature (k) is approximately the rate of change of slope of a reflector. Sign convention is: Anticlinal: k > 0, Planar: k = 0, Synclinal: k < 0.

(Roberts, 2001)

Kurt Marfurt, 2006

Curvature and Biometric Identification of Suspicious Travelers

Attribute time slices of Ellenburger Formation

1.0

0.9

Most negative curvature map

Coherence map

(al-Dossary and Marfurt, 2006)

8.0

Map view of coherence attribute

Used to map the areal distribution of a Pleistocene-age Mississippi river distributary channel system in the subsurface.

Cross section of impedance volume

Used to extrapolate well log derived values (e.g., reservoir lithology, thickness, porosity, or hydrocarbon saturation) into areas of no well data.

OUTLINE OF PRESENTATION

- Introduction to seismic attributes
- Description of project
- Highlights of the past year
- Planned work flow

CO2 SEQUESTRATON POSSIBILITIES

From: International Energy Agency Greenhouse Gas R&D Program

CO2 SUBSURFACE STORAGE OBJECTIVES

- Provide for large storage capacity
- Ensure long-term storage
- Minimize increases in electricity costs

SPECIFIC PROJECT OBJECTIVES

 Use seismic attributes to map 3-D reservoir properties (*thickness, porosity, permeability and hc saturation*) of subsurface targets.

 Construct a reservoir model and validate with simulation studies of production.

Use model to predict CO2 injectivity and storage potential.

CO2 Sequestration Field Study Areas

OUTLINE OF PRESENTATION

- Introduction to seismic attributes
- Description of project
- Highlights of the past year
- Planned work flow

Patoka and Sciota Fields Illinois Basin

FutureGen – a DOE consortium project to build the world's cleanest coal-fueled power plant

Possible sites: Mattoon, III.; Tuscola, III.; Jewett, Tex.; and Odessa, Tex.

Illinois Basin Map CO2 Storage Capacity

STUDY AREAS IN ILLINOIS BASIN

6/19/2007

By: Jenny Zhou & Mingya Chen

PATOKA FIELD-MT. SIMON STRUCTURE MAP

6950

PATOKA FIELD-MT.SIMON CURVATURE MAP

3-D perspective and maximum positive curvature attributes 6/19/2007 By: Jenny Zhou

SCIOTA FIELD-MT. SIMON STRUCTURE MAP

By: Ameren

Central seismic survey area

6/19/2007

By: Minga Chen

Upper Mt. Simon slice 3

Geometric attributes

By: Minga Chen

6/19/2007

Basement

SCIOTA FIELD

3-D perspective and maximum positive curvature attribute near top basement.

By: Minga Chen

Teapot Dome Field Powder River Basin Wyoming

TEAPOT DOME FIELD-TIME SLICE OF PSTM DATA NEAR BASEMENT

TEAPOT DOME FIELD

Pre-stack profiles with interpretations of horizons and faults. By: Tayo Akintokunbo

6/19/2007

3km

TEAPOT DOME FIELD-ATTRIBUTE MAPS NEAR BASEMENT

By: Tayo Akintokunbo

TEAPOT DOME FIELD

3-D perspective of Sobel filter attribute maps near basement and Tensleep (below Goose Egg) horizons.

Dickman Field Kansas

Dickman Mississippian Oil Field, Kansas

Base Miss. Porosity-Most Negative Curvature Map, Dickman Field

6/19/2007

By: Susan Nissen

Dickman Field Water Production Vs. Distance to Lineaments

6/19/2007

By: Susan Nissen

OUTLINE OF PRESENTATION

- Introduction to seismic attributes
- Description of project
- Highlights of the past year
- Planned work flow

THE NEXT STEPS

- Complete time migrations of pre-stack 3-D seismic data.
- Establish correlations between well data and seismic attributes.
- Construct 3-D geomodels of reservoirs.
- Simulate oil production and CO2 injectivity in Dickman Field.
- Develop "best practices" workflow for seismic attribute studies.

ACKNOWLEDGMENT OF SUPPORT

Department of Energy RMOTC Grand Mesa Operating Company Ameren **Continental Resources of Illinois** Kansas Geological Survey **Brigham Young University, Geological Sciences Stanford University, Geophysics Department** Illinois State Geological Survey Schlumberger **Prism Seismic** GeoPLUS **Great Lakes Geophysical Exploration Development, Inc.** West Virginia University, Geology/Geography Dept. 6/19/2007

THE END!